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Figure 1. The XYZ RGB Asian Dragon voxelized at 1283, 2563, and 5123 resolutions.

Abstract

This paper presents an efficient computational voxelization approach that utilizes the
graphics pipeline. Our approach is hybrid in that it performs a precise gap-free com-
putational voxelization, employs fixed-function components of the GPU, and utilizes
the stages of the graphics pipeline to improve parallelism. This approach makes use of
the latest features of OpenGL and fully supports both conservative and thin-surface
voxelization. In contrast to other computational voxelization approaches, our ap-
proach is implemented entirely in OpenGL and achieves both triangle and fragment
parallelism through its use of geometry and fragment shaders. By exploiting fea-
tures of the existing graphics pipeline, we are able to rapidly compute accurate scene
voxelizations in a manner that integrates well with existing OpenGL applications, is
robust across many different models, and eschews the need for complex work/load-
balancing schemes.
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1. Introduction

The ability to produce a fast and accurate voxelization is highly desirable for many
applications, such as intersection computation, hierarchy construction, ambient occlu-
sion, and global illumination. There are many approaches to achieving such voxeliza-
tions, which balance tradeoffs between accuracy, speed, and memory consumption.
We make a distinction between requirements that are orthogonal to each other, for
instance, binary voxelization vs. voxelization that requires blending at active voxels.
Naturally, binary voxelization has lower memory requirements, since it is sufficient
to use a single bit to indicate whether a voxel is active.

We also consider surface voxelization vs. solid voxelization. Solid voxelization
marks any voxel on or within a model as active (and thus requires watertight geom-
etry), whereas surface voxelization considers only those voxels in contact with the
surface of the model; this criteria can be further split by defining the separability re-
quirement. A conservative voxelization marks any voxel that comes in contact with
the surface as active, and is thus 26-separable, while a thin voxelization is 6-separable.

Additionally, since voxelization discretizes a scene into regular volumetric ele-
ments, as voxel density increases, the memory requirements of maintaining such a
dense data structure become prohibitive, since generally most of the scene consists of
empty space. Many approaches attempt to mitigate these high memory requirements
by constructing a sparse hierarchical voxel representation that retains the voxel’s reg-
ular size, but clusters similar regions (empty or solid) into a tree structure, typically
an octree.

Initially, we make a distinction between two primary voxelization approaches
on the GPU—computational approaches that completely avoid the graphics pipeline
([Schwarz and Seidel 2010; Schwarz 2012], [Pantaleoni 2011]), compared to
rasterization-based approaches to voxelization.

Then, we present our hybrid approach to voxelization. While we still utilize the
GPU as a massively parallel compute device, we do not abandon the standard graph-
ics pipeline to do so. Instead, we build on its strengths, allowing it to perform the
triangle-fragment workload balancing that it does so well with rasterization, and ap-
plying this to voxelization. This frees us from having to delve into optimal tiling- and
triangle-sorting strategies in order to balance an inherently unbalanced workload of
non-uniform triangles.

In this paper, we touch upon many voxelization techniques. In Section 2, we
cover the relevant work in the field. In Section 3, we discuss first triangle-parallel and
fragment-parallel approaches and then how we combine them for our hybrid imple-
mentation. Additionally, we discuss several voxel-list construction methods as well
as a method to correctly interpolate attributes using barycentric coordinates. This is
followed by our results, Section 4, a discussion of our findings and potential future
work, Section 5, and our conclusions, Section 6.
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2. Related Work

2.1. Graphics Pipeline

The various approaches to voxelization take many forms and each approach must bal-
ance several properties. One of the earlier approaches to utilize the graphics pipeline,
Fang and Chen [2000] constructed a surface voxelization by rasterizing the geometry
for each voxel slice while clamping the viewport to each slice. Li et al. [2005] intro-
duced “depth peeling,” which reduced the number of rendering passes by capturing
one level of surface-depth complexity per render pass. These approaches tend to miss
voxels and often must be applied once along each orthogonal plane to capture missed
geometry. Dong et al. [2004] utilized binary encoding to store voxel occupancy in
separate bits of multi-channel render targets, allowing them to process multiple voxel
slices in a single rendering pass. This latter approach is sometimes referred to as a
slicemap [Eisemann and Décoret 2006].

Another approach, such as conservative voxelization [Zhang et al. 2007], uses the
conservative rasterization technique of Hasselgren et al. [2005]. This approach am-
plified single triangles to as many as nine triangles by expanding triangle vertices to
pixel-sized squares and outputting the convex hull of the resultant geometry. Sintorn
et al. [2008] improved on this method by ensuring that fewer triangles be generated
during triangle expansion, while Hertel et al. [2009] found it was most effective to
simply expand triangles by half the diagonal of a pixel and discard extra fragments in
the fragment shader.

Some voxelization techniques also target solid voxelization; generally, these must
restrict their input geometry to closed, watertight models and classify voxels as either
interior or exterior. As surface geometry is voxelized, entire columns of voxels are
set. The final classification is based on the count, or parity, of the voxel, an odd value
indicating a voxel as interior, and an even value indicating exterior. In GPU-hardware,
this corresponds to applying a logical XOR, which is supported by the frame buffer.
Fang and Chen [2000] presented such an approach using slice-wise rendering, while
Eisemann and Décoret [2008] developed a high-performance single-pass approach.

Most recently, Crassin and Green [2012] have developed an approach that oper-
ates similarly to the fragment-parallel component of our scheme discussed in Sec-
tion 3.3, exploiting the recently exposed ability to perform random texture writes in
OpenGL using the image API. By constructing an orthographic projection matrix per-
triangle in the geometry shader, they were able to rely on the OpenGL rasterizer to
voxelize their geometry.

2.2. Computational Voxelization

Recently, approaches have been developed that take an explicitly computational ap-
proach to voxelization without utilizing fixed-function hardware. Schwarz and Sei-
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del [2010] implemented a triangle-parallel voxelization approach in CUDA, which
achieved accurate 6- and 26-separating binary voxelization into a sparse hierarchi-
cal octree. Pantaleoni’s VoxelPipe implementation [2011] took a similar approach
while fully supporting a variety of render targets and robust blending support. Both
approaches also employed a tile-based voxelization.

Like the work of Schwarz and Seidel [2010], our approach supports both conser-
vative (26-separating) and thin (6-separating) voxelization. Separability (26 or 6), a
topological property defined by Cohen-Or and Kaufman [1995], means that no path
of N-adjacent (26 or 6) voxels exists that connects a voxel on one side of the surface
with a voxel on the other side. Two voxels are 26-adjacent if they share a common
vertex, edge, or face, and 6-adjacent if they share a face. Our ability to support mul-
tiple render targets and texture formats like Pantaleoni [2011] is limited only by the
restrictions present in the OpenGL image API.

3. Voxelization

Whereas previous techniques relied exclusively on the graphics pipeline, or rejected
it completely for a computational approach, we demonstrate how to find a mid-
dle ground to use the techniques of computational voxelization within the frame-
work of the graphics pipeline. First, however, we must introduce both the triangle-
parallel technique (Section 3.2) and the fragment-parallel technique (Section 3.3);
these two techniques make up the primary components of our hybrid approach (Sec-
tion 3.4). Both techniques use the same 3D extension of the triangle/box overlap tests
[Akenine-Möller 2001] as in the work of Schwarz and Seidel [2010] and Pantaleoni
[2011]. These approaches differ from each other primarily in their factorization of the
computational-overlap testing and the methods in which they try to achieve optimal
parallelism.

3.1. Fundamentals

3.1.1. Triangle/Voxel Overlap

The problem of finding an intersection between a triangle T (with vertices v0, v1, v2

and edges ei = v(i+1) mod 3− vi) and a voxel p can be approached by first reducing
the number of triangle-voxel pairs to consider, and then reducing the computation re-
quired to confirm an intersection between a triangle and a voxel. We initially consider
the potential intersection between a triangle and the set of all voxels; conceptually,
the process is executed in the following order.

1. Reduce the set of potential voxel intersections to only those that overlap the
axis-aligned bounding volume b of the triangle.

2. Iterate over this reduced set of voxels (from bmin to bmax) and discard any that
do not intersect the triangle’s plane.
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Figure 2. Points pmin and pmax for 26-separable voxelization (left) and for 6-separable vox-
elization (right). Note that for 6-separable voxelization, we are actually testing for intersec-
tion of the diamond shape inscribed inside the voxel as compared to the entire voxel in the
26-separable case.

3. If the triangle’s plane divides the voxels, test all three of its 2D planar projec-
tions

(
T XY ,T YZ,T ZX

)
to confirm overlap.

The above steps depend upon point-to-plane and point-to-line distance calculations.
For example, the plane-overlap test computes the signed distance to the plane from
two points on opposite ends of the voxel; let us call these points pmin and pmax. If these
distances have opposite signs, i.e., pmin and pmax are on opposite sides of the plane,
this indicates overlap. The selection of pmin and pmax determines the separability of
the resultant voxelization (see Figure 2).
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Figure 3. The points pei for 26-separable voxelization (left) and for 6-separable voxeliza-
tion (right). Similar to the plane-overlap test, the 6-separable voxelization is actually testing
against the diamond inscribed inside the voxel’s planar projection.
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Similarly, when testing the triangle projections
(
T XY ,T YZ,T ZX

)
against their

respective voxel projections
(
pXY , pYZ, pZX

)
, we use the projected inward-facing

edge normals (nXY
ei

, nYZ
ei

, nZX
ei

for i = 0,1,2) to select the “most interior” point on the
box for each edge (eXY

i , eYZ
i , eZX

i for i = 0,1,2); if all projected edge-to-interior point
distances are positive, this indicates overlap within that projection (see Figure 3).

3.1.2. Factorization

As described in previous work [Schwarz and Seidel 2010; Schwarz 2012], the points
pmin and pmax and pXY

ei
, pYZ

ei
, pZX

ei
(for i = 0,1,2) are determined with the aid of an

offset vector, known as a critical point, which is determined by the relevant normal.
However, if we take the distance calculations and refactor them such that minimal
computation occurs while iterating over the voxels, i.e., factor out all computations
not directly dependent on the voxel coordinates of p, we can actually simplify the
expressions so that that the critical point and the points pmin and pmax and pXY

ei
, pYZ

ei
,

pZX
ei

(for i = 0,1,2) need never be determined. Instead, we substitute per-triangle
variables dmin, dmax and dXY

ei
, dYZ

ei
, dZX

ei
(for i = 0,1,2), which represent the factored

out components of the distance calculation not dependent on the voxel coordinates.

3.1.3. Optimization

There are several ways in which we can optimize this process with an eye towards re-
ducing the amount of computation that occurs in the innermost loops of our bounding-
box traversal.

1. Pre-compute all per-triangle variables, which includes the triangle normal n,
the nine planar-projected edge normals nXY

ei
,nYZ

ei
, nZX

ei
(for i = 0,1,2), and the

eleven factored variables dXY
ei

, dYZ
ei

, dZX
ei

(for i = 0,1,2), dmin, and dmax.

2. Determine the dominant normal direction and use this to select the orthogonal
plane of maximal projection (XY, YZ, or ZX), then iterate over the component
axes of this plane first; the remaining axis we shall refer to as the depth axis.

3. Test the 2D projected overlap with the orthogonal plane of maximal projection
first.

4. Replace the plane-overlap test with an intersection test along the depth axis to
determine the minimal necessary range to iterate over (rather than the entire
range of the bounding box along the depth-axis).

5. Test the remaining two planar projections for overlap.

If all of these tests succeed, we can confirm that triangle T intersects voxel p. Pseu-
docode for both the conservative and thin voxelization routine is provided in the Ap-
pendix (Section 7).
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3.2. Triangle-Parallel Voxelization

The most natural approach to voxelization of an input mesh is to parallelize on the
input geometry (i.e., the triangles). Schwarz [2012] implemented such an approach in
a Direct3D Compute shader as a single pass. Others [Schwarz and Seidel 2010; Pan-
taleoni 2011] implemented a multi-pass approach to improve parallelism. Schwarz
and Seidel [2010] improved coherence by dividing the triangle-box intersection code
into nine different voxel-dependent cases; 1D bounding boxes along each axis; 2D
bounding boxes in each coordinate plane; and 3D bounding boxes for three dominant
normal directions. Unfortunately this requires a two-pass approach, and while it re-
sults in high thread coherence (since kernels operate exclusively on similar triangles),
it is quite complex and exceeds the number of image units commonly available. How-
ever, we can reduce this by a factor of three, allowing all 1D, 2D, and 3D cases to be
treated the same by performing a simple transformation, as discussed in Section 3.3.1.

Input geometry is first transformed into “voxel-space,” that is the space ranging
from (0,0,0)T to (Vx, Vy, Vz)

T in the vertex shader. Second, an intersection rou-
tine implemented in the geometry shader, as described in Section 3.1.1, performs the
voxelization, the performance of which can be seen in Figure 4. It is readily appar-
ent that a naïve triangle-parallel approach only performs well in scenes that exhibit
certain characteristics, for instance, the evenly tessellated XYZ RGB Dragon and
Stanford Bunny models, both scenes that exhibit even and regular triangulation. For
any scene that contains large triangles (such as might be found on a wall) like the

Figure 4. Performance of a naïve triangle-parallel voxelization for various scenes. Poor
performance is found for scenes containing large polygons and performance decreases pre-
dictably with an increase in voxel resolution.
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Crytek Sponza Atrium, the Conference Room, or even, the pathological worst case—
a single large scene-spanning triangle—the naïve triangle-parallel approach has no
mechanism by which to balance the workload, and the voxelization must wait while
individual threads work alone to voxelize large triangles.

3.3. Fragment-Parallel Voxelization

This observation of poor work balance in unevenly tessellated scenes is what led
Schwarz and Pantaleoni to introduce complex tile-assignment and sorting stages to
their voxelization pipelines. Our fragment-parallel voxelization is based on the ob-
servation that much of our triangle-intersection routine can simply be moved to the
fragment shader, providing the opportunity for vastly more parallelism. Thus, we ex-
ploit the fragment stage of the OpenGL pipeline as a sort of ad-hoc single-level of
dynamic parallelism. There are several implementation particulars required to ensure
a gap-free voxelization, which will be discussed in a later section. The performance
results of our single-pass fragment-parallel implementation can be observed in Fig-
ure 5; most noteworthy is the fact that it performs very well on the exact scenes with
which the triangle-parallel voxelization struggled and most poorly on scenes with
large amounts of fine detailed geometry (XYZ RGB Dragon & Hairball).

The fragment-parallel implementation is far more unique and must be adapted to
the pipeline in order to produce a correct voxelization. (Crassin and Green [2012] de-

Figure 5. Performance of fragment-parallel voxelization. This technique exhibits poor per-
formance in scenes with large numbers of small triangles. Performance degradation is exac-
erbated as the ratio of voxel-size to triangle-size increases.
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scribe a similar approach.) Our utilization of the fragment stage allows us to benefit
from the rasterization and interpolation acceleration provided by the graphics hard-
ware. However, there are two issues we must concern ourselves with when endeav-
oring to produce a “gap-free” voxelization: (1) gaps within triangles caused by an
overly oblique “camera” angle, and (2) gaps between triangles caused by OpenGL’s
rasterization rules.

As in the triangle-parallel approach values n, nXY
ei

, nYZ
ei

, nZX
ei

, dXY
ei

, dYZ
ei

, dZX
ei

(for
i = 0,1,2), dmin, and dmax are precomputed. However, in this implementation they
are calculated in the geometry shader and passed as flat non-varying attributes to
the fragment shader. Essentially, we allow the rasterizer to take over iterating over
the axes of the dominant planar projection, leaving the fragment shader to confirm
overlap with the dominant plane, calculate the depth-intersection range according to
the desired separability rules, and confirm the remaining two planar projections. In the
pseudocode in the Appendix, lines 15–20 in Figure 17 and lines 14–20 in Figure 18
would be moved into the fragment shader.

3.3.1. Gap-Free Triangles

We can solve the first problem listed above (gaps within triangles caused by overly
oblique camera angles), illustrated in Figure 6, in one of two ways, both of which
rely on determining the dominant normal direction of the triangle. The first ap-
proach relies on constructing an orthographic projection matrix per-triangle, which
views the triangle against the axis of its maximum projection as determined by the
dominant normal direction. Alternately, we can change the input geometry, again
based on the dominant normal direction, such that the XY plane is always the axis
of maximum projection. This can be accomplished by a simple hardware-supported
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Figure 6. Naïve rasterization on input geometry can lead to gaps in the voxelization. This
can be solved in two ways: the center image demonstrates swizzling the vertices of the input
geometry, while the image on the right demonstrates changing the projection matrix.
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vector swizzle:

2
∀i=0vi,xyz =


vi,yzx, nx dominant;

vi,zxy, ny dominant;

vi,xyz, nz dominant.

However, we must be sure to “unswizzle” when storing in the destination texture.
Additionally, a similar triangle-swizzling approach can be used to reduce the number
of cases taken in the approach of Schwarz and Seidel [2010]. With triangle swizzling,
the number of cases drops from nine to three, one for each of the 1D, 2D, and 3D
cases. Figure 7 depicts the selection of the largest triangle projection based on the
dominant normal direction.
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Figure 7. The largest component of the normal n of the original triangle determines the plane
of maximal projection (XY, YZ, or ZX) and the corresponding swizzle operation to perform.

3.3.2. Conservative Rasterization

The second problem (gaps between triangles caused by OpenGL’s rasterization rules)
illustrated in Figure 6 can be solved with conservative rasterization. This technique
ensures that every pixel that touches a triangle is rasterized, which is counter to how
the hardware rasterizer works. There are several approaches to overcome this prob-
lem, which generally involve “dilating” the input triangle. Hasselgren et al. [2005] di-
lated input triangles by expanding triangle vertices into pixel-sized squares and com-
puting the convex hull of the resultant geometry. Tessellation of this shape can be
computed in the geometry shader. Hasselgren also proposed computing the bounding
triangle of the dilated geometry from the previous approach and simply discarding in
a fragment shader all fragments outside of the AABB. Hertel et al. [2009] proposed a
similar approach, computing the dilated triangle T ′ by constructing a triangle of inter-
secting lines parallel to the sides of the original triangle T at a distance of l, where l is
half the length of the pixel diagonal (see Figure 8 for examples of these techniques).

With the Hertel approach, the dilated vertices v′i of T ′ can be easily computed as

v′i = vi + l
(

ei−1

ei−1 ·nei

+
ei

ei ·nei−1

)
.
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Figure 8. Various conservative rasterization techniques required in order to produce a “gap-
free” voxelization. The first two images are from [Hasselgren et al. 2005]; the leftmost image
shows the approach of expanding triangle vertices to the size of a pixel and tessellating the
resultant convex-hull; the middle image simply creates the minimal triangle to encompass
the expanded vertices, and relies on clipping to occur later in the pipeline. The rightmost
approach is from [Hertel et al. 2009] and simply expands the triangle by half the length of the
pixel diagonal and also relies on clipping to remove unwanted pixels.

In our case, working on a 2D triangle projection in a premultiplied voxel space l will
always be

√
2/2.

It should be noted that conservative rasterization has the potential to produce un-
necessary overhead in the form of fragment threads that are ultimately rejected in the
final voxelization intersection test. As triangles get smaller and l remains constant, the
size of the dilated triangle T ′ compared to the size of the original triangle T causes
the ratio area(T )

area(T ′) to become smaller. This ratio can be used to approximate an up-
per bound on the expected efficiency of per-triangle fragment thread utilization. This
goes part of the way in explaining the fragment-parallel technique’s poor performance
in highly tessellated scenes with many small triangles, which is actually exacerbated
further by poor quad utilization for small triangles. Since texture derivatives require

Figure 9. Sub-voxel-sized triangle exhibiting thread utilization of only 8.3̄% after triangle
dilation. Note, that this can actually get much worse depending on the triangle configuration.
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Figure 10. Thin (6-separable) voxelization of the Conference Room scene illustrating false
positives (in red) resulting from a naïve conservative-rasterization based voxelization.

neighbor information, even if only one pixel of a quad is covered, the entire quad is
launched. This means that triangles smaller than a voxel will utilize only 25% of the
threads allocated to them before triangle dilation is taken into account. After triangle
dilation, thread utilization can be significantly worse (see Figure 9) and in scenes with
millions of sub-voxel-sized triangles, can lead to massive oversubscription and poor
performance

Additionally, it was our observation that voxelization methods that relied purely
on raster-based conservative voxelization methods tended to be overly conservative
along their edges where clipping against the AABB couldn’t help them, resulting
in false positives (see Figure 10). Since our approach maintains a computational
intersection test inside the fragment shader, these voxels are still culled.

Figure 11. Comparison of the relative performance of triangle-parallel and fragment-parallel
techniques. Note, where one technique performs poorly, the other performs well.
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3.4. Hybrid Voxelization

The performance of both single-pass techniques is illustrated in Figure 11. When us-
ing the fragment shader to increase the available parallelism, the worst-case scenario
for the triangle-parallel approach becomes the best case for the fragment-parallel case;
conversely, the best-case for the fragment-parallel approach is the worst case for the
triangle-parallel approach. We, therefore, developed a hybrid approach, one in which
large triangles are divided into fragment-threads using the fragment-parallel technique
and small triangles are voxelized using the triangle-parallel technique, thus avoiding
poor thread utilization and oversubscription.

We take care to preserve coherent execution among our shader threads with the in-
troduction of a classification stage to our pipeline prior to voxelization (see Figure 12),
which outputs corresponding index buffers according to each triangle’s classification.
These classified index buffers are then used to voxelize the corresponding geometry
using the appropriate technique.

Triangle Classification
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Figure 12. A simple classification routine run before the voxelization stage allows the creation
of a hybrid voxelization pipeline and the optimal voxelization approach according to per-
triangle characteristics.

3.4.1. Triangle-Selection Heuristic

The main feature of the hybrid-voxelization approach lies in the heuristic used for de-
termining whether a triangle is most suitable for voxelization using a triangle-parallel
approach or a fragment-parallel approach. While other approaches [Schwarz and Sei-
del 2010] are dependent on voxel extents of triangle bounding boxes, we have already
determined that the fragment-parallel approach will handle all large triangles, and the
triangle-parallel approach will handle all small triangles.

The heuristic for the selection of a cutoff value can be approached in many dif-
ferent ways; for instance, the size of the dilated triangle area(T ′) most accurately
represents the number of potential voxel intersections to be evaluated in the fragment
stage, but it is not a fair representation of the amount of work required in the triangle-
parallel stage should the triangle be classified as small. Furthermore, the dilated trian-
gle has a minimum size, which must be considered when undilated triangles approach
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Figure 13. Hybrid voxelization performance of Crytex Sponza Atrium @ 2563 voxel reso-
lution. Initially at zero, all triangles are classified as “large” and therefore voxelized by the
fragment-parallel shader. As the cutoff value (measured in voxel area) increases, triangles are
classified and assigned to either the triangle-parallel or fragment-parallel approaches. As the
cutoff continues to increase, performance exhibits a stair-step pattern as triangles are reclas-
sified. Eventually, all triangles are classified as “small” and performance reverts to that of the
triangle-parallel approach.

zero area. The 3D voxel-extents provide a good indication of the amount of iteration
required to voxelize a triangle in the geometry stage; however, since the depth-range
is calculated, the 2D-projected voxel-extents provide a closer representation of the
actual work performed. Additionally, we could consider the ratio of area(T )

area(T ′) , which,
as it varies from 0 to 1, indicates very small to very large triangles, respectively.

In our experiments, we found that simply considering the 2D projected area of
the triangle T worked best, and, for most scenes, a cutoff value of just a few voxel-
units squared provided a good starting cutoff value for triangle classification. In Fig-
ure 13, we can see the full range of voxelization performance—varying from that of
the fragment-parallel approach at a cutoff of zero to the performance of the triangle-
parallel approach once the cutoff is large enough to encompass all triangles. Note that
Figure 13 represents an unreasonable range of cutoff values; this is meant to illustrate
the performance characteristics as the cutoff value changes. Generally, there is a fairly
large range of cutoff values corresponding to near-optimal performance.

We are, however, most interested in the cutoff value that will provide the minimal
voxelization time, and these values tend to occur at much lower values. Figure 14
shows only the earlier range of cutoff values. Examination of the data confirms that
for most inputs a cutoff value of just a few voxels squared provides for optimal vox-
elization timing. It is conceivable that a bracketing search could determine and adjust
this value automatically [Press et al. 2007].
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Figure 14. Hybrid voxelization performance @ 2563 voxel resolution. The logarithmic per-
formance graph of the hybrid voxelization technique displays a lower range of cutoff values
such that the optimal cutoff can be clearly discerned.

3.4.2. Optimization

In order to avoid the necessity of separate output buffers for all input attributes, we
output only index buffers, which are then used to render only the appropriate sub-
set of the geometry with the voxelization method as determined by the classifier.
On many scenes, this allowed us to achieve improved performance over either the
fragment-parallel or the triangle-parallel approach alone. However, when we exam-
ine the performance of a scene ideally suited to the triangle-parallel approach, like the
XYZ RGB Dragon, we observe that the best performance that can be achieved with
our triangle-classifier is approximately twice that of the triangle-parallel approach
alone. This can be explained by the amount of work it takes to process the seven mil-
lion triangles in the scene. Each triangle is extremely small (generally less than the
size of a voxel) and takes relatively little work to voxelize, and similarly little work
to classify. In this case, run-time is dominated by the overhead of creating threads,
rather than the work done in each thread, and with our current approach we have dou-
bled the number of threads to be created. Fortunately, we can exploit the fact that in
our classification we employ the triangle-parallel approach only for small triangles.
Combined with the fact that the number of small triangles in a scene almost always
dominates the number of large triangles, we can dramatically decrease the overhead
of our hybrid-voxelization pipeline.

As illustrated in Figure 15, by moving the triangle-parallel voxelization into the
classification shader and deferring only the larger triangles to be voxelized by the
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Figure 15. Our final hybrid voxelization implementation mitigates the cost of processing
the input geometry twice by immediately voxelizing input triangles classified as “small” and
deferring only those triangles considered to be “large.”

fragment shader, we effectively reduce a two-pass approach to a just slightly over
one-pass approach. This means, that while all triangles are processed at least once,
only a few are processed twice. Furthermore, since the overhead of classification and
voxelization of small triangles is so low, this makes our hybrid approach competitive
on all scenes, even those tailored for a triangle-parallel approach. The full pipeline is
shown in Figure 16, illustrating the voxelization of the XYZ RGB Dragon scene.

Figure 16. Full pipeline including shader stages. Note, that while there are two “passes,” only
a very small subset of the geometry that is classified as “large” is processed twice.

3.5. Voxel-List Construction

Though we are primarily concerned with producing a voxelization stored in a dense
3D texture, our technique can also be useful to produce a sparse “voxel-list.” Previ-
ously, one would have to perform a dense voxelization and then perform a reduction,
such as HistoPyramid compaction [Ziegler et al. 2006], in order to produce such a
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list. However, with hardware support for atomic operations, this step can now be
skipped. We can instead use an atomic counter to increment the index of an output
buffer used to store the voxel’s coordinates. Crassin and Green [2012] used such a
technique to generate their “voxel-fragment-list,” which they then used to construct a
sparse hierarchical octree. With such an approach, multiple elements may refer to the
same voxel location, which are later merged in hierarchy creation. To avoid duplicate
voxel assignments, a dense 3D r32ui texture can be employed to provide mutexes
at each voxel location. By using an imageAtomicCompSwap operation at the voxel
location, we can restrict incrementing the atomic counter to a single thread accessing
the voxel location. This can be beneficial when the voxelization includes additional
attribute outputs and there is not enough memory for a dense 3D texture for each
attribute.

The reduced memory requirements of voxel-lists must be weighed against in-
creased voxelization time. The use of atomic operations directly impacts voxelization
performance, particularly in situations where many threads are attempting to access
the same voxel. We observed that the additional voxel culling provided by a rig-
orous computational intersection test helped significantly in reducing the number of
write conflicts for the atomics to resolve. It should be noted that when outputting at-
tribute buffers, on some architectures correct averaging of attribute information (col-
ors, normals, etc.) may require emulation of (as of yet) unsupported atomic operations
[Crassin and Green 2012].

3.6. Attribute Interpolation

Attribute interpolation must be handled manually in the triangle-parallel approach.
But since it uses the graphics pipeline, the fragment-parallel approach can exploit the
fixed-function interpolation hardware provided by the rasterizer. Since the fragment-
parallel voxelization method relies on triangle dilation to ensure a conservative vox-
elization, care must be taken to correctly interpolate triangle attributes across the di-
lated triangle. To accomplish this, we calculate the barycentric coordinates of the di-
lated triangle vertices v′i with respect to the undilated triangle vertices vi using signed
area functions:

λi
(
v′i
)
=

area(v′i,vi+1,vi+2)

area(v0,v1,v2)
.

Applying the barycentric coordinates computed at the dilated triangle vertices v′i
to the vertex attributes, i.e., vertex colors, normals, or texture coordinates ti, we can
calculate corresponding dilated attributes t′i:

t′i = λ0
(
v′i
)

t0 +λ1
(
v′i
)

t1 +λ2
(
v′i
)

t2.

By passing dilated attributes in from the geometry shader to the vertex shader in
this manner, we ensure that attributes interpolate across the undilated region of the
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dilated triangle in the same manner as they would on the undilated triangle; this holds
regardless of the dilation factor l applied.

4. Results

We tested our hybrid voxelization approach against several different models at vari-
ous voxel resolutions and compared the results to purely triangle-parallel and purely
fragment-parallel implementations, as well as to the data available from previous ap-
proaches [Schwarz and Seidel 2010; Pantaleoni 2011; Crassin and Green 2012]. We
included the XYZ RGB Asian Dragon as an example of a pathological worst-case sce-
nario for the fragment-parallel approach; we also included a single scene-spanning
triangle as a pathological worst case for the triangle-parallel approach. All results
were generated on an Intel Core i7 950 @ 3.07 GHz with an NVIDIA GeForce GTX
480. Table 1 shows the performance comparison of the different techniques, and,
additionally, the percentage of time spent in the first and second pass of the hybrid
voxelization approach (see Figure 16).

Although both Dragons, the Bunny, and the Hairball represent less than ideal
conditions for our approach as they do not have a large distribution of triangle sizes,
we are able to obtain better performance than the competing techniques in all but
one instance. In several cases, the purely triangle-parallel approach beats the hybrid
approach, which is understandable considering that those scenes are ideally suited

Model Grid size
6-separating (thin) binary voxelization

Triangle- Fragment-
Hybrid @voxels2 Pass 1/Pass 2

Schwarz &
VoxelPipe

Crassin &
parallel parallel Seidel Greene (680)

large triangle
(1 tri)

1283 10.62 0.03 0.04 @na 36.1%/63.9%
2563 42.4 0.06 0.07 @na 22.1%/77.9%
5123 169.7 0.22 0.19 @na 12.0%/88.0%

XYZ RGB Asian
Dragon
(7,219,045 tris)

1283 6.37 165.2 8.51 @2.0 99.9%/0.1% 11.36 21.2
2563 7.70 165.0 8.57 @1.7 99.7%/0.3% 14.73
5123 9.80 164.6 10.3 @1.4 99.8%/0.2% 16.67 22.0

Crytek Sponza
Atrium
(262,267 tris)

1283 13.4 10.65 1.11 @2.8 87.7%/12.3%
2563 53.2 11.13 1.80 @3.9 71.6%/28.3%
5123 208.7 11.87 3.68 @3.1 52.8%/47.2%

Conference
(331,179 tris)

1283 9.23 11.47 1.41 @0.5 68.5%/31.5% 3.9 3.3
2563 36.04 11.62 1.82 @1.7 69.2%/30.8%
5123 141.2 11.94 3.01 @0.9 52.2%/47.8% 59.3 4.3

Stanford Bunny
(69,666 tris)

1283 0.28 1.58 0.19 @1.8 88.1%/11.9% 0.60
2563 0.82 1.55 0.34 @4.5 91.6%/8.4% 0.89
5123 3.12 1.82 1.08 @12.7 93.0%/7.0% 2.35

Stanford Dragon
(100,000 tris)

1283 0.25 2.13 0.26 @13.3 97.8%/2.2% 3.44 4.8 1.19
2563 0.51 2.09 0.52 @5.9 93.4%/6.6% 3.96
5123 1.61 2.25 1.25 @13.7 88.6%/11.4% 4.44 5.0 1.38

Hairball
(2,880,000 tris)

1283 7.09 74.8 7.37 @2.3 99.89%/0.11% 22.8 12.8
2563 13.73 67.1 14.0 @2.4 99.94%/0.06%
5123 33.47 68.4 33.9 @8.0 99.97%/0.03% 95.0 18.3

Table 1. Running time (in ms) for different voxelization approaches. Voxelizations are binary
and performed into a single-component dense 3D texture. The large triangle cutoff is listed as
“na” since there are no suitable triangles to be reassigned.
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to the triangle-parallel approach. It should be noted that in all such cases, besides
the pathological worst case (the Asian Dragon), the hybrid approach was within 3%
of the triangle-parallel approach, indicating the low overhead of our multi-pass ap-
proach. Despite its simple classification scheme, our approach provides a perfor-
mance improvement for binary voxelization over its competitors, including that of
Crassin and Green [2012] which used superior hardware (GTX 680). It should be
noted that the cutoff values are likely to be highly architecture-dependent; we would
expect them to change when executed on Nvidia’s Kepler or AMD’s Southern Islands
architecture.

5. Discussion

We implemented a wide variety of voxelization and conservative rasterization tech-
niques in our experiments. Our implementations targeted the capabilities described in
the OpenGL 4.2 specification. Our approach relied on the ability to perform texture-
writes to arbitrary locations enabled by the image API. Our classification approach re-
lied on indirect buffers to enable the asynchronous execution of the voxelization stage.
A benefit of our OpenGL implementation is that it avoids the performance penalty of
context switching and implicit synchronization points present in a CUDA or OpenCL
implementation. With the introduction of OpenGL 4.3, the triangle-parallel approach
could easily be implemented in a Compute shader, but it remains to be seen if there is
an advantage to this.

Another application of our initial classification scheme (see Figure 12), could be
to “pre-classify” scenes. Then, by maintaining two index buffers, hybrid-voxelization
could be used without the cost of classification. This would be most sensible when
applying a non-voxel-dependent triangle classifier in scenarios where the orientation
of the voxels may change relative to the scene geometry.

We found that several of our results agreed with other approaches [Sintorn et al.
2008; Hertel et al. 2009] that geometry amplification of the first Hasselgren technique
led to performance degradations. We also found that atomic operations more greatly
impacted the triangle-parallel approach, likely due to the fact that each triangle-
parallel thread is responsible for more writes than each fragment-parallel
thread.

Future work could exploit true dynamic parallelism facilities currently only avail-
able in CUDA 5 to spawn exactly one thread for each triangle/voxel pair. While this
would still obviate the need for complex tiling and sorting strategies, it would unfor-
tunately remove the ability to exploit the remaining fixed-function hardware present
on the GPU exposed to the graphics pipeline. Additionally, we would like to explore
more robust cutoff-prediction strategies, techniques for automatic minimum detec-
tion, and more sophisticated classification approaches.
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6. Conclusion

This paper has shown how a GPU-accelerated computational surface voxelization can
be achieved without using CUDA or OpenCL. Our hybrid approach to voxelization
leverages the strengths of the graphics pipeline to improve parallelism where it is
most needed without sacrificing the quality of the voxelization. It exhibits superior
performance to existing techniques, especially on scenes with non-uniform triangle
distributions.

7. Appendix

In this appendix, we provide pseudocode for both conservative (Figure 17) and thin
(Figure 18) voxelization routines to clarify their implementation.

1: function conservativeVoxelize(v0,v1,v2,bmin,bmax,unswizzle)
2: ei← v(i+1) mod 3−vi

3: n← cross(e0,e1)

4: nXY
ei ← sign(nz) ·

(
−ei,y,ei,x

)T

5: nYZ
ei ← sign(nx) ·

(
−ei,z,ei,y

)T

6: nZX
ei ← sign(ny) ·

(
−ei,x,ei,z

)T

7: dXY
ei ←−

〈
nXY

ei ,vi,xy

〉
+max

(
0,nXY

ei,x

)
+max

(
0,nXY

ei,y

)
8: dYZ

ei ←−
〈

nYZ
ei ,vi,yz

〉
+max

(
0,nYZ

ei,x

)
+max

(
0,nYZ

ei,y

)
9: dZX

ei ←−
〈

nZX
ei ,vi,zx

〉
+max

(
0,nZX

ei,x

)
+max

(
0,nZX

ei,y

)
10: n← sign(nz) ·n // ensures zmin < zmax

11: dmin← 〈n,v0〉−max(0,nx)−max(0,ny)

12: dmax← 〈n,v0〉−min(0,nx)−min(0,ny)

13: for px← bmin,x, . . . ,bmax,x do
14: for py← bmin,y, . . . ,bmax,y do
15: if ∀2

i=0

(〈
nXY

ei ,pxy

〉
+dXY

ei ≥ 0
)

then

16: zmin←max
(

bmin,z,
⌊
(−〈nxy,pxy〉+dmin)

1
nz

⌋)
17: zmax←min

(
bmax,z,

⌈
(−〈nxy,pxy〉+dmax)

1
nz

⌉)
18: for pz← zmin, . . . ,zmax do
19: if ∀2

i=0

(〈
nYZ

ei ,pxy

〉
+dYZ

ei ≥ 0∧
〈

nZX
ei ,pxy

〉
+dZX

ei ≥ 0
)

then
20: V [unswizzle ·p]← true
21: end function

Figure 17. Pseudocode for a conservative (26-separable) computational voxelization. This
implementation assumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled; unswizzle

represents a permutation matrix used to get the unswizzled voxel location.
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1: function thinVoxelize(v0,v1,v2,bmin,bmax,unswizzle)
2: ei← v(i+1) mod 3−vi

3: n← cross(e0,e1)

4: nXY
ei ← sign(nz) ·

(
−ei,y,ei,x

)T

5: nYZ
ei ← sign(nx) ·

(
−ei,z,ei,y

)T

6: nZX
ei ← sign(ny) ·

(
−ei,x,ei,z

)T

7: dXY
ei ←

〈
nXY

ei ,0.5−vi,xy

〉
+0.5 ·max

(∣∣∣nXY
ei,x

∣∣∣ , ∣∣∣nXY
ei,y

∣∣∣)
8: dYZ

ei ←
〈

nYZ
ei ,0.5−vi,yz

〉
+0.5 ·max

(∣∣∣nYZ
ei,x

∣∣∣ , ∣∣∣nYZ
ei,y

∣∣∣)
9: dZX

ei ←
〈

nZX
ei ,0.5−vi,zx

〉
+0.5 ·max

(∣∣∣nZX
ei,x

∣∣∣ , ∣∣∣nZX
ei,y

∣∣∣)
10: n← sign(nz) ·n // ensures zmin < zmax

11: dcen← 〈n,v0〉−0.5 ·nx−0.5 ·ny

12: for px← bmin,x, . . . ,bmax,x do
13: for py← bmin,y, . . . ,bmax,y do
14: if ∀2

i=0

(〈
nXY

ei ,pxy

〉
+dXY

ei ≥ 0
)

then

15: zint← (−〈nxy,pxy〉+dcen)
1
nz

16: zmin←max
(
bmin,z,bzintc

)
17: zmax←min(bmax,z,dzinte)
18: for pz← zmin, . . . ,zmax do
19: if ∀2

i=0

(〈
nYZ

ei ,pxy

〉
+dYZ

ei ≥ 0∧
〈

nZX
ei ,pxy

〉
+dZX

ei ≥ 0
)

then
20: V [unswizzle ·p]← true
21: end function

Figure 18. Pseudocode for a thin (6-separable) computational voxelization. This implementa-
tion assumes that the inputs, v0, v1, v2, bmin, and bmax, are pre-swizzled; unswizzle represents
a permutation matrix used to get the unswizzled voxel location.
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