
Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

Dynamic Stackless Binary Tree Traversal

Rasmus Barringer
Lund University

Tomas Akenine-Möller
Lund University and Intel Corporation

Figure 1. CHESS scene rendered using our stackless binary tree traversal algorithm.

Abstract

A fundamental part of many computer algorithms involves traversing a binary tree.
One notable example is traversing a space-partitioning acceleration structure when
computing ray-traced images. Traditionally, the traversal requires a stack to be tem-
porarily stored for each ray, which results in both additional storage and memory-
bandwidth usage. We present a novel algorithm for traversing a binary tree that does
not require a stack and, unlike previous approaches, works with dynamic descent
direction without restarting. Our algorithm will visit exactly the same sequence of
nodes as a stack-based counterpart with extremely low computational overhead. No
additional memory accesses are made for implicit binary trees. For sparse trees, par-
ent links are used to backtrack the shortest path. We evaluate our algorithm using a
ray tracer with a bounding volume hierarchy for which source code is supplied.

1. Introduction

Traversing a binary tree is a fundamental operation for many computer algorithms.
One notable example, related to computer graphics, is traversing a space-partitioning
acceleration structure when performing ray tracing [Whitted 1980]. The traversal

38

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

usually requires a stack, that contains nodes that are still to be processed, to be tem-
porarily stored. However, in some cases, a stack is prohibitively expensive to main-
tain or access [Laine 2010], e.g., for highly parallel architectures with many active
traversal states. There may also be situations where the traversal state is suspended
and resumed [Hapala et al. 2011], in which case storing or transferring the full stack
is expensive. For these reasons, stackless algorithms have been explored. Hughes
and Lim [2009] demonstrate stackless traversal for dense implicit kd-trees. Their ap-
proach requires a k-by-3 matrix to be stored in constant memory, where k is the depth
of the tree. When traversal ascends in the tree, additional heuristics are needed to
know which child to continue traversing, requiring additional knowledge of the data
structure. Another approach that is not restricted to kd-trees involves using a short
stack and encoding a restart trail in a bit mask [Laine 2010]. When the short stack is
insufficient, traversal restarts from the root node and descends along the stored restart
trail. Hapala et al. [2011] use parent pointers to achieve stackless traversal by back-
tracking. Their algorithm needs to determine traversal order among two siblings again
when ascending in the tree. This is prohibitively expensive for anything but a simple
ordering heuristic. As a result, the traversal order in their bounding volume hierar-
chy is based solely on ray direction. Computing the actual distance to the siblings’
bounding boxes, and sorting them based on distance, would require re-intersecting
both nodes to determine the traversal order.

In this paper, we introduce low-overhead stackless traversal algorithms for binary
trees that, unlike previous approaches, support dynamic descent direction without
restarting. In particular, we introduce two algorithm variations for implicit binary
trees, as well as one variation for sparse trees. Our algorithms will visit exactly the
same sequence of nodes as a stack-based counterpart with extremely low computa-
tional overhead. No additional memory accesses are made for implicit binary trees.
For sparse trees, parent links are used to backtrack the shortest path.

2. Implicit Traversal Algorithm

For implicit binary trees, we store the nodes in each level sequentially in memory,
i.e., the root node at location 0 and its left and right children at location 1 and 2,
respectively. In general, the nodes at a depth, d, are enumerated as {2d − 1, . . . ,
2d+1− 2}, where d = 0 indicates the root level. As such, the relationships between
different nodes is explicitly known. Given the address of a node, it is possible to
calculate the address of the parent, children, and sibling.

The trees for bounding-volume hierarchies, for example, are generally not per-
fectly balanced. In those cases, we simply leave gaps in the memory layout for unused
nodes. Since they will never be accessed, it is enough to allocate the address space for
them. CPUs can utilize virtual memory to reserve the entire address space for the tree

39

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

but only map pages that actually contain nodes. This reduces the memory overhead
associated with filling out the gaps. In Section 3, it is shown that the algorithm can be
extended to sparse binary trees with parent pointers.

We start by describing a simplified traversal algorithm that assumes that the left
child in a tree is always traversed first, i.e., a typical depth-first traversal order. Then,
we extend this algorithm to support tree traversal in any order.

2.1. Left-First Traversal

Knowing that we always choose the left child during traversal, we can keep track of
the traversal state using two integers. We need one bit for each level of the tree and,
thus, 32 bits is enough for reasonably balanced trees. However, for the purpose of our
algorithm, integers of any size can be used. The algorithm is shown in Algorithm 1;
the first integer, levelStart, stores 2d , where d is the current depth of the traversal.
This variable is used to calculate the address of the first node in the current level,
which is given by levelStart− 1. The second integer, levelIndex, stores the current
node relative to the first node of the current depth level. The index of a node is thus
given by levelStart + levelIndex−1 (see Figure 2). When the algorithm descends to
the left child of a node, we recalculate the two integers to point to the left child in the
next depth level. This is accomplished using simple shift operations.

If we decide to skip a node, or have found and processed a leaf node, we either
need to traverse to the right sibling, or ascend upward in the tree. This is where we
would normally need a stack containing the next node to process. However, since
we always traverse to the left child first, we simply need to ascend in the tree when
the right child of the parent node has been processed. This criteria is equivalent to

d=0

d=1

d=2

d=3 141311 12

5 6

2

0

1

4

109

3

7 8

Figure 2. An example of a complete binary tree with the depths, d, of each level shown at the
left. The node number is shown inside each node circle. For the blue node at the bottom, we
have levelStart = 2d = 23 and levelIndex = 2, which makes it possible to compute the node
number as 23 +2−1 = 9. For the blue node, we also have swapMask = 010 (binary), which
indicates the path from the root down to the node, where 0 is a descent to the left child, and 1
is a descent to the right child. The swapMask is used in Algorithm 2.

40

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

Algorithm 1 (Left-first implicit traversal.)

levelStart← 1
levelIndex← 0
repeat

node← levelStart + levelIndex−1
if node is leaf then

process leaf
else

test node
if accepted then

levelStart← levelStart� 1
levelIndex← levelIndex� 1
continue

end if
end if
levelIndex← levelIndex+1
up← ctz(levelIndex)
levelStart← levelStart� up
levelIndex← levelIndex� up

until levelStart ≤ 1

the criteria that levelIndex have the same number of trailing zeros as the number of
levels to ascend in the tree. This approach is similar to that used by Knoll et al. [2009]
for finding the leftmost root of implicit functions. The main difference is how they
used intervals and a loop with floating-point division to achieve the stackless traversal,
while our approach can be implemented using a single count-trailing-zeros instruction
(CTZ), which is common in many architectures. The integers are then adjusted by this
amount using right shifts.

2.2. Generalized Traversal

When traversing a binary tree, it is often beneficial to start with a certain child based
on a dynamic heuristic. For example, for efficient visibility computations using ray
tracing, it is important to traverse to the child node whose content is most likely
to shorten the ray, making traversal to the sibling unnecessary. A common heuris-
tic is to start with the closest bounding volume. The traversal technique in Sec-
tion 2.1, however, always traverses to the left child first, and if used in a ray tracer,
performance would suffer substantially since rays would not benefit from early
occlusion.

One way to enable arbitrary descent order (left or right child) is to actually traverse
exactly as in Section 2.1 with the exception that the left and right children are swapped
when traversal to the right child is preferred. It is, of course, not feasible to actually
swap the memory of the nodes in the tree. Instead, we define a function fn(x) that

41

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

x: 764 5320 1

675 4231 0f0(x):

x: 764 5320 1

f1(x):

x: 320 1

013 2f0o f1(x):

32 0 1 76 4 5

764 5

457 6

Figure 3. The result of applying various combinations of fn(x) to a list of indices, x. Top: f0;
Middle: f1; Bottom: f0 ◦ f1.

swaps the indices of each node at a certain level in the tree:

fn(x) = x+2n−2(x∧2n),

where ∧ represents bitwise AND. If the previous level took a right turn, the relative
index would not be levelIndex, but rather f0(levelIndex). Some examples of applying
this function to a list of indices is shown in Figure 3.

Since any level can take a right turn, we need to be able to apply composite func-
tions to describe an arbitrary path through the tree:

(fi ◦ f j ◦ ...)(x),

where i, j, . . . are the levels where the traversal took a right turn and (g◦ f)(x) is the
same as g(f (x)).

From Figure 3, one can see that the result is independent of the order of composi-
tion, i.e., fi ◦ f j(x) = f j ◦ fi(x), which suggests that the entire composite function can
be expressed in a very simple manner. Let d denote the current depth of the traversal.
If we create a bitmask, called swapMask, where each bit i is set if level d− i−1 took
a right turn, then the entire composition becomes:

fcomp(x) = x+ swapMask−2(x∧ swapMask). (1)

Given fcomp(x), we are now ready to describe the generalized traversal algorithm. We
need one more integer to store swapMask. Besides some simple bookkeeping for
swapMask, all we need to do is apply Equation (1) to levelIndex. The generalized
traversal technique is shown in Algorithm 2.

In this algorithm, we essentially compute the dynamic descent levelIndex from a
left-first levelIndex at each iteration. It is also possible to incrementally update the

42

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

Algorithm 2 (Generalized implicit traversal.)

levelStart← 1
levelIndex← 0
swapMask← 0
repeat

node← levelStart + levelIndex−1
+swapMask−2(levelIndex∧ swapMask)

if node is leaf then
process leaf

else
test children of node
if any accepted then

levelStart← levelStart� 1
levelIndex← levelIndex� 1
swapMask← swapMask� 1
if right child first then

swapMask← swapMask∪1 {bitwise OR}
end if
if rejected one child then

levelIndex← levelIndex+1
swapMask← swapMask⊕1 {bitwise XOR}

end if
continue

end if
end if
levelIndex← levelIndex+1
up← ctz(levelIndex)
levelStart← levelStart� up
levelIndex← levelIndex� up
swapMask← swapMask� up

until levelStart ≤ 1

dynamic levelIndex. Denote the dynamic levelIndex as levelIndexdynamic. It is obvi-
ous that any dynamic descent can incrementally update levelIndexdynamic by assigning
it the child traversed. We also observe that any ascent in the tree is independent of
descent order; the parent at a given level is the same whether we traversed the left
or the right child. The problem becomes which child to continue traversing after as-
cent. This is easy to answer since levelIndexdynamic indicates which child has already
been traversed. We simply need to switch to the sibling of levelIndexdynamic after as-
cending in the tree. These observations are summarized in Algorithm 3. The main
difference compared to Algorithm 2 is that the swap only occurs at the current level
after ascending in the tree.

Even though Algorithm 2 indicates separate variables for levelStart and
levelIndex, it is possible to combine them into one. The start of the current level,

43

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

Algorithm 3 (Optimized generalized implicit traversal.)

levelStart← 1
levelIndex← 0
levelIndexdynamic← 0
repeat

node← levelStart + levelIndexdynamic−1
if node is leaf then

process leaf
else

test children of node
if any accepted then

levelStart← levelStart� 1
levelIndex← levelIndex� 1
levelIndexdynamic← levelIndexdynamic� 1
if right child first then

levelIndexdynamic← levelIndexdynamic +1
end if
if rejected one child then

levelIndex← levelIndex+1
end if
continue

end if
end if
levelIndex← levelIndex+1
up← ctz(levelIndex)
levelStart← levelStart� up
levelIndex← levelIndex� up
levelIndexdynamic← levelIndexdynamic� up
levelIndexdynamic← levelIndexdynamic +1−2(levelIndexdynamic∧1)

until levelStart ≤ 1

levelStart, is always represented by a single set bit that is higher than any set bit in
levelIndex. By introducing index = levelStart + levelIndex, we can replace all in-
stances of the variables with index. This works because all operations on levelIndex
are unaffected by the high bit from levelStart. This optimization reduces the number
of state variables to two, and avoids one addition and two redundant shift opera-
tions. The same optimization can be introduced in Algorithm 3 by setting index =

levelStart + levelIndexdynamic.

3. Sparse Traversal Algorithm

Sometimes the restrictions of an implicit binary tree cannot be met, for example,
when the tree is badly balanced or when the implicit memory layout cannot be used.

44

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

Algorithm 4 (Sparse traversal.)

levelIndex← 0
node← root
repeat

if node is leaf then
process leaf

else
test children of node
if any accepted then

levelIndex← levelIndex� 1
node← left or right child
if rejected one child then

levelIndex← levelIndex+1
end if
continue

end if
end if
levelIndex← levelIndex+1
while levelIndex∧1 = 0 do

node← parent(node)
levelIndex = levelIndex� 1

end while
node← sibling(node)

until node = root

In those cases, a stackless algorithm can still be used [Laine 2010; Hapala et al.
2011]. It turns out that Algorithm 3 is actually well-suited for sparse trees as well,
given that there is a method to ascend in the tree. Assuming the existence of parent
pointers that allows us to backtrack [Hapala et al. 2011], we replace both levelStart
and levelIndexdynamic with a single node pointer. The node pointer is updated anal-
ogously to levelIndexdynamic. When descending in the tree, the node pointer simply
follows the appropriate child link. When ascending in the tree, instead of jumping to
the appropriate parent using a shift instruction, we backtrack using the parent point-
ers until the destination level is reached. The swap function at the end of the loop is
replaced by an analogous function that determines the sibling of a node. It can either
be implemented by calculating the sibling directly, or, by taking a round trip to the
parent, depending on the memory layout of the tree. The algorithm for sparse trees is
given in Algorithm 4.

4. Results

Our three algorithms, referred to as IMPLICIT-A (Algorithm 2), IMPLICIT-B (Algo-
rithm 3) and SPARSE (Algorithm 4), were implemented in a simple single-threaded

45

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

Figure 4. HAIRBALL scene with 2.8
million triangles.

CHESS HAIRBALL

STACK 24.6 s 149 s
SPARSE 26.5 s 157 s

IMPLICIT-A 27.5 s 164 s
IMPLICIT-B 26.2 s 160 s

HAPALA 35.8 s 189 s
LAINE-0 44.7 s 368 s
LAINE-1 31.6 s 232 s
LAINE-2 28.1 s 191 s
LAINE-4 26.4 s 166 s
LAINE-8 26.1 s 155 s

Table 1. Table showing the time required for each
algorithm to render the test scenes.

CHESS

STACK

Eye AO

136B

LAINE-8

Eye AO

52B

IMPLICIT-B

Eye AO

8B

LAINE-4

Eye AO

36B

SPARSE

Eye AO

8B

IMPLICIT-A

Eye AO

8B

LAINE-2

Eye AO

28B

LAINE-1

Eye AO

24B

HAPALA

Eye
AO

8B

LAINE-0

Eye AO

Tr
iT

ra
v

B
B

16B

0

0.3

0.6

0.9

se
c

/ M
ra

y

State size:

HAIRBALL

STACK

Eye

AO

136B

LAINE-8

Eye

AO

52B

SPARSE

Eye

AO

8B

IMPLICIT-B

Eye

AO

8B

IMPLICIT-A

Eye

AO

8B

LAINE-4

Eye

AO

36B

HAPALA

Eye

AO

8B

LAINE-2

Eye

AO

28B

LAINE-1

Eye

AO

24B

LAINE-0

Eye

AO

Tr
iT

ra
v

B
B

16B

0

3

6

9

12

se
c

/ M
ra

y

State size:

Figure 5. Bar charts showing detailed performance measurements from CHESS (top) and
HAIRBALL (bottom). Each algorithm shows the performance of eye and AO rays. Addi-
tionally, a time break-down into triangle intersection, traversal, and AABB intersection is
illustrated within each bar. Below each algorithm, the size of its traversal state is shown. The
state size is based on the number of state variables needed (4 bytes each). A non-zero stack
size adds an extra state variable for the stack head and 4 bytes for each entry. The algorithms
are ordered according to increasing rendering time. Note that the ordering is biased toward
AO ray performance since they represent the majority of rays traced.

46

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

CPU ray tracer written in C++. All tests were performed on an Intel Core i7 pro-
cessor clocked at 2.66 GHz and with 8 GB of 1067 MHz DDR3 RAM. The target
compiler was Apple Darwin LLVM GCC 4.2.1. For reference, a conventional stack-
based traversal, STACK, was included. For comparison to other stackless approaches,
we implemented the algorithms by Laine [2010] and Hapala et al. [2011], referred to
as LAINE and HAPALA respectively. For LAINE, we investigate different short stack
sizes and denote them LAINE-x, where x indicates the size of the short stack. The ray
tracer uses a bounding volume hierarchy (BVH), containing axis-aligned bounding
boxes (AABBs), optimized using surface area heuristic (SAH) for the first 8 depth
levels, and median split along the longest axis of separation for the rest in order to get
a reasonably balanced tree. The different traversal algorithms use exactly the same
BVH. The implicit traversal algorithms, IMPLICIT-A/B, will, however, move all nodes
to their predetermined memory location, including leaving gaps for unused nodes.
Note that while IMPLICIT-A/B and SPARSE will visit exactly the same sequence of
nodes as STACK, HAPALA will not, due to its need for a simple traversal-order heuris-
tic. While the other algorithms will start with the closest child node, HAPALA will
base its order on the ray direction along the split axis of a node. Although LAINE-x
uses the same traversal order as STACK, it performs restarts from the root node. In
the test setup, we used the CHESS scene shown in Figure 1 rendered at a resolution
of 800× 300 pixels and the HAIRBALL scene shown in Figure 4 rendered at a reso-
lution of 512× 512 pixels. Both scenes use 16 eye rays and 256 ambient occlusion
(AO) rays per pixel. The times required to render the scenes for the different algo-
rithms are shown in Table 1. A more detailed performance break-down is shown in
Figure 5.1

It is clear that our stackless algorithms are very competitive in terms of perfor-
mance while maintaining a small traversal state. This is true for both the simpler
CHESS scene, containing 64 k triangles, as well as the more complex HAIRBALL scene
containing 2.8 M triangles. For the CHESS scene, IMPLICIT-B performs best of our
algorithms and is only outperformed by a full stack (STACK) or a longer short stack
(LAINE-8), while using a fraction of the memory for its traversal state. In HAIRBALL,
SPARSE is faster than IMPLICIT-B, even though it backtracks using parent pointers.
One explanation for this is the padding of the implicit BVH; the extra pages cre-
ates more cache misses in the translation lookaside buffer. IMPLICIT-B is consistently
faster than IMPLICIT-A due to a lower traversal cost. LAINE-x gets worst performance
for x = 0 in both test scenes due to frequent restarts. As the short stack increases in
size, the performance approaches STACK at the cost of a larger traversal state. From
Figure 5, it is clear that even LAINE-0 has a larger traversal state than the other stack-

1The intersection and traversal ratios have been measured by prohibiting the compiler from inlining
the intersection tests, and sampling using a profiler (Instruments 4.5 Time Profiler). The ratios are thus
based on a slightly different workload.

47

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

less algorithms. The performance of HAPALA is at the lower end of the performance
spectrum in our tests.

5. Conclusion and Future Work

We have presented stackless traversal algorithms for both implicit binary trees and
sparse binary trees with parent pointers. These algorithms use efficient bit manipula-
tion and have low computational overhead. At the same time, they support dynamic
descent direction without having to re-evaluate sibling order or restarting. Our al-
gorithm for sparse trees with parent pointers has been shown to perform well while
requiring only a minimal traversal state of two variables. Of our two algorithms for
implicit trees, Algorithm 3 is performs best in our tests and should generally be pre-
ferred. A possible exception would be if the direction bit mask maintained by Algo-
rithm 2 is useful for other purposes.

In the future, we would like to investigate more uses for implicit binary trees,
e.g., solving mathematical optimization problems where each node can be seen as
an interval over an objective function. As a concrete example, our implicit traversal
algorithm can be used to find the closest point on a curve evaluated using interval
arithmetic. Another promising avenue for future work is investigating how stack-
less traversal algorithms can be employed by specialized ray-tracing hardware. They
can potentially be very useful for dynamic ray reordering during traversal in order to
increase memory locality.

Supplemental Materials

The C++ source for the ray tracer used in Section 4, as well as for the implemented
algorithms, is available under MIT license. The given algorithms are implemented in
[name]accelerator.cpp. The main program, found in main.cpp, will parse
the first command-line argument for the algorithm to use, load the provided mesh
battlefield.obj, build a bounding volume hierarchy, ray trace an image with
ambient occlusion shading, and save the result to image.ppm. The build system is
comprised of a simple make file suitable for Mac OS X or Linux with make and g++
installed. It is also possible to compile the code on Windows using Visual Studio by
creating a empty command-line C++ project and adding all source files to it.

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and suggestions.
The HAIRBALL model is courtesy of Samuli Laine. Tomas Akenine-Möller is a Royal Swedish
Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallen-
berg Foundation.

48

http://jcgt.org

Journal of Computer Graphics Techniques
Dynamic Stackless Binary Tree Traversal

Vol. 2, No. 1, 2013
http://jcgt.org

References

HAPALA, M., DAVIDOVIC, T., WALD, I., HAVRAN, V., AND SLUSALLEK, P. 2011. Effi-
cient Stack-less BVH Traversal for Ray Tracing. In Proceedings 27th Spring Conference
on Computer Graphics (SCCG) 2011, ACM, New York, NY, 29–34. 39, 45, 47

HUGHES, D. M., AND LIM, I. S. 2009. Kd-Jump: A Path-Preserving Stackless Traversal for
Faster Isosurface Raytracing on GPUs. IEEE Transactions on Visualization and Computer
Graphics, 15, 6, 1555–1562. 39

KNOLL, A., HIJAZI, Y., KENSLER, A., SCHOTT, M., HANSEN, C., AND HAGEN, H. 2009.
Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic. Com-
puter Graphics Forum, 28, 1, 26–40. 41

LAINE, S. 2010. Restart Trail for Stackless BVH Traversal. In High Performance Graphics
2010, Eurographics Associaton, Aire-la-Ville, Switzerland, 107–111. 39, 45, 47

WHITTED, T. 1980. An Improved Illumination Model for Shaded Display. Communications
of the ACM, 23, 6, 343–349. 38

Author Contact Information
Rasmus Barringer
Lund University
Ole Römers väg 3
223 63 Lund, Sweden
rasmus@cs.lth.se

Tomas Akenine-Möller
Lund University and Intel Corporation
Ole Römers väg 3
223 63 Lund, Sweden
tam@cs.lth.se

Barringer and Akenine-Möller, Dynamic Stackless Binary Tree Traversal, Journal of Com-
puter Graphics Techniques (JCGT), vol. 2, no. 1, 38–49, 2013
http://jcgt.org/published/0002/01/03/

Received: 2012-10-10
Recommended: 2013-02-12 Corresponding Editor: Jaakko Lehtinen
Published: 2013-03-18 Editor-in-Chief: Morgan McGuire

c© 2013 Barringer and Akenine-Möller (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

49

http://jcgt.org
mailto:rasmus@cs.lth.se
mailto:tam@cs.lth.se
http://jcgt.org/published/0002/01/03/
http://creativecommons.org/licenses/by-nd/3.0/

