
Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

A Compressed Depth Cache

Jon Hasselgren, Magnus Andersson,
Jim Nilsson, and Tomas Akenine-Möller

Intel Corporation, Lund University

Abstract
We propose a depth cache that keeps the depth data in compressed format, when possi-
ble. Compared to previous work, this requires a more flexible cache implementation,
where a tile may occupy a variable number of cache lines depending on whether it can
be compressed or not. The advantage of this is that the effective cache size increases
proportionally to the compression ratio. We show that the depth-buffer bandwidth
can be reduced, on average, by 17%, compared to a system compressing the data af-
ter the cache. Alternatively, and perhaps more interestingly, we show that pre-cache
compression in all cases increases the effective cache size by a factor of two or more,
compared to a post-cache compressor, at equal or higher performance.

1. Introduction
Reducing memory-bandwidth usage in graphics processors is becoming in-
creasingly important, both from a performance perspective and also from a
power-efficiency perspective. The data traffic to and from the depth buffer
consumes a significant amount of bandwidth, and it is therefore important to
reduce this traffic as much as possible. Common approaches include Zmax-
culling [Greene et al. 1993], Zmin-culling [Akenine-Möller and Ström 2003],
depth caching, and depth compression [Morein 2000; Hasselgren and Akenine-
Möller 2006].

We approach this problem by looking at the interplay between the depth
cache and depth compression and propose a system where the content in the
depth cache is kept compressed when possible. The implication of this ap-

101

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

proach is that tiles (rectangular regions of samples/pixels) that can be com-
pressed in the cache will utilize less storage there, and, hence, the effective
cache size is increased with better performance as a result. Alternatively, the
cache size can be reduced with unaffected cache performance. By using a
compressed level-one depth cache, we show that our system can reduce the
depth-buffer bandwidth, on average, by 17%; this suggests that it can be po-
tentially important to further study compressed cache architectures for graph-
ics.

We suspect systems similar to ours have already been implemented, or at
least considered, by graphics hardware vendors. However, we have not found
any previously published work on such a system, and, as such, this paper aims
to fill that gap by describing the implementation alternatives and evaluating
the expected performance.

2. Previous Work
The amount of publicly available work on of depth compression is relatively
sparse. Morein [2000] presented a depth-buffer compression system, which
included a depth cache, using differential differential pulse code modulation
(DDPCM) for compression. It is important to note that depths are required to
be lossless by contemporary graphics APIs, and therefore, there is always a
fallback that represents uncompressed depth data in a tile.

Hasselgren and Akenine-Möller [2006] used patent disclosures to survey
of depth-compression techniques in industry, many of which do not otherwise
appear in the peer-reviewed scientific literature. In addition, they presented a
twist of an existing compression algorithm that improved compression a bit.
In their survey, a method called depth-offset compression was presented, and
it is likely the most simple depth-compression algorithm available. The idea is
to find the minimum, Zmin, and the maximum, Zmax, of the depths in a tile and
to cluster the depth values into two groups, namely, one for the depths closest
to Zmin and another for the depths closest to Zmax. The depths are then encoded
relative to either Zmin or Zmax, and, often, it is possible to use relatively few
bits for these residuals.

Another interesting algorithm is plane encoding [Hasselgren and Akenine-
Möller 2006], where the rasterizer provides exact plane equations to the com-
pressor. As a result, only a bitmask is needed per sample/pixel to identify to
which plane equation a sample/pixel belongs. Hence, the residuals will always
be zero. Anchor encoding is a variant that uses a set of plane equations derived

102

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

from the depths in the tile. The residuals are then encoded relative to one of
these planes.

Lloyd et al. [2007] developed a logarithmic shadow-mapping algorithm,
and realized that planar triangles become curved in their space, and that, there-
fore, most previous depth-compression algorithms could not be used. They
computed first-order differentials and then use anchor encoding on the dif-
ferentials. Ström et al. [2008] presented the first public algorithm for com-
pressing floating-point depths. The depth values are reinterpreted as integers
in order to represent differences without loss. They use a predictor function
based on a small set of the depths in the tile and then apply Golomb-Rice
entropy encoding on the residuals. Pool et al. [2012] present a general algo-
rithm for floating-point data, which compresses the differences between a run
of floating-point numbers and uses a Fibonacci encoder for entropy encoding.
However, any algorithm involving serialized entropy encoding is, in general,
too expensive for our purposes. Inada and McCool [2006] use a B-tree index
to support random access for lossless texture compression with variable bit-
rate. However, their tile cache, which is closest to the shading pipeline, is still
uncompressed.

Andersson et al. [2011] were the first to attack the problem of compressing
depth buffers generated using stochastic motion-blur rasterization. By incor-
porating the time dimension, t, into the predictor functions, better predictions
were possible. They also noted that most previous algorithms for depth com-
pression break down because they exploit the fact that the depths of triangles
are linear. This does not hold when triangles start to move. Interestingly,
the depth-offset encoding method performed reasonably well even for motion
blur.

Compression of cached data in CPUs has received some attention. In gen-
eral, CPU-based compression targets integer workloads and, in particular, zero
or near-zero values. Some techniques also try to detect repeating patterns. Lee
et al. [1999] first described a dynamic approach to compressed cache contents.
They introduced a cache architecture capable of simultaneously handling both
compressed and uncompressed lines. The core idea was to avoid cache-set
aliasing by including an extra bit in the index. By doing so, they avoid data
expansion, resulting from previously compressed lines expanding to cover (in
their case) two lines, and relax fat writes, which happen when two cache lines
are written by the same memory operation.

Alameldeen and Wood [2004] present a CPU system with uncompressed
first-level cache, while compressing second-level data when possible. They

103

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

introduce frequent pattern compression, which is a method for detecting and
compressing a number of predefined data patterns. A three-bit prefix, stored
with cache-line tag data, designates one of eight possible compression en-
codings. Most modes are either covering lower-than-word resolution data
types (five of eight), beside runs of zeroes or repeating byte values, and one
mode designates uncompressed cache lines. For integer applications, the sin-
gle most useful mode is zero run, accounting for about 85% of all compress-
ible patterns. Compression ratios for the integer applications were in the range
1.4–2.4. The compression ratio for the floating-point applications was 1.0–1.3.
It is clear that previous work on compressed CPU caches is not particularly ap-
plicable to depth compression. In particular, depth data rarely resembles the
simplified patterns assumed by the compressed CPU cache approaches.

3. Compressed Depth Cache
An illustration of how our system compares to a common depth-cache system
with compression [Hasselgren and Akenine-Möller 2006] is shown in Fig-
ure 1. In the common system, we use post-cache codecs, which means that
we only keep full and uncompressed tiles in the first-level depth cache and
place the compressor/decompressor (codec) between the cache and the next
level in the memory hierarchy. The cache line size in the common system is
therefore always equal to the tile size. Whenever a tile is evicted from the
cache, we update the per-tile header data, a memory area separate from the
depth buffer that flags the compression mode used for each tile. Typically,
the Zmin and Zmax values are also stored in this area for hierarchical occlusion
culling [Greene et al. 1993; Akenine-Möller and Ström 2003]. The advantage
of this system is that it has very simple cache logic, since the cache line size
will be equal to the size of a tile. However, a drawback is that the tile size
must be picked so that the compressed tile is large enough to efficiently burst
when writing to or reading from RAM (or the next level in the memory hier-
archy). This typically means that an uncompressed tile may be unnecessarily
large, leading to wasted memory transactions and increased bandwidth when
compression fails.

We propose using a more flexible cache where the line size is decoupled
from the tile size and simply reflects what is efficient for a memory transaction.
Furthermore, in contrast to the common setup, we put the compression/decom-
pression logic before the cache; we call this a pre-cache codec. The benefits
of this system are twofold. First, we can store compressed tiles in the cache,

104

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

depth
comparison

unit

depth cache

compressor

decompressor

next level
in the memory

hierarchy

write

read

depths
pi

xe
l

pi
pe

lin
es

combined
depth comparison

compressor/decompressor

compressed
depth cache

next level
in the memory

hierarchy

write

read

depths

pi
xe

l
pi

pe
lin

es

Figure 1. The usual setup in a compressed depth architecture (top). From left to right:
the pixel pipelines compute depths, which are delivered to a depth comparison unit.
This unit communicates with a depth cache that can hold six tiles of depth data in this
illustration. When depth data is communicated between the depth cache and the next
level in the memory hierarchy, it will be compressed/decompressed on the fly when
possible. Our proposal (bottom) is to keep the content in the depth cache compressed
when possible, and to efficiently perform the comparison, and compression/decom-
pression between the pixel pipelines and the compressed depth cache.

thereby growing the effective cache size proportionally to the compression ra-
tio. Second, the tiles that cannot be compressed may more easily be split into
a number of cache lines, and we can update only the lines touched by a trian-
gle. This pass-through compressor, which stores cache lines that cover smaller
screen-space regions than the full tile, is called RAW in this paper. The chal-
lenge in this solution is that we complicate the logic involved in depth testing
and updating of a tile. Furthermore, since our compression algorithm is now
placed before the cache, it needs to have lower latency and higher through-
put than if placed after the cache. However, at the same time, the required
throughput between the depth comparison unit and the depth cache (see Fig-
ure 1) decreases as the data is compressed in the cache. For example, if we get
an average compression rate of 50%, we could harvest the halved throughput,
for example, by reducing the datapath width or reducing the clocking of the
cache.

The algorithmic flow of our depth system is illustrated in Figure 2. The
rasterizer generates input tiles of samples for the current triangle. When a tile
is received, we first perform hierarchical depth culling to determine whether
the tile can be trivially discarded or accepted. For trivially accepted tiles, we
attempt to compress the input tile data and allocate the appropriate number
of lines in the cache. If the depth-culling result is ambiguous, the tile header

105

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

8{{

8

A

A

4:1 2:1 4:3 Failed Raw

B

Compression resultRasterizer input Cache contents

B

Figure 2. An example scene with two triangles being rasterized. Left: the input from
the rasterizer (after z testing). Middle: the results and compression rates generated
by the codec. Right: the final data stored in the cache. The tile size in this example
is 8× 8 pixels, equal in storage to four cache lines when not compressed. This indi-
cates that this example system may compress to 25%, 50%, and 75%. For the first
triangle, it is worth noting that tile A could also be stored as a single RAW cache line,
which actually requires less data than the compressed representation (2:1 in this case).
However, we keep the compressed representation since our system does not allow re-
compressing tiles that have been reverted to uncompressed format. The assumption is
that the compressed representation will be useful the next time we rasterize a triangle
covering that tile. In this example, tile B completely fails compression and is stored
in RAW format, but still only three cache lines are required.

data is first accessed to determine whether the frame-buffer depth data is com-
pressed or not. For uncompressed tiles, the coverage mask of the input tile is
used to read the appropriate lines into the cache, and then depth testing is done.
In our implementation, we assume that tiles incrementally become more dif-
ficult to compress and, therefore, we do not attempt to re-compress tiles that
already failed compression unless the current triangle overwrites the entire
tile. This also greatly simplifies the implementation as recompression would
have to consider cases when a tile only partially exists in the cache. For com-
pressed tiles, we read the full compressed tile from the cache and decompress
the data. After that, depth testing is done followed by an attempt to merge

106

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

the resulting data into the compressed representation. If the merge fails, we
first attempt a full recompression, and if that also fails, the data is stored un-
compressed (RAW). We experimented with partially reading compressed tiles,
only accessing the cache lines required to decompress the samples overlapped
by the input tile coverage mask. However, most compression algorithms re-
quire global header data, and, in practice, the more complex implementation
was not motivated by the very modest bandwidth gains.

In practice, the required changes to the depth system and cache logic are
quite small. We need to compute cache keys on a per-line granularity, rather
than a per-tile granularity, so the codecs should use actual memory addresses
rather than a tile index. The biggest challenge occurs when a tile that only
partially exists in the cache is evicted. Some operations, such as computing
per-tile Zmin and Zmax values, require the full tile data. We solve this by per-
forming hierarchical depth culling on a per-cache line granularity, thus guar-
anteeing that the cache line will always exist in the cache. Also, if we want to
combine pre-cache and post-cache codecs in the same system, we must verify
that the full tile exists in the cache in order to perform post-cache compression.
We accomplish this by allowing peeking into the cache to check if the whole
tile is present before evicting it. Since evictions are relatively infrequent, we
believe this will be reasonably efficient. However, an alternative approach is
to allocate one extra bit per cache line in the per-tile header data and directly
flag which parts of the tile are present in the cache. This operation is very
efficient, but at the cost of a slight bandwidth increase for the tile headers.

In this paper, we focus only on the plane-encoding and depth-offset com-
pression algorithms. The reason is that they have simple implementations,
and, therefore, we have been able to design efficient and incremental com-
pression methods, which makes them good candidates for pre-cache codecs.
Although we leave it for future work, we would like to mention that other
traditional compression algorithms, such as anchor encoding [Hasselgren and
Akenine-Möller 2006], could also potentially be adapted for pre-cache com-
pression. In our pipeline, we use a clear mask per tile that indicates which
samples are cleared, so the minimum, Zmin, and maximum, Zmax, depth values
for a tile are computed using only valid samples.

3.1. Plane Encoding
In plane encoding, the representation for a tile is a list of plane equations
that can reconstruct triangle depth exactly, and a per-sample bit mask that

107

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

indicates to which plane a sample belongs. On-the-fly decompression from
such a representation residing in the cache is straightforward. Assume we
would like to decompress the depth of a certain sample/pixel location, (xs,ys).
The bit mask value is used as an index, i, into the set of plane equations, and
the plane equation is simply evaluated as z = ci

0 + ci
x · xs + ci

y · ys, where the
constants ci

0, ci
x, and ci

y together define plane equation i.
When a triangle is rasterized, the rasterizer forwards the plane equation

to the pre-cache codec. Depth comparisons are done by decompressing depth
values as described above. If at least one depth value passes the depth test,
the incoming plane equation is added to the compressed representation in the
cache, and the bit masks are updated for each affected sample/pixel. Note that
the size of the compressed tile will dictate how many plane equations can be
stored in a compressed tile; when there are no more available indices for new
plane equations, the tile has to be decompressed and put into the cache again
in uncompressed format.

There are different strategies for adding a new plane. In the simplest im-
plementation, the planes are just added to the list of planes and compression
fails when too many planes overlap a tile. However, better compression is
possible by deleting unused planes from the header, either by scanning the
index bitmask for unused bit combinations, or by keeping counters of how
many samples belong to each plane. In such an implementation, the compres-
sor must be able to work with one more plane than is representable by the
compressed format.

3.2. Depth-Offset Compression Algorithm
Depth offset is a very simple compression algorithm, but it works surprisingly
well. It does not enable high compression ratios, but it successfully manages
to compress many tiles with moderate compression ratios. This makes it rather
efficient overall. In addition, it is a simple algorithm from an implementation
perspective. Recall that the compressed representation consists of two ref-
erence values, Zmin and Zmax, a bit, mxy, per sample that indicates whether
a sample’s residual is relative to Zmin or Zmax, and then an n-bit per-sample
residual, rxy. The depth values are reconstructed as

z(x,y) =

{
Zmin + rxy if mxy = 0,
Zmax− rxy, otherwise.

.

108

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

min/max

z0 z1

min0 max0

min

min/max

z2 z3

min1 max1

min

min

Zmin

min/max

z4 z5

min2 max2

min/max

z6 z7

min3 max3

max max

max

Zmax

Figure 3. Computation of Zmin and Zmax using tree of comparisons for eight incoming
depth values, zi, i ∈ {0, . . . ,7}.

It should be noted that the best bit distribution depends on the cache line
size and the tile size. However, we find that it is often sufficient to quantize
Zmin and Zmax to 16 bits precision and use the remaining bits for the residuals.
For compression, there are more options, and, below, we present two different
ways to compress the depth in a tile when a new triangle is being rasterized.

3.2.1. Brute-force Approach

In this approach, we first decompress all depth values in the tile, as described
above, perform depth tests, and update the depths that pass. Then the Zmin and
Zmax of these depths are found using, for example, a tree-like evaluation as
shown in Figure 3. In general, for s depths, such a tree will use s/2+2(s/2−
1) = 3s/2−2 comparisons to compute both Zmin and Zmax.

The residuals, rxy, and the selector bit, mxy, are straightforward to com-
pute. We just compute residuals from Zmin and Zmax, respectively. If either
residual is small enough to encode in the given budget, we set mxy to flag the
appropriate reference value. Otherwise, the tile fails compression and needs
to be stored in uncompressed form.

In the next section, we present a conservative and less expensive approach
to updating Zmin and Zmax. The rest of the algorithm, however, remains the
same.

3.2.2. Opportunistic Approach

We base this compressor on the assumption that the depth pipeline supports
hierarchical Zmin- and Zmax-culling [Greene et al. 1993; Akenine-Möller and
Ström 2003]. These algorithms require conservative estimates of the minimum
Z tri

min, and the maximum depth, Z tri
max, of a triangle inside a tile. Regardless of

109

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

exactly how they are computed, we can assume they are readily available since
the hierarchical culling unit is placed before the depth compression unit in the
pipeline.

We can exploit these estimates during compression by assuming that Zmin =
min(Zmin,Z tri

min), and Zmax = max(Zmax,Z tri
max) are good estimates for the true

minimum and maximum values of the tile. We then compute all residuals as
in Section 3.2.1. As a small optimization, we use only the triangle values if
the current triangle overwrites the entire tile.

In practice, this will, in the majority of cases, cause our depth range to
grow until a tile can no longer be compressed. However, the implementation
is more efficient since we can avoid the rather costly Zmin and Zmax compu-
tations. We suggest that this implementation be combined with a post-cache
brute-force compressor. The simpler pre-cache codec will handle the high
throughput data and keep it compressed in the cache for as long as possible.
If the compression fails, the more expensive post-cache codec will refine the
Zmin and Zmax values and re-compress the tile if possible. When the data is
read back into the cache, the pre-cache codec can use the refined values as a
starting point.

As a further optimization, we note that the residual computations can be
done in two passes. First, the residuals are computed from Zmin, and in the
following pass from Zmax. The second pass is conditional and can be skipped
if all samples can be encoded relative to Zmin. Our tests indicate that it is suffi-
cient with one reference value for 55% of the tiles, which may save substantial
power in a hardware implementation.

4. Results
We evaluated our system using a functional simulator, written in C++, where
it is possible to change cache settings, tile sizes, and configure the compres-
sion algorithms. Our simulator implements common depth-buffer optimiza-
tions, such as Zmin- and Zmax-culling, and fast clears [Hasselgren and Akenine-
Möller 2006]. These optimizations are used for all of our measurements, even
for the uncompressed reference bandwidth, so the bandwidth gains presented
here come strictly from the compression algorithm and the cache system de-
scribed in this paper. Also, we only present figures for the depth-buffer band-
width, since the bandwidth for tile header data (Zmin, Zmax, and clear mask) is
the same regardless of which type of cache (pre/post) is used.

DirectX 11 supports 32-bit floating-point and 24/16-bit integer data. Of

110

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

Heaven A - 158K tris, 23 ppt. Heaven B - 346K tris, 45 ppt.

Cache RAW Post DO Pre DO Post C Pre C Cache RAW Post DO Pre DO Post C Pre C
16 kB 28.9M 47% 40% 35% 26% 16 kB 59.0M 51% 46% 34% 29%
32 kB 23.6M 47% 41% 34% 27% 32 kB 52.4M 51% 47% 34% 29%

Heaven C - 283K tris, 25 ppt. Stone Giant A - 447K tris, 23 ppt.

Cache RAW Post DO Pre DO Post C Pre C Cache RAW Post DO Pre DO Post C Pre C
16 kB 38.9M 49% 42% 36% 29% 16 kB 36.9M 47% 41% 38% 32%
32 kB 32.9M 49% 45% 36% 32% 32 kB 31.9M 47% 42% 38% 34%

Stone Giant B - 218K tris, 34 ppt. Dragon - 168K tris, 25 ppt.

Cache RAW Post DO Pre DO Post C Pre C Cache RAW Post DO Pre DO Post C Pre C
16 kB 44.5M 44% 40% 37% 34% 16 kB 27.3M 47% 40% 35% 27%
32 kB 40.9M 44% 39% 37% 33% 32 kB 22.1M 48% 44% 34% 29%

Figure 4. The test scenes used in this paper were taken from the Heaven 2.0 bench-
mark by Unigine, the Stone giant demo by Bitsquid, and a Dragon scene created
in-house. We show the number of triangles and average triangle area in pixels (ppt)
for each test scene. The tables show bandwidth figures as a fraction of the RAW (no
compression) bandwidth for post/pre-cache depth offset (Post/Pre DO) and post/pre-
cache plane encoding combined with depth offset (Post/Pre C). We used 8×8 sample
tiles with 512-bit cache lines (four lines per tile).

111

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

these formats, the 24-bit integer is still by far the dominating use case, and it
is used by all our workloads. Looking at codecs for 32-bit floating-point depth
data is interesting future work, but outside the scope of this paper. DirectX
11 only supports 24-bit integer depth when coupled with a stencil buffer; we
therefore assume that most hardware vendors rely on their depth compression
to reduce the bandwidth and store the full 32 bits (D24S8) when a tile fails
compression, even if the stencil is unused. Alternatively, the stencil can be
compressed along with the depth data, but we have also left this for future
work. Thus, the bandwidth figures presented for the RAW algorithm include
32-bit reads and writes per sample.

For the evaluation, we used the scenes shown in Figure 4 rendered at
1920× 1080 pixels resolution. We experimented with varying the tile size
and bus parameters, but since the results were very similar, we only present
numbers for a system using 8×8 sample tiles with 512-bit cache lines, which
means that an uncompressed tile occupies four cache lines. We show the per-
formance of two different configurations. The first (Post/Pre DO) uses only a
depth-offset codec, which compresses the data to either one or two cache lines
(25% or 50%), where we use 6 and 14 bits, respectively, for the residuals.
The second configuration (Post/Pre C) combines both depth offset and plane
encoding. Here, we found that using plane encoding, with up to four planes
per tile for the 25% mode and depth offset for the 50% mode gave the best
blend. This combination was just 1% from the bandwidth of using all possi-
ble combinations of plane encoding and depth-offset compression. It should
be noted that plane encoding is not well-suited as a post-cache codec since it
communicates directly with the rasterizer. In order to generate post-cache re-
sults for the plane encoder, we still performed the compression pre-cache, but
reserved enough cache lines to keep the tile data uncompressed in the cache.
An alternative would be to compare with a post-cache anchor codec, but we
feel that the results are more representative when comparing the same codec
post- and pre-cache.

As can be seen from the results (Figure 4), post-cache depth offset rarely
manages to compress below 50%, but we still get a significant 11% relative
bandwidth gain from using a compressed cache, which amounts to 5.5% of
the total RAW bandwidth. For the second configuration, with plane encoding
(25%) combined with depth offset (50%), the pre-cache approach is even more
successful, and here we see a 17% relative bandwidth gain or 6.0% of the
total RAW bandwidth. Figure 5 shows the per-tile bandwidth of the different
compression schemes for the Heaven A test scene.

112

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

Depth Raw Post DO 2048 B

 0 B

 1024 B

 1536 B

 512 B

Pre DO Post C Pre C

Figure 5. False color coding of the bandwidth for each 8× 8 tile using the different
compression schemes described in this paper. The images show Heaven A with a 32
kB cache. The black areas are cleared and the colored tiles have yielded memory
transactions of at least 64B.

Cache size. As can be seen in Figure 6, increasing the size of the depth cache
gives diminishing returns. Typically, the “knee” of the curve indicates the most
efficient cache size in terms of performance versus implementation cost. An
encouraging result is that the pre-cache codecs do not only outperform the
post-cache codecs significantly for a given cache size, but also seem to push
the knee of the bandwidth curve to a lower cache size. For example, the knee

5

10

15

20

25

30

0 16 32 48 64 80 96 112 128

B
an

dw
id

th
 (M

B
)

Cache Size (kB)

Post DO
Pre DO
Post C
Pre C

Figure 6. The average depth-buffer bandwidth for the six test scenes with varying
cache size. The graph compares post- and pre-encoding with depth offset, and post-
and pre-encoding with combined plane encoding and depth offset. The dashed lines
show identical bandwidths for the post-cache and pre-cache codec for the combined
compressor (Post/Pre C).

113

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

for the pre-cache combined codec seems to lie around 10 kB, whereas the knee
for the post-cache lies at around 16 kB and with higher bandwidth usage. An
alternative way of reading the diagram is to decide on a target bandwidth and
design the cache around that. The dashed lines in Figure 6 show an example
of this, where we can reduce the cache size to roughly 40% for the pre-cache
codec, which is directly proportional to the compression ratio of about 40%.

Opportunistic depth offset. The impact of using the opportunistic depth-offset
compression algorithm (Section 3.2.2) was also measured. We found that it
results in a bandwidth increase of 4.2% compared to the brute-force approach,
or 1.8% of the RAW bandwidth. However, we still see a worthwhile improve-
ment over the post-cache codecs by 8.3%, or 3.7% of the RAW bandwidth.
Depending on the pipeline architecture, it may be beneficial to consider the
opportunistic approach if the cost of passing around Zmin/max values are con-
siderably lower than recomputing them.

Recompression frequency. With pre-cache codecs, the number of times a tile
is compressed and decompressed will increase as a function of the cache size.
In Figure 7, we show how pre-cache compression affects the number of tiles
the compressor and decompressor must be able to process per frame. Larger
cache sizes means that a tile needs to be compressed and decompressed more
times with the pre-cache codecs. This is due to the fact that the tiles stay in
the cache longer, and, therefore, they will be accessed more times before being
evicted.

We note that compression scales better than decompression, which is good
since compression is usually the more costly operation. For our design points
of a 16–32 kB cache, the opportunistic depth-offset approach only requires
around 2.5× higher compression throughput and about 3.75× higher decom-
pression throughput. This is very low considering that we use tessellated
benchmark scenes which tend to use more and smaller triangles than most
games.

With an increased focus on energy efficiency for graphics processors (see,
for example, the work by Johnsson et al. [2012]), we argue that the trade-
off in our proposed system is very attractive for the following reasons. First,
our compressors and decompressors are very simple, using only a number of
integer math operations that is largely proportional to the number of samples
in a tile. Second, a memory access to DRAM uses more than three orders
of magnitude the power of an integer operation [Dally 2009]. Third, there

114

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

0 16 32 48 64 80 96 112 128

C
om

pr
es

si
on

 fr
eq

ue
nc

y

Cache Size (kB)

Post DO
Pre DO
Opportunistic

1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x

1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x

0 16 32 48 64 80 96 112 128

D
ec

om
pr

es
si

on
 fr

eq
ue

nc
y

Cache Size (kB)

Post DO
Pre DO
Opportunistic

Figure 7. The average compression and decompression frequencies (i.e., the number
of times a tile is compressed and decompressed) for the six test scenes with pre-cache,
post-cache, and the opportunistic depth-offset approach. The figures are normalized
so that the post-cache depth-offset frequency is always 1×.

are signs [Keckler et al. 2011] that memory bandwidth development slows
down even more than what we are accustomed to. Hence, the motivation for a
system with pre-cache codecs is clear and could be even more relevant in the
future.

5. Conclusions and Future Work
We have shown that using a flexible depth cache may enable pre-cache data
compression and that such compression will roughly increase the cache size by
the effective compression ratio. This can either be used to reduce bandwidth

115

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

to RAM (or to the next level in the memory hierarchy), or to reduce cache size
and free up silicon area without affecting bandwidth. In our implementation,
we have shown a significant 17% average relative bandwidth reduction for rea-
sonable pipelines, when compared to a post-cache codec. Similarly, we have
shown that the cache size can be reduced by the effective compression ratio
with no impact on performance. In fact, for all our measurements, the effec-
tive cache size was more than doubled when going from a post-cache codec to
a pre-cache codec. This is true for the depth-offset-only configuration, and to
an even larger extent for the combined depth-offset and plane-encoding con-
figuration.

For future work, we would like to explore other existing depth-compression
algorithms and see how they perform in our system. Furthermore, it could
be interesting to attempt to make the hardware implementations of complex
codecs simpler (perhaps at the cost of reduced compression ratios). Also,
since depth-offset compression works rather well for stochastic motion blur
rasterization [Andersson et al. 2011], it will be interesting to see what hap-
pens to its performance in our system.

Acknowledgements
The authors thank Aaron Lefohn, Charles Lingle, Tom Piazza, and Aaron Coday at In-
tel for supporting this research. The benchmark scenes used in this paper are courtesy
of Unigine and Bitsquid. Tomas Akenine-Möller is a Royal Academy of Research
Fellow supported by a grant from the Knut and Alice Wallenberg Foundation.

References
AKENINE-MÖLLER, T., AND STRÖM, J. 2003. Graphics for the Masses: A Hard-

ware Rasterization Architecture for Mobile Phones. ACM Transactions on Graph-
ics, 22, 3, 801–808. 101, 104, 109

ALAMELDEEN, A. R., AND WOOD, D. A. 2004. Adaptive Cache Compression for
High-Performance Processors. In Proceedings of the 31st Annual International In-
ternational Symposium on Computer Architecture, IEEE Computer Society, Wash-
ington, DC, 212–223. 103

ANDERSSON, M., HASSELGREN, J., AND AKENINE-MÖLLER, T. 2011. Depth
Buffer Compression for Stochastic Motion Blur Rasterization. In Proceedings
of the ACM SIGGRAPH Symposium on High Performance Graphics, ACM, New
York, 127–134. 103, 116

116

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

DALLY, W. 2009. Power Efficient Supercomputing. Accelerator-based Computing
and Manycore Workshop (presentation). 115

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical Z-Buffer Visibil-
ity. In Proceedings of the 20th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 1993, ACM, New York, 231–238. 101, 104,
109

HASSELGREN, J., AND AKENINE-MÖLLER, T. 2006. Efficient Depth Buffer Com-
pression. In Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS Sym-
posium on Graphics Hardware, ACM, New York, 103–110. 101, 102, 104, 107,
110

INADA, T., AND MCCOOL, M. D. 2006. Compressed Lossless Texture Representa-
tion and Caching. In Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware, ACM, New York, 111–120. 103

JOHNSSON, B., GANESTAM, P., DOGGETT, M., AND AKENINE-MÖLLER, T. 2012.
Power Efficiency for Software Algorithms Running on Graphics Processors. In
Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics, Eurographics Association, Aire-la-Ville, Switzerland, 67–
75. 114

KECKLER, S. W., DALLY, W. J., KHAILANY, B., GARLAND, M., AND GLASCO,
D. 2011. GPUs and the Future of Parallel Computing. IEEE Micro 31, 5, 7–17.
115

LEE, J.-S., HONG, W.-K., AND KIM, S.-D. 1999. Design and Evaluation of a
Selective Compressed Memory System. In International Conference on Computer
Design, IEEE, Washington, DC, 184 –191. 103

LLOYD, D. B., GOVINDARAJU, N. K., MOLNAR, S. E., AND MANOCHA, D. 2007.
Practical Logarithmic Rasterization for Low-Error Shadow Maps. In Proceedings
of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hard-
ware, Eurographics Association, Aire-la-Ville, Switzerland, 17–24. 102

MOREIN, S. 2000. ATI Radeon HyperZ Technology. In ACM SIGGRAPH/EURO-
GRAPHICS Workshop on Graphics Hardware, Hot3D Proceedings, Eurographics
Association, Aire-la-Ville, Switzerland. 101, 102

POOL, J., LASTRA, A., AND SINGH, M. 2012. Lossless Compression of Variable-
Precision Floating-Point Buffers on GPUs. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, ACM, New York, 47–54. 103

117

http://jcgt.org

Journal of Computer Graphics Techniques
http://jcgt.org

Vol. 1, No. 1
2012

STRÖM, J., WENNERSTEN, P., RASMUSSON, J., HASSELGREN, J., MUNKBERG,
J., CLARBERG, P., AND AKENINE-MÖLLER, T. 2008. Floating-Point Buffer
Compression in a Unified Codec Architecture. In Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, Eurographics
Association, Aire-la-Ville, Switzerland, 96–101. 103

Author Contact Information
Jon Hasselgren
Intel
Schelevägen 19A
223 70 Lund, SWEDEN
jon.n.hasselgren@intel.com

Magnus Andersson
Intel
Schelevägen 19A
223 70 Lund, SWEDEN
magnusa@cs.lth.se

Jim Nilsson
Intel
Schelevägen 19A
223 70 Lund, SWEDEN
jim.k.nilsson@intel.com

Tomas Akenine-Möller
Intel
Schelevägen 19A
223 70 Lund, SWEDEN
tam@cs.lth.se

Jon Hasselgren, Magnus Andersson, Jim Nilsson, Tomas Akenine-Möller, A Com-
pressed Depth Cache, Journal of Computer Graphics Techniques (JCGT), 1(1):101–
118, 2012
http://jcgt.org/published/0001/01/05/

Received: September 9, 2012
Recommended: November 30, 2012 Corresponding Editor: Michael Schwarz
Published: December 31, 2012 Editor-in-Chief: Morgan McGuire

c© 2012 Jon Hasselgren, Magnus Andersson, Jim Nilsson, Tomas Akenine-Möller (the
authors).
The authors provide this document (the Work) under the Creative Commons CC BY-
ND 3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/.
The authors further provide the first page as a separable document under the CC BY-
ND 3.0 license, for use in promoting the work.

118

http://jcgt.org
mailto:jon.n.hasselgren@intel.com
mailto:magnusa@cs.lth.se
mailto:jim.k.nilsson@intel.com
mailto:tam@cs.lth.se
http://jcgt.org/published/0001/01/05/
http://creativecommons.org/licenses/by-nd/3.0/

