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Figure 1. Our importance sampling method for the Marschner specular lobe BRDF.
From left to right, top to bottom, cone angle =1, 3,5,7,9, 11, 13, 15, 17 and 19°.

Abstract

Hair and fur are increasingly important visual features in production render-
ing, and physically-based light scattering models are now commonly used. In
this paper, we enable efficient Monte Carlo rendering of specular reflections
from hair fibers. We describe a simple and practical importance sampling
strategy for the reflection term in the Marschner hair model. Our implemen-
tation enforces approximate energy conservation, including at grazing angles
by modifying the samples appropriately, and includes a Box-Muller transform
to effectively sample a Gaussian lobe. These ideas are simple to implement,
but have not been commonly reported in standard references. Moreover, we
have found them to have broader applicability in sampling surface specular
BRDFs. Our method has been widely used in production for more than a year,
and complete pseudocode is provided.
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1. Introduction

Hair and fur are important visual features, that are increasingly common in
production environments. They are also the building blocks for accurate ren-
dering of seemingly unrelated effects such as clothing, where we model indi-
vidual fibers of yarn. Standard surface reflection algorithms no longer apply
directly, since a hair fiber does not have a surface normal in the conventional
sense (a single pixel corresponds to the entire cylinder of micro-surface nor-
mals), but only an overall orientation or tangent direction.

For many years, the standard hair reflection model was the extension of the
Phong model proposed by Kajiya and Kay [1989]. This model was adapted
for production by Goldman [1997]. In 2003, [Marschner et al. 2003] pro-
posed a comprehensive physically-based light scattering model from human
hair fibers, that has become the basis for most subsequent work, including this
paper. While the Marschner model defines an effective hair “BRDF”, efficient
Monte Carlo rendering also requires practical techniques for importance sam-
pling (we use BRDF importance sampling [Lawrence et al. 2004] within a
multiple importance sampling framework [Veach and Guibas 1995]). To date,
no importance sampling method has been published, and personal communi-
cations indicate the lack of widespread existence of such a method.

In this paper, we describe a simple and practical importance sampling
scheme for the single scattering or reflection term R in the Marschner hair
model. While we do not address the other (TT and TRT) terms, they are of-
ten considered separately for easier artistic design [Sadeghi et al. 2010], and
have a similar form. In fact, TRT is commonly split between a glint com-
ponent (which can be achieved via some noise calls), and a regular reflection
lobe, derived from R, only with a longitudinal shift in the opposite direction.
And TT, the double transmittance, is usually blocked because of shadowing
and thus requires a more global scatter approach for blonde hair [Zinke et al.
2008].

Our method was originally developed simultaneously with the recent com-
prehensive work by d’Eon et al. [2011] and addresses some of the same is-
sues. In particular, they correctly deal with energy conservation, modifying
the BRDF accordingly. However importance sampling is still an open prob-
lem.

In summary, we describe a simple practical approach to importance sam-
pling the reflected lobe in the Marschner hair model. We enforce approximate
energy conservation at grazing angles by clamping and simplifying the weight
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of the Monte Carlo estimator, which is a “trick” that is also useful in other
contexts like specular BRDF sampling. There are a number of interesting
practical issues, that we describe in detail with pseudocode faithful to our ac-
tual production-ready implementation.

The panel in Figure 1 shows some results of our importance sampling
method for the Marschner specular lobe BRDF inside a global illumination
renderer for both direct lighting from an area light source and for tracing re-
flections. These images use 48 samples, and each cylinder is composed of 30
hair fibers shaped like circles and assembled next to one another. With a fairly
low number of samples, each hair fiber is reflection tracing to its surrounding
walls and ground. Observe that we can resolve both glossy and semi-glossy
specular defined by the Marschner reflection model. Our algorithm has been
used in production at Pixar for the past year in rendering hair for Monsters
University and other shows (see Fig. 5 for an example). It has produced sat-
isfactory results with no tweaking required, beyond what is reported in this
paper and described in our complete pseudocode.

2. Background

The reflected radiance is given in the standard way by
L(o,) = / Li(0)S(,®,)V () cos 0o, (1)

where the integral is over all incident directions, S is the scattering function
(equivalent to the BRDF) for hair, L; is the lighting, and ® and ®, are incident
and reflected directions. V is the visibility function that is ray traced, or com-
puted using an approach like deep and multilayer shadow maps [Lokovic and
Veach 2000; Xie et al. 2007]. For notational simplicity, incident directions
are not subscripted. The important difference from surface reflection is that
the angles are measured with respect to the normal plane (perpendicular to
the hair tangent direction), rather than a single surface normal. Thus, 0 is the
incident angle to the plane, which ranges from [—7/2,7/2].

Our goal is to importance sample S(®,®,) to determine incident direc-
tions, given that we know the reflected direction ®,. In doing so, we will pick
a number J of samples ®;, and compute

)S((l)j, (J)r)V((l)j) Ccos 9]'
p(®j) cos?6y ;’

1 4 Li(o;
b%jZ’(’ )
j=1
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where in the standard way, the Monte Carlo estimator takes the value of the
integrand divided by the probability p(®;) of generating the sample. For rea-
sons of notational simplicity in later derivations, we include the cos? 0, term
in [Marschner et al. 2003] in the denominator above, outside of S. We will
see that this term approximately cancels, and in any event we do not attempt
to importance sample it.

To do the importance sampling, we need to know the form of the scattering
function, which is given in [Marschner et al. 2003] by

S(0:,0i,0,,9r) = M(6;,6,)N(¢:,0r). 3)

This form is already factored, allowing us to use many of the techniques for
BRDF importance sampling as in Lawrence et al. [2004]. Note that we have
not explicitly considered the Fresnel term, nor the division by cos?0, (in-
cluded directly in equation 2). If the Fresnel term is desired, it can simply
multiply the value of the estimator (numerator in equation 2), but we do not
consider it in the importance sampling itself.

Finally, for the reflection lobe, we use the formulae,

M = g([37eh_a‘)

¢
N = cos > €))
where g is a (normalized) Gaussian lobe, 6, is the half-angle between incident
and reflected directions, o is an offset to capture the shift in reflected angle
because of the tilt of the surface scales, and ¢ = ¢, — 0; is the azimuthal angle
in the range [—,7|. The form for M is directly from [Marschner et al. 2003],
while the form for N is a common simplification that can be derived [Sadeghi
etal. 2010]. Note also that unlike surface reflection, we are considering angles
to the normal plane, so the formula for 6y, is just 8, = (6,+6,)/2.
This paper now describes how to generate sample directions in a proba-
bility distribution corresponding to the scattering function in equation 3, and
how to compute equation 2.
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Algorithm 1. (Algorithm Pseudocode for Generating BRDF samples)

1

void sample (vector ®,; vector Rnd [ ]; in Geom; out BRDFsamp)

// Basic Setup, compute 6, and ¢,

2 float ¢, = atan(o,[2], w.[1]) ;
3 float, =7 —acos(w,[0]) ;
4 float Opax =1/2 —abs(0,/2—a) ;

// Now, loop over the required number of samples

5 uniform float k ;
6 for (k=0; k < numbDirections; k += 1) do

10
11
12
13
14
15
16
17

18
19
20
21

22

23
24
25

26
27

vector Rand = Rnd[k] ;
// Box-Muller Transform for sampling M
float O, = B * sqrt (-2.0 * 1og (Rand[0])) * cos (2n * Rand[1]) ;

// Account for edge conditions
if (abs (0;) > Oax) then
0, = sign (6;) * Opmax ;
end
0,=0,+0;// Account for tilt from cuticle scales
0,=20*%0,-0,; // Convert to 6;
if (abs (0;) > w/2) then
0,=sign (0;) *(n-abs (6,); // Set 6; to [-m/2,n/2]
end
float cosi =cos (0;); // Frequently used trig function

// Inverse-CDF for N and generate sample direction
float A9 =2.0 * asin (2.0 * Rand[2] - 1.0) ;

float ¢; = ¢, + Ad ;

vector ®; = vector (sin (0;), cosi * cos (¢;), cosi * sin (¢;));
BRDFsamp — dir[k] = Geom — transformFromLocal(w;) ;

// Sample weights and pdf
uniform float denom =-0.5/B3/f ;

float M = B—\}E * exp (B * 05 * denom) ;

float N =2.0 * sgrt (Rand[2] * (1.0 - Rand[2])); // cos asin (u)
BRDFsamp — pdffk] =M * N /(8.0 * cosi);
// If desire cos®y: cosd = max(cos((8; —9,)/2),1.0e—5)
// BRDFsamp — wt[k] = K;x (cosixcosi)/ (cosd*cosd);
// Simpler practical form, that conserves energy below
BRDFsamp — wt[k] = K ;

end
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3. Sampling

This section is the main body of the paper and describes how to generate
the ; samples, and assign their directions, probabilities and weights of the
Monte Carlo estimator in equation 2. Section 4 discusses some refinements
needed for multiple importance sampling. We include pseudocode for the
entire process, in Algorithm 1. Our system is implemented as a RenderMan
shader, and the pseudocode is taken directly from our source code, with only
minor editing for readability and to conform to the notational conventions in
the text.

3.1. Basic Setup

The basic sampling function definition takes as inputs the reflected direction
®,, an array of random numbers Rnd (each element is a vector since as we
shall see, we will need 3 independent random numbers), and a structure for
the geometry (that will be used to transform into local coordinates later). The
output will be the BRDF samples (their directions, weights and probabilities
for computing the estimator). The random numbers can be generated in the
standard way, with stratified or quasi-Monte Carlo methods. ®, is assumed to
be available in a local coordinate frame aligned with u — v — w directions as
in Marschner et al.’s work [2003], where u is the tangent along the hair, and v
and w represent the normal plane. We first compute 6, and ¢,.

3.2. Box-Muller for Sampling the Gaussian for M

We begin by generating samples according to the Gaussian for the M term.
The standard approach is based on an inverse-cumulative distribution func-
tion. However, the Gaussian cannot be analytically integrated and inverted,
which means we would need to resort to computing the inverse erf function
or numerical inversion. While erf is a standard numerical function in most
packages including RenderMan, the inverse erf is found in Mathematica and
Matlab, but is not standard in most shading languages, including RenderMan.
There are a number of routines to compute the inverse erf [Acklam 2003], but
they can be expensive and difficult to port. Instead, there is a simple trick
using two random variables known as the Box-Muller transform [Box and
Muller 1958].

While the usual derivation is for the 2D normal distribution, each ran-
dom variable X or Y is also a normal distribution, and we can use either
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for the 1D Gaussian for M. Note that unlike standard inverse-CDF meth-
ods, we are using two random numbers to generate a single sample. There
are also rejection sampling-based methods to avoid the trigonometric calcu-
lations, but we did not use them in our implementation. The Wikipedia page
(http://en.wikipedia.org/wiki/Box_muller) on the Box-Muller transform [Box
and Muller 1958] happens to have an excellent discussion of the alternatives.

In line 8 of the algorithm, we first sample the 1D Gaussian to generate
6. Note that the basic Box-Muller value is multiplied by P to account for the
variance. To obtain 0;, we will now account for the offset o and edge effects.

3.3. Accounting for Edge Cases

The normal distribution function or Gaussian has no limits on its domain, but
angles must generally be within [—7,7t]. This leaves the question of how to
handle samples that lead to angles outside these limits (not so much a problem
for 0y itself, but for the result in 6;). Note this only occurs in the tail of the
Gaussian and so any suitable method will generally lead to only minimal bias.
However, these edge cases must be addressed explicitly in some way to avoid
generating numerical garbage.

One physically-based approach [Lawrence et al. 2004] is to simply set the
weight for these samples to 0. While this is physically accurate for the BRDF
as written, it leads to some potentially undesirable properties with losing some
incident energy; a contant white dome with a specular albedo of 1 should ide-
ally reflect an energy of 1, but setting samples to 0 loses energy. An alternative
would be to reject those samples and renormalize the weight of the remaining
samples. This approach is reasonable, but wastes samples. (Note that in nei-
ther case do we explicitly fire rays for the samples in question, but performing
the computations to generate the sample is in itself wasteful; we would ideally
like to fully use all samples that we generate).

Therefore, in practice, we impose a maximum value on the domain of
the Gaussian and clamp to that. This only affects samples deep in the tail,
and this clamping introduces minimal bias. More sophisticated changes to
the Gaussian function itself, to handle this in a more principled fashion, as
explored by d’Eon [2011], are a subject of future work. In particular, in line
4, we compute the maximum value for 6 to ensure that | 8; |< ® (simple
algebra will verify the result), and in line 10 we clamp the sampled value to
this maximum. Only then do we compute the values for 0, and finally ;.
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3.4. Inverse CDF for sampling N and final sample direction

We now apply a fairly standard inverse-CDF method for sampling the N term.
Recall from equation 4 that N(¢) = cos(¢/2). Note that ¢ lies in the interval
from [—m,+7]. However, to convert this to a pdf, we need to normalize by a
factor of 4. The PDF and CDF are simply

pdf(¢) = lN((b)zw % T;cosgdq)zl

.0

cdf(¢) = 5 (1 + sin 5) , 3)
where the offset is to ensure the CDF is 0 at ¢ = —mx. Inverting this directly
gives line 18 in the pseudocode.

We can now go ahead and construct the incident vector or geometric sam-
pling direction (note that the construction is in the hair coordinate system, and
therefore somewhat different from the standard spherical coordinates). Fi-
nally, we transform this into the appropriate reference frame.

3.5. Sample pdf

Finally, we need to compute the estimator in equation 2, which requires both
the value for a sample, as well as the probability distribution function. Note
that if we only need to do BRDF sampling, we need only the final weight
(value/pdf), in line 26. The explicit pdf calculations in lines 22-25 of the pseu-
docode are only needed for multiple importance sampling.

First, consider the probability of choosing a given sample direction, sep-
arately considering the angles 0; and ¢;. We need to compute the probability
distribution function pdf(6;, ;) with proper normalization,

/2 b
/ / pdf(6;,¢;) cos0;d0;do; = 1, (6)
9i=77t/2 i——T
where the cosine is needed for the solid angle measure in our hair coordinates
(compare to the sine for standard spherical coordinates). To compute this

probability, we observe that we have sampled so far not in terms of (6;,¢;) but
in terms of the half angle (6;,¢). In other words, we actually have,

N(9) _
f, [ men = oo =1, ™

8
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where the normalizing factor of 4 is because pdf(¢) = (1/4)cos¢/2. To con-
vert this to the form of equation 6, we must change variables, or use the Ja-
cobian J(8y,0;0;,0;) = 9(0,9)/9(6;,9;), with a term for the area measure
| det(J) | as is standard for change of variables for integration.

In our case, the Jacobian is even simpler than in surface reflection, since
we simply have ¢ = ¢, — ¢; and 6, = (8; +6,)/2. From this, it is clear that
| do |=| dd; | and dB;, = d6;/2. Since the Jacobian is diagonal, the factor
| det(J) | is simply 1/2. Therefore,

n) N9 dedq),_l

i

/q;Zcose 4¢) 0s0;d9;do; = 1, ®)

where in the last line we have accounted for the cos0; in the solid angle mea-
sure. By inspection (compare to equation 6) from the equation above,

M(6,)N(9)

df(ei7¢i> = W:
l

)
which is directly expressed in line 25 of the pseudocode.! Line 24 introduces
a neat trick to avoid explicitly applying a trigonometric function. We know
that /¢ is obtained by an inverse sine. Noting that cos(sin~ ! (1)) = v/1 — u?
and simplifying the algebra, we obtain the result.

3.6. Computing the Estimator and Energy Conservation

Finally, we must compute the sample’s contribution to the estimator in equa-
tion 2. One condition we would like to ensure is energy conservation, that
the hair appears uniform when placed in a lighting dome of uniform radiance.
This requires the hair BRDF to be properly normalized. In our case, it will be
a probability function, essentially requiring the scattering function to have the
same normalization as the pdf. Therefore, we use

S(a.) = MOV (10)

I'The factors of 2 and 8 in lines 24 and 25 could easily be pre-cancelled and other trivial
optimizations applied. We retain the original form for readability.
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k.

(a) I BRDF sample (b) 1 light sample (c) 16 light samples  (d) 256 light samples

Figure 2. While our BRDF sampling offers full convergence at 1 sample under a
uniform white dome with no shadowing (fig a), light sampling needs all the way to
256 samples (fig d) to resolve the correct normalization. For reference, we show
images with 1 and 16 light samples (fig b and c).

from which it follows that the reflectance-dependent part in equation 2 is given
by
S(w;,®,) cosH; cos2 9;

= (1)

p(0;) cos26; cos?8,’

since all other factors involving M and N cancel. Indeed, this is the beauty of
good importance sampling, that most factors cancel, leaving an estimator with
very low variance. We robustly compute (avoiding small values) the cosine
denominator cos0,; = max(cos((6; —0,)/2),1.0e —5). In the pseudocode, we
also include the overall specular color K in the weight.

Our final form in line 26 is even simpler. For sharp specular lobes, inci-
dent and reflected cosines will be very similar, as will that of the difference
angle. Thus, the right-hand side in equation 11 can simply be replaced with 1.
We also note that Marschner et al.’s original derivation [2003] uses a mirror
where cos0; = cos 0, = cos 0, and the rationale for using a denominator with
0, for rough surfaces, as opposed to 6; is not clear, except from conditions of
reciprocity. Therefore, we directly use the very simple form in line 26, and we
have not found this to change the results significantly. Besides simplicity, this
formula enforces a form of exact energy conservation; the scattering function
is now exactly a probability distribution function (with edge cases handled not
with an analytic formula, but implicitly through our earlier discussion; implic-
itly both the probabilities and value of the scattering function are modified in
the same way to give a net Monte Carlo weight of 1).”

2 Note that the first part of equation 6, and by extension equation 8 requires the Gaussian
normal distribution function to integrate to 1, which it does over an infinite domain. The
integral is approximately 1 over the restricted angular domain, but our computations do not

10
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(a) I sample (b) 4 samples
(¢) 16 samples (d) ground truth

Figure 3. As can be seen from the figure, BRDF sampling converges rapidly to the
true result (ground truth was obtained using light sampling with 256 samples). This
example includes full shadow tracing.

Finally, the overall rendering system will take the weights produced from
the BRDF sampler, and multiply them with the lighting for the sample direc-
tions, modulated by visibility, and average over all Monte Carlo samples. Note
that the overall rendering system cares only about the weight and the BRDF
direction. However, we do compute the pdf explicitly, both for instructive
purposes, and since it is useful for multiple importance sampling, as discussed
next.

Refer to Figure 2, where a common validating "white furnace" test is done.
The idea is to make sure that the BRDF correctly integrates to white under a
non shadowing uniform white dome. Similarly Figure 3 demonstrates the
fast convergence of our approach under arbitrary lighting with full shadowing
computations.

strictly account for the way we handled edge cases to clamp the range of values. This does
not create practical problems, especially since the estimator is also set up to compensate and
ensure energy conservation, as discussed above.

11
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Algorithm 2. (BRDF Value and PDF for Multiple Importance Sam-
pling)

1 void ValuePDF (vector m,; vector Dir [ ]; out BRDFsamp)

10

11

12

13

14
15

16

// Basic Setup, compute 0, and Rperp to calculate ¢
2 float8, =% —acos(w.[0]) ;

3 vector Rperp = normalize (vector (0.0, ®,[1], ®[2]));
4 uniform float denom =-0.5/B/ ;

// Now, loop over the required number of samples

uniform float k ;
for (k=0 k < numbDirections; k += 1) do

// Compute M term

vector ®; = Dir [K] ;

float 6; = § —acos(w;[0]) ;

float cosi = sqgrt (1.0 - o;[0] * o;[0]) ;
float 6, = (6,+6,)/2— 0o ;

float M = ﬁ—\}ﬁ * exp (B * O * denom) ;

// Compute N term

vector Lperp = normalize (vector (0.0, o;[1], 0;[2]) )

// Trig identity cos¢ =2cos*(¢/2)—1
float N = sgqrt ((1.0 + Rperp - Lperp ) *0.5) ;

// Compute Value and PDF

BRDFsamp — pdffk] =M * N/ (8.0 * cosi);
BRDFsamp — value[k] = K; * BRDFsamp — pdffk] ;

// If we desire to keep the cosf; term,

multiply this by (cos8;/cos8,)>.
end

we can

4,

Multiple Importance Sampling

In practice, the BRDF sampling routine above will often be combined with
light sampling in a multiple importance sampling (MIS) framework [Veach
and Guibas 1995]. One requirement of MIS is that we are able to compute the
BRDF value and pdf for an arbitrary direction generated by light sampling.
Moreover, there may be cases where we want to use light sampling; we still
need to be able to evaluate the normalized BRDF value in those cases for
an arbitrary incident direction. Therefore, we describe the Value and PDF

12
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function in algorithm 2, which is largely similar to BRDF sampling.

The main difference is that we now are given as input a list of incident
directions (in Dir [ ]). We start with the basic setup as for BRDF sampling,
computing 0, and the constant denom term. Instead of computing ¢,, we com-
pute the corresponding vector Rperp instead (a similar vector Lperp will be
computed later for incident directions).

We now proceed to compute M, starting by reading in ®; and determining
0;. Note that we have ®; so the cosine can be computed directly without a
trigonometric function call. 6y is now computed directly from the formula
(since 6, = 0+ o). From this, we apply the standard formula for M.

For computing N, we compute Lperp for the incident direction, just as
we calculated Rperp. cos¢ is simply the dot product between these vectors.
cos((/2) is obtained directly from a well-known trigonometric identity, with-
out using any explicit trigonometric functions.

Finally, we need to compute the value and pdf. The pdf is computed just
as for the BRDF sampling case, discussed earlier. The value is simply the final
weight times the pdf, and we have already seen that the weight is simply Kj.

Figure 4 compares light sampling with BRDF sampling and MIS. In this
environment, the advantage of MIS is rather minimal. However, as is com-
mon with MIS, situations with more isolated light sources would demonstrate
benefits from light sampling.

5. Discussion and Use in Production

The method described in this paper was originally developed for production
use for hair rendering on Pixar’s upcoming Monsters University feature. It
is one component of a significant shift involving the computer-generated ani-
mation industry, where previous ad-hoc shading models within a rasterization
pipeline are increasingly being replaced by physically accurate lighting and
reflectance, within a raytracing and importance sampling framework. Indeed,
from mid-2011, Pixar’s industry standard Renderman 16.0 software has in-
cluded support for (multiple) importance sampling, inspired in large part by
our initial shaders for this purpose (which in addition to the work described
in this paper also handled standard diffuse and specular BRDFs in a similar
fashion). Since our application is to hair rather than surface BRDFs, and the
original development pre-dates this change in RenderMan, our actual imple-
mentation uses independent shaders, pseudocode for which is given here.
The technique described in this paper has been in production use at Pixar

13
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(a) 4 light samples (b) 24 light samples
(¢) 4 BRDF samples (d) MIS 4 light and 4 BRDF samples

Figure 4. Here we compare the quality of BRDF sampling versus light sampling.
Under this environment, 4 BRDF samples (fig c) are equivalent to about 24 light sam-
ples (fig b). We also provide (fig d) an MIS render (a combination of light 4 samples
and 4 BRDF samples): the differences are rather subtle since light sampling is much
worse than BRDF sampling, but if you look closely, you can see better definition of
the individual strands.

for Monsters University and other shows for more than a year now, and has
been generally well received, with almost no additional tweaks required be-
yond what is described here. To our knowledge, it has performed satisfactorily
in all settings. Given the “in-production” nature of Monsters University, we
are unable to provide too many example images at this time. Figure 5 shows
one example from the publicly-released trailer. We see how the parameters
(reflectance Kj, color, width of highlight defined by [ and shift o) can be
used to create interesting appearances, allowing sufficient flexibility for artis-
tic direction. In this case, the image actually uses two Marschner lobes (both
sampled with our algorithm) for creating the right look.

While many of the basic ideas in this paper are a fairly direct application
of the literature, our informal discussions with many other production houses
indicated they were not aware of, nor able to independently develop, a suitable

14
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Figure 5. An example image in production from Monsters University, with the
hair rendered using our method. This image uses a small diffuse component, but
is primarily rendered with our specular model. It uses two Marschner lobes, one
with K; = 0.17, = 5°,a = —2° with a white color, and a secondary lobe with
K; =1, = 10°,00 = 5° with a saturated blue color. Image copyright (2012) Pixar.
All Rights Reserved.

method for importance sampling. We are therefore publishing our complete
implementation in the hope it is more broadly useful to the industry. There is
also considerable room for future work, such as including the other Marschner
terms, like TT and TRT, as well as in applying the concepts to more recent hair
BRDF models such as d’Eon’s [2011].

15
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