
Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

The Compact YCoCg Frame Buffer

Pavlos Mavridis Georgios Papaioannou
Department of Informatics, Athens University of Economics & Business

Figure 1. Our method can rasterize a color image using only two frame-buffer chan-
nels by interleaving the chrominance components in a checkerboard pattern. The final
image is reconstructed using an edge-directed demosaicing filter. The compression
error, visualized in the inset, is negligible, and the filtering is temporally stable.

Abstract
In this article we present a lossy frame-buffer compression format, suitable for exist-
ing commodity GPUs and APIs. Our compression scheme allows a full-color image
to be directly rasterized using only two color channels at each pixel, instead of three,
thus reducing both the consumed storage space and bandwidth during the rendering
process. Exploiting the fact that the human visual system is more sensitive to fine
spatial variations of luminance than of chrominance, the rasterizer generates frag-
ments in the YCoCg color space and directly stores the chrominance channels at a
lower resolution using a mosaic pattern. When reading from the buffer, a simple and
efficient edge-directed reconstruction filter provides a very precise estimation of the
original uncompressed values. We demonstrate that the quality loss from our method
is negligible, while the bandwidth reduction results in a sizable increase in the fill rate
of the GPU rasterizer.

19

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

1. Introduction
For years the computational power of graphics hardware has grown at a faster
rate than the available memory bandwidth [Owens 2005]. This trend is com-
mon in computer hardware and is likely to continue in the future, making
bandwidth-saving algorithms increasingly important. In addition to mem-
ory bandwidth, the storage space of GPUs is also limited; therefore, a re-
duction in the consumption of both resources is always desirable in real-time
rendering.

The frame buffer, the area of memory that stores the resulting fragments
during rasterization, is a big consumer of both memory bandwidth and storage
space. The consumption of these resources is further increased by several fac-
tors, such as the usage of high-precision floating-point render targets, needed
for high dynamic range (HDR) rendering and most importantly, by the usage
of multisample render buffers, required for multisample antialiasing. A mul-
tisample frame buffer with N samples per pixel consumes N times the storage
and bandwidth of a regular frame buffer, putting a lot of stress on the memory
subsystem of the GPU.

This fact was recognized by hardware vendors, and many, if not all, of the
GPUs shipping today employ proprietary lossless frame-buffer compression
algorithms, that mostly exploit the fact that a fragment shader can be executed
only once per covered primitive and that the same color can be assigned to
many sub-pixel samples. According to information theory, there is no lossless
compression algorithm that can guarantee a fixed-rate encoding; therefore, in
order to provide fast random access, these algorithms can save only bandwidth
but not storage.

In this article, we present a method to rasterize a color image using
only two spatially interleaved color channels, instead of three, thus reducing
the storage and more importantly, the bandwidth requirements of the rasteriza-
tion process—a fundamental operation in computer graphics. This reduction
in the memory footprint can be valuable when implementing various rendering
pipelines. Our method is compatible with both forward and deferred render-
ing, it does not affect the effectiveness of any lossless compression by the
hardware, and can be used with other lossy schemes, like the recently pro-
posed SBAA [Salvi and Vidimče 2012], to further decrease the total storage
and bandwidth consumption. Source code and a live WebGL demonstration
of our method are available online in the supplemental materials for this
article.

20

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

2. The YCoCg Color Space
The human visual system is more sensitive to spatial details in luminance
than in chrominance. Therefore, an image-coding system can be optimized
by encoding the chrominance components of an image with lower spatial res-
olution than the luminance ones, a process that is commonly referred to as
chroma subsampling. This was exploited by many popular image- and video-
compression algorithms, like JPEG and MPEG, and was also employed in
television broadcasting for more than half a century.

The RGB to YCoCg transform decomposes a color image to luminance
and chrominance components. This transform was first introduced in H.264
compression and has been shown to have better decorrelation properties than
YCbCr or other similar transforms [Malvar and Sullivan 2003]. The transform
is given by the following equation:Y

Co
Cg

=

 1/4 1/2 1/4
1/2 0 −1/2
−1/4 1/2 −1/4

R
G
B

 . (1)

This transform introduces some rounding errors when the same precision
is used for the YCoCg and RGB data. In particular, converting the images
of the Kodak image suite to YCoCg and back, results in an average PSNR of
52.1dB. This loss of precision is insignificant for our purpose and cannot be
perceived by the human visual system. Still, this measurement indicates an
upper limit in the quality of our compression scheme. We could avoid these
rounding errors by multiplying the direct transform matrix in Equation (1)
above by four. However, that would generate color components whose rep-
resentation would require two more bits of precision compared to the RGB
components. As described by Malvar and Sullivan, we can reduce this to one
additional bit for each chrominance component by applying some well-known
S-transform concepts, but that formulation, known as YCoCg-R, adds some
additional overhead in the shader that is not justified in our case by a visible
increase in quality. Thus, we decided to use the transform in Equation (1).

This transform has been performed traditionally in gamma-corrected (non-
radiometric) color space for image and video compression. In this article, we
have also used gamma-corrected sRGB data for our experiments, but, in the
future, it would be very interesting to investigate how this transform performs
in linear (radiometric) data and whether a different transform would perform
better in this case.

21

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

3. Storage Format
The frame buffer in our scheme stores the color of the rasterized fragments in
the YCoCg color space using two color channels. The first channel stores the
luminance (Y) in every pixel. The second channel stores either the offset or-
ange (Co) or offset green (Cg) of the input fragments, forming a checkerboard
pattern, as illustrated in Figure 1. This particular arrangement corresponds
to a luminance to chrominance ratio of 2:1 in each dimension and provides
a 3:2 compression ratio, since two color channels are used instead of three.
The same luminance to chrominance ratio is used by many video-compression
codecs, commonly referred to as 4:2:2, but, in this case, the details on how the
chrominance samples are produced and stored are different.

In order to create a compressed frame buffer on the GPU, the applica-
tion can either request a render buffer with just two color channels, such as
GL_RG16F or any similar format available in graphics APIs, or use a more
traditional format with four color channels and use the free channels to store
additional data. It is worth mentioning that some hardware support for chroma
subsampling exists, in the form of the DXGI_FORMAT_R8G8_B8G8_UNORM
and several other relevant texture formats, but to our knowledge these formats
are not valid render targets, and they do not solve the same problems as the
proposed technique.

The fragments produced by the rasterization phase of the rendering pipe-
line should be produced directly in the correct interleaved format. This is
possible by making a simple modification of the fragment shaders used to
render the scene, as shown in Listing 1. The final fragment color is converted
to the YCoCg color space and, depending on the coordinates of the destination
pixel, the YCo or YCg channels are emitted to the frame buffer.

Our method effectively downsamples the two chrominance channels using
point sampling. Ideally, we would like to perform this downsampling using a

//convert the output color to the YCoCg space
vec3 YCoGg = RGB2YCoCg (finalColor.rgb);
ivec2 crd = gl_FragCoord.xy;
//store the YCo and YCg in a checkerboard pattern
finalColor.rg=((crd.x&1)==(crd.y&1))? YCoCg.rg:YCoCg.rb;

Listing 1. The GLSL code needed to directly produce fragments on the compact
frame-buffer format.

22

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

decent resampling filter, like lanczos, in order to avoid any aliasing artifacts
in the chrominance components of the frame buffer. However, such filtering
is only possible when performing the downsampling as a post-processing op-
eration, but not when it is performed on-the-fly during rasterization, as in our
method. In practice, we did not observe any severe aliasing artifacts in the
chrominance components from this lack of a presampling filter when testing
with frame buffers from typical games.

4. Reconstruction Filters
When accessing the values of the compressed frame buffer, any missing
chrominance information should be reconstructed from the neighboring pix-
els. The simplest way to do that is by replacing the missing chrominance
value with the one from the nearest neighbor (Figure 2). This crude approxi-
mation shifts some of the chrominance values by one pixel, producing mosaic
patterns at strong chrominance transitions, as shown in the red flag close-up
of Figure 3. Using bilinear interpolation of the missing data from the four
neighboring pixels mitigates these artifacts but does not completely remove
them. These artifacts are not easily detectable by the human visual system in
still images, since the luminance is always correct, but they can become more
pronounced when motion is involved.

To eliminate these reconstruction artifacts, we have designed a simple and
efficient edge-directed filter, where the weights of the four nearest chromi-
nance samples are calculated based on the luminance gradient towards that
sample. If the gradient has a value greater than a specific threshold, indicating
an edge, then the corresponding chrominance sample has zero weight; other-

Nearest Bilinear Edge-Directed

Co Sample

Cg Sample

Luma Edge

Figure 2. The edge-directed filter avoids sampling chrominance values beyond the
edge of the current surface, leading to better reconstruction quality.

23

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

G
ro

u
n

d
 T

ru
th

O
u
r

C
o
m

p
a
c
t
F

o
rm

a
t

S
im

p
le

r
M

e
th

o
d

s
O

th
e
r

S
to

ra
g
e

 P
a

tt
e
rn

s

Bayer Format

Edge-Directed FilterNearest Filter Bilinear Filter

Y Co Gg
8 4 4

R G B65 5

47.5dB42.3dB38.8dB 43.2dB 48.2dB42.5dB

0.9%6.6%9.1% 3.3% 0.7%6.5%

35.2dB34.8dB

0.9%6.0%

32.0dB 31.3dB

26% 41%

33% Lower Resolution

33.9dB27.7dB

1.7%9.26%

36.2dB29.6dB

16%24%

(d)

(b)

(d)

G

G R

B

Extended Bayer Format

38.3dB32.4dB

12.0%15.5%

The Bayer

Pattern

GR

GRGB

GB

Ext. Bayer

Pattern

(a) (b)

(c)

(a)

(c)

Figure 3. First Row: Uncompressed 8-bit per channel frame buffers in sRGB color
space, used as input for our tests. Second row: Close-ups demonstrating our technique
when using various reconstruction filters (Section 4). Third Row: Simpler methods
(Section 5). Fourth row: Alternative mosaic patterns (Section 5). We report the PSNR
and the perceptual difference [Yee 2004] compared to the original frame buffers. The
best quality is achieved with our technique when using the edge-directed filter.

24

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

wise the weight is one. This is expressed compactly in the following equation:

C0 =
4

∑
i=1

wiCi, wi = 1.0− step(T− | Li−L0 |),

where Ci and Li, respectively, are the chrominance (Co or Cg) and luminance
of pixel i. Zero denotes the center pixel, while the next four values denote the
four neighbors. The value T is the gradient threshold, which was set at 30/255
in our experiments. The step function returns one on positive values and zero
otherwise. The gradient is computed as a simple horizontal and vertical dif-
ference of the luminance values, as shown in Listing 2. Our implementation
does not use the built-in horizontal and vertical derivative functions (dFdx and
dFdy), because on existing hardware, these functions return the same value
for pixel blocks of 2×1 and 1×2, respectively; therefore, they cannot accu-
rately capture the per-pixel variations of the frame-buffer values. In the special
case, where all the weights are zero, the weight of the first neighbor is set to
one. Furthermore, to avoid handling a special case at the edges of the frame
buffer, where only pixels inside the frame boundaries should be considered,
we are using a “mirrored repeat” wrapping mode when sampling the frame-
buffer pixels, which is supported natively by the texture hardware. It is worth
noting that the implementation of this filter uses conditional assignments that
are significantly faster than branches on most architectures.

The design of the edge-directed filter is based on the observation that,
while the luminance and chrominance channels are uncorrelated to an extent

//Returns the missing chrominance (Co or Cg) of a pixel.
//a1-a4 are the 4 neighbors of the center pixel a0.
float filter(vec2 a0, vec2 a1, vec2 a2, vec2 a3, vec2 a4)
{

vec4 lum = vec4(a1.x, a2.x , a3.x, a4.x);
vec4 w = 1.0-step(THRESH, abs(lum - a0.x));
float W = w.x + w.y + w.z + w.w;
//handle the special case where all the weights are zero
w.x = (W==0.0)? 1.0:w.x; W = (W==0.0)? 1.0:W;
return (w.x*a1.y+w.y*a2.y+w.z*a3.y+w.w*a4.y)/W;

}

Listing 2. Implementation of the edge-directed filter. The luminance is assumed to
be stored at the x component of the vectors and the chrominance (Co or Cg) at y.

25

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

(since this is the exact purpose of the RGB to YCoCg transform), a very strong
correlation persists between the luminance and chrominance edges. For exam-
ple, at the edge of a surface, where a chrominance transition will naturally oc-
cur, the luminance will probably change too. Although it is easy to construct
an artificial case where this is not true, we have found that this assumption
works very well in typical scenes. Another option would be to perform the
edge-detection based on the depth values, but this would completely ignore
the chrominance transitions created by the textures of the scene.

The reconstruction should be robust enough to handle the most challenging
cases, like high-frequency content and strong-chrominance transitions, with-
out introducing any visible artifacts. In Figure 3, we observe that the edge-
directed filter handles these cases without any artifacts. The peak signal to
noise ratio (PSNR) of the reconstructed frame buffer when using this filter
is higher than 42dB, even for noisy content, which is very satisfactory. We
also measure the perceptual difference of the resulting frame buffers, using
the metric described in [Yee 2004]. The reported number is the percentage of
pixels that differ from the original uncompressed frame buffer, as measured
using the pdiff utility. These measurements and the visual inspection of the
results indicate that our method provides an image quality very close to the
original uncompressed frame buffers. In Figure 4, we provide some additional
examples demonstrating the edge-directed filter on thin features. For the tests

Original Compressed

(b)

(c)

(a)

49.3dB

0.4%
(a)

(c)

(b)

Difference x16

Figure 4. The edge-directed filter on thin and high-contrast features. As expected,
the error is higher on extremely thin features, but still no artifacts are visible in the
final frame buffer. Please note that for visualization purposes, the absolute error is
magnified 16 times.

26

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

in Figures 3 and 4, we start with the uncompressed color buffers in sRGB
color space (8-bit per channel), convert them to two channels by dropping the
appropriate chrominance values, and finally perform the reconstruction using
our filters. This process is equivalent to directly rasterizing the buffers in our
compact format when no post-process blurring effects have been applied to
the input frame buffer.

As can be seen in the demo application of this paper, the edge-directed
filter does not produce any visible artifacts, or quality degradation, when an-
imation is involved. To further investigate the applicability of our method in
real-world scenarios, like fast action scenes, we have applied our compres-
sion scheme to a pre-recorded video, capturing the action of a modern video
game. Our conclusion is that our technique can handle fast animation se-
quences without any problem. The interested reader is strongly encouraged to
inspect the full-resolution frame buffers and watch the video on the website
for this article.

5. An Investigation of Alternative Methods
In Figure 3, we investigate the quality of some alternative methods and for-
mats that provide the same memory footprint as our technique. We recom-
mend frequently checking the results in this figure while reading through this
section.

The first alternative method simply renders the image using a frame buffer
with 33% fewer pixels. This comparison is very important and educational,
since reducing the resolution is the simplest and most commonly used method
to save storage. Naturally, compared to this method, our scheme preserves
high-frequency content more accurately. A second alternative method renders
the scene using the traditional 16-bit R5G6B5 format. Dithering is used to hide
the banding artifacts caused by the reduced bit depth. This format was very
popular in the early days of desktop 3D graphics accelerators. As expected,
this method exhibits several color banding or noise artifacts from the dithering.
In contrast, the color reproduction of our method is much more accurate, and
the visual quality is very close to the original uncompressed frame buffer.

Another format we investigated encodes the fragments in the YCoCg color
space and reduces the bit depth of the chrominance, thus creating a Y8Co4Cg4
format. Again, dithering is used to hide the visible banding artifacts. Our for-
mat, as described in Section 3, trades off the spatial resolution of the chromi-
nance, while this format trades off the bit-depth of each chrominance sample.

27

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

Although this encoding initially sounded promising, our experiments indicate
that it leads to significant errors in the reproduction of colors.

We have also experimented with a much more aggressive compression for-
mat that encodes a full-color image in a single channel of data, using the Bayer
mosaic pattern [Bayer 1976]. This pattern is used in most single-chip digital
image sensors found in digital cameras and allows a single array of monochro-
matic photo receptors to capture color images by arranging a mosaic of color
filters in front of them. Since this format works remarkably well for the en-
coding of photographs, it could have been a viable option for frame-buffer
compression as well. However, this assumption proved to be wrong, because
the images created by real-time rendering exhibit much higher frequencies
than the ones captured by a real-world lens systems, leading to increased
chrominance noise, as shown in the foliage close-up of Figure 3. Based on
the above observations, we concluded that this aggressive encoding mode is
not robust enough for general use. For our experiments with this format, we
used the MHC reconstruction filter [Malvar et al. 2004], because it can be ef-
ficiently adapted to GPUs [McGuire 2008]. To validate the results, we also
experimented with the filters in the GMIC software, but we observed similar
artifacts.

Finally, we investigated an extension of the Bayer format that uses two
channels. The green channel is stored in every pixel, while the red and blue
channels are interleaved in a checkerboard pattern. This is essentially an adap-
tation of the format described in Section 3 to use the RGB color space. With
this format, our edge-directed filter performs the reconstruction guided by the
edges of the green color channel. In our experiments, we found that this for-
mat outperforms all the other alternatives we have discussed in this section, but
the image quality is still up to 10dB lower in PSNR compared to our compact
YCoCg encoding. This enormous PSNR difference is essentially the coding
gain from the usage of the YCoCg color space in our method.

6. Antialiasing
The chrominance interleaving scheme described in the previous sections can
be trivially adapted to hardware multisample antialiasing (MSAA). Each pixel
of a multisample buffer stores multiple samples of color and depth/stencil in-
formation, each sample corresponding to a stochastic sampling position inside
the footprint of the pixel [Cook 1986]. When MSAA is used with the shader
of Listing 1, each pixel will store either multiple pairs of YCo data or multiple

28

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

pairs of YCg data, but never a mixture of both. This compact multisample
buffer can be resolved as usual before applying the demosaicing filter of Sec-
tion 4. However, the reconstruction filter should not be wider than one pixel,
to avoid incorrectly mixing the Co and Cg samples. Therefore, a custom re-
solve pass is required if the built-in hardware resolve uses wider filters. This
is hardly objectionable, since wider filters are rarely used in real-time graph-
ics, and, if necessary, they can be applied on the luminance channel, which is
perceptually the most important with respect to spatial detail.

7. Blending
Since the RGB to YCoCg transform is linear, blending and filtering can be
performed directly in the YCoCg color space. This is particularly true when
the frame buffer encodes radiometric values in linear color space, something
that requires more than eight bits of precision in order to avoid visible band-
ing artifacts. However, for performance reasons, real-time rendering is often
performed using eight-bit precision with gamma-corrected (sRGB) values. In
this case, it is worth discussing some implementation details.

First, direct blending of non-linear values is incorrect. However, it was
done in many real-time applications, until sRGB buffers started to be explic-
itly supported by the hardware (EXT_framebuffer_sRGB extension). Such a
buffer will convert the gamma-corrected values in linear space, perform the
blending, and convert the results back to gamma-correct sRGB space, in order
to efficiently store them in eight bits per channel. However, this non-linear op-
eration should not be performed on YCoCg values; thus, our method cannot
take advantage of hardware sRGB buffers.

Furthermore, eight-bit render targets cannot encode negative values. The
RGB to YCoCg transform produces chrominance values in the [−0.5,0.5]
range; thus, we have to add a bias of 0.5 in order to map them in the [0,1]
range. This bias must be subtracted when reading the chrominance from the
buffer. The bias will remain constant when alpha blending is used to render
transparent objects, but with other blending modes, like additive blending, it
will be accumulated, often leading to excessive clamping artifacts. Further-
more, the bias we have to subtract in this case is 0.5N, where N is the number
of accumulated fragments, a number which is not always known or easy to
compute.

For these reasons, when blending is necessary in eight-bit render targets,
we recommend the usage of the compact format in the RGB color space. An-

29

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

other option is to perform the blending operation inside the shader, in linear
color space and in the correct [−0.5,0.5] range, on platforms that support
it (NV_texture_barrier on Nvidia/ATI, APPLE_shader_framebuffer_fetch on
iPhone/iOS6), but this solution is limited to specific hardware and use cases.
These limitations only concern eight-bit render targets, but high-quality ren-
dering typically requires higher precision floating-point formats, which are
trivially handled by our method.

8. Performance
The measurements in this section were performed on a Nvidia GTX460
(768 MB RAM, 196-bits memory bus). In the first experiment, we measure
the pixel fill rate, memory bandwidth, pixel storage, and reconstruction speed
when rendering to a compressed render target at various bit depths. Since ras-
terization without a z-buffer is rarely used, the measurements shown in Table 1
include the bandwidth and storage for reading and writing to a 32-bit z-buffer.
In our tests, the compressed frame buffer uses a two-channel frame-buffer for-
mat (GL_RG), while the uncompressed one uses a comparable four-channel

8 bit 16 bit 32 bit 8 bit 16 bit 32 bit

F: 8.28 4.61 2.42 8.18 8.07 4.56 Gpixels/s

0.99x 1.75x 1.88x

B: 96 128 192 80 96 128 bits/pixel

0.83x 0.75x 0.66x

F: 8.28 4.56 1.1 8.18 4.52 1.99 Gpixels/s

0.99x 0.99x 1.8x

B: 128 192 320 96 128 192 bits/pixel

0.75x 0.66x 0.6x

64 96 160 48 64 96 bits

0.75x 0.66x 0.6x

0.55 0.75 1.0 0.56 0.56 0.78 millisec

Compressed

No Blending

Blending

Resolve Pass

Uncompressed

Fill-Rate Increase:

Bandwidth Reduction:

Fill-Rate Increase:

Bandwidth Reduction:

Storage Reduction:

Pixel Size

Table 1. Comprehensive measurements of the pixel fill rate (F), memory I/O for each
new fragment (B), the size of each pixel in the frame buffer (including 32-bit depth),
and the resolve speed when rendering to a 720p render target with 8-, 16-, and 32-bit
precision.

30

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

format (GL_RGBA), with the same precision on each channel as the uncom-
pressed one. Using a three-channel format with the bit depths that we used
in this experiment (8, 16, and 32 bits) would not be possible, due to memory
alignment restrictions.

The benchmark application in the first experiment is designed to tax the
fill rate of the GPU, by rendering many large visible polygons, in order to
measure the improvement in this area. First, we observe that the GPU fill
rate is directly proportional to the size of each pixel. The more data the GPU
rasterizer has to write for each pixel, the fewer pixels per second it can fill. By
reducing the size of each pixel, our method achieves an impressive 75–88%
increase in the fill rate when rendering to 16- and 32-bit floating-point formats.
Of course, we should mention that applications that are limited by geometry
or ALU throughput will not see such an increase in the performance. In the
8-bit case, we did not measure any fill-rate increase, indicating that the 8-bit
2-channel format (GL_RG8) is handled internally as a four-channel format
(GL_RGBA8). Furthermore, we did not measure any increase in the fill rate
when blending is enabled on 8-bit and 16-bit render buffers, indicating some
limitation in the flexibility of the ROP units in this specific GPU architecture.
In all cases, the application will use up to 40% less memory for the frame
buffer. This memory savings can be used to store more textures and meshes.
As an example, an uncompressed 1080p render target with 8xMSAA requires
189 MB of storage at 16-bit half-float precision, while with our method it
requires only 126 MB. Both numbers include the z-buffer storage.

It is also interesting to examine the bandwidth required to rasterize a new
fragment in the frame buffer. For a visible fragment, the GPU has to read the
old 32-bit depth value from the z-buffer in order to perform the depth test, and
then it has to write back the new depth and color information. When blending
is enabled, the old color should also be fetched. The total number of bits for
each case is shown in Table 1. Based on this analysis, we can calculate that,
for a 16-bit render target, our technique reduces the bandwidth consumption
by 25% without blending, and by 33% when blending is enabled. We should
also mention that during a z-fail, only the old z-value has to be fetched. This
case is not affected by our technique, since no actual rasterization is taking
place.

In this experiment, we also measure the time it takes to resolve (blit) a
compressed 720p render buffer to the GPU back buffer. This operation is
performed by rendering a full-screen quad that uses the render buffer as a tex-
ture. In this pass, applications can also perform tone mapping and other post-

31

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

processing operations. We observe that blitting a compressed render buffer is
faster than blitting an uncompressed one, as shown in Table 1, since less data
need to be fetched from memory. In particular, when using a half-float 720p
frame buffer, the resolving process is 0.19 ms (25%) faster. The small in-
crease in the ALU instructions, needed to decode the data, is counterbalanced
by the reduction in memory bandwidth. Although our OpenGL implementa-
tion has to perform four additional unfiltered texture fetches per pixel, to feed
the edge-directed reconstruction filter of Listing 2, most of these fetches will
come from the texture cache, which is very efficient in most GPUs. A GPGPU
implementation can completely avoid the redundant fetches, by leveraging the
local shared memory of the ALUs, but we chose to focus on the OpenGL im-
plementation, since GPGPU capabilities are not available on all platforms. In
this experiment, we used the edge-directed filter to de-multiplex the chromi-
nance data, but the less complex filters performed the same, indicating that the
blit operation is bandwidth-limited, and not ALU-limited. Of course, these
measurements could also indicate that the ALUs are rather underutilized by
our test application. Thus, we encourage developers to measure the actual
performance in their particular application.

In our second experiment, we integrated our method into a deferred-
lighting pipeline, a practical algorithm used by many modern game engines.
This pipeline involves the accumulation of the diffuse and specular light in two
buffers. Readers unfamiliar with deferred rendering are referred to [Akenine-
Möller et al. 2008]. Many implementations of deferred lighting reduce the
memory footprint of the algorithm by dropping the chrominance information
of the specular buffer, in order to store both buffers in one render target. This

Reference - six channels Drop chroma - four channels Ours - four channels

Figure 5. Integration of our algorithm in a deferred-lighting pipeline. Left: Accurate
diffuse and specular accumulation using six channels (two render targets). Middle:
Fast but inaccurate accumulation using one render target, by dropping the specular
chrominance. Right: Fast and accurate accumulation, using our compact format to
store the diffuse and specular buffers in one render target.

32

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

approximation can lead to incorrect specular highlights, as shown in Figure 5
(middle). In this example, a red and green light source are shining onto a
surface from different directions. The diffuse term will be yellow in the mid-
dle, but the specular term should have two separate highlights, one red and
one green. This detail in the lighting is lost when dropping the chrominance
information. On the other hand, our method can be used to accumulate both
the diffuse and specular lighting in one render target, without compromising
the accuracy of the specular highlights or the rendering speed, as shown in
Figure 5.

9. Discussion and Limitations
In this article, we presented a lossy frame-buffer compression format that per-
forms chroma subsampling by storing the chrominance of the rasterized frag-
ments in a checkerboard pattern. This simple idea allows the rasterization of
a color image using only two color channels, saving both storage space and
memory bandwidth and at the same time increasing the rasterizer fill rate.

The solution is simple to implement and can work in commodity hard-
ware, like game consoles. In particular, the memory architecture of the Xbox
360 game console provides a good example of the importance of our method
in practice. Xbox 360 provides 10 MB of extremely fast embedded memory
(edram) for the storage of the frame buffer. Every buffer used for render-
ing, including the intermediate buffers in deferred pipelines and the z-buffer,
should fit in this space. To this end, our technique can be valuable in order
to fit more data in this fast memory. Bandwidth savings are also extremely
important in mobile platforms, where memory accesses will drain the battery.

Our technique can also provide some small additional benefits during the
fragment shading, where the fragments can be converted to the two-channel
interleaved format early in the shader code and then any further processing
can be performed only on two channels, instead of three, in the YCoCg color
space. Measuring this benefit is beyond the scope of this paper, since the
actual gain depends on the shading algorithms involved and the architecture
of the underlying GPU, and, in particular, the mix of scalar and SIMD units.

A rather obvious limitation of our method is that it can only be used to
store intermediate results and not the final device frame buffer, because the
hardware is not aware of our custom format. However, this does not limit the
usefulness of our method, since most modern real-time rendering pipelines
use many intermediate render buffers before writing to the back buffer. An-

33

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

other limitation of our method is that hardware texture filtering cannot be used
to fetch data from the compressed frame buffer. To sidestep this limitation,
developers should use the reconstruction filters of Section 4 to de-multiplex
the packed channels into one luminance and one chrominance texture. Since
the chrominance texture will have a lower resolution, the application will en-
joy a reduction in bandwidth usage. It is worth noting that none of the above
limitations would exist if the hardware incorporated support for our custom
packed format. Finally, in case it is not clear, we should note that our method
should be used only on color buffers, since chroma subsampling makes little
sense in any other kind of data.

Acknowledgements
We would like to thank Stephen Hill (Ubisoft Montreal) for his very insightful com-
ments on the technique. We would also like to thank Charles Poynton for his insights
on color spaces. The Epic Citadel scene was captured with the publicly available Un-
real Development Kit (UDK). Battlefield 3 images are courtesy of EA Digital Illusions
Creative Entertainment; Crysis 2 images are courtesy of Crytek GmbH.

References
AKENINE-MÖLLER, T., HAINES, E., AND HOFFMAN, N. 2008. Real-Time Render-

ing 3rd Edition. A K Peters, Ltd., Natick, MA, USA. 32

BAYER, B. 1976. Color imaging array. United States Patent 3971065. 28

COOK, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph.
5 (January), 51–72. 28

MALVAR, H., AND SULLIVAN, G. 2003. YCoCg-R: A Color Space with RGB Re-
versibility and Low Dynamic Range. Joint Video Team (JVT) of ISO/IEC MPEG
& ITU-T VCEG, Document No. JVTI014r3. 21

MALVAR, H., HE, L.-W., AND CUTLER, R. 2004. High-quality linear interpolation
for demosaicing of Bayer-patterned color images. In Acoustics, Speech, and Sig-
nal Processing, 2004. Proceedings (ICASSP ’04), IEEE International Conference,
vol. 3, iii – 485–8. 28

MCGUIRE, M. 2008. Efficient, high-quality Bayer demosaic filtering on GPUs.
Journal of Graphics Tools 13, 4, 1–16. 28

OWENS, J. 2005. Streaming Architectures and Technology Trends. Addison Wesley,
Reading, MA, USA, 457–470. 20

34

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

SALVI, M., AND VIDIMČE, K. 2012. Surface based anti-aliasing. In ACM SIG-
GRAPH Symposium on Interactive 3D Rendering and Games, ACM, New York,
NY, USA. 20

YEE, H. 2004. A perceptual metric for production testing. journal of graphics, gpu,
and game tools 9, 4, 33–40. 26

Index of Supplemental Materials
In the supplemental materials for this article, the interested reader can find a live
WebGL demonstration of the method, as well as source code and a video that demon-
strate the technique when encoding data from a modern game.

Author Contact Information
Pavlos Mavridis
Department of Informatics,
Athens University of Economics
& Business
76 Patission Str.
Athens, 10434 Greece
pmavridis@gmail.com
http://pmavridis.com

Georgios Papaioannou
Department of Informatics,
Athens University of Economics
& Business
76 Patission Str.
Athens, 10434 Greece
gepap@aueb.gr
http://www.aueb.gr/users/gepap

Pavlos Mavridis and Georgios Papaioannou, The Compact YCoCg Frame Buffer,
Journal of Computer Graphics Techniques (JCGT) 1, 1, 19–35, 2012
http://jcgt.org/published/0001/01/02/

Received: 6 June 2012
Recommended: 27 July 2012 Corresponding Editor: Naty Hoffman
Published: 30 Sept. 2012 Editor-in-Chief: Morgan McGuire

c© 2012 Pavlos Mavridis and Georgios Papaioannou (the authors).
The authors provide this document (the Work) under the Creative Commons CC BY-
ND 3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/.
The authors further provide the first page as a separable document under the CC BY-
ND 3.0 license, for use in promoting the work.

35

http://jcgt.org
mailto:pmavridis@gmail.com
http://www.pmavridis.com
mailto:gepap@aueb.gr
http://www.aueb.gr/users/gepap
http://jcgt.org/published/0001/01/02/
http://creativecommons.org/licenses/by-nd/3.0/

