
Journal of Computer Graphics Techniques Vol. 3, No. 1, 2014 http://jcgt.org

Multi-Hit Ray Traversal

Christiaan Gribble
Applied Technology Operation

SURVICE Engineering

Alexis Naveros
Applied Technology Operation

SURVICE Engineering
Ethan Kerzner
SCI Institute

University of Utah

Figure 1. Three categories of ray traversal. First-hit traversal and any-hit traversal are well-
known and often-used ray traversal algorithms in computer graphics applications for effects
like visibility (left) and ambient occlusion (center). We introduce multi-hit traversal as the
third major category of ray traversal that returns the N closest primitives ordered by point of
intersection (for N ≥ 1). Multi-hit ray traversal is useful in a number of computer graphics and
physics-based simulation applications, including optical transparency and ballistic penetration
simulation (right).

Abstract

Multi-hit ray traversal is a class of ray traversal algorithms that finds one or more, and
possibly all, primitives intersected by a ray ordered by point of intersection. Multi-
hit traversal generalizes traditional first-hit ray traversal and is useful in computer
graphics and physics-based simulation. We introduce an efficient algorithm for or-
dered multi-hit ray traversal, investigate its performance in a GPU ray tracer, and
demonstrate two problems easily solved with our algorithm.

1. Introduction

Ray casting has been used to solve the visibility problem in computer graphics since
its introduction to the field some 45 years ago. Such first-hit traversal returns in-

1 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

formation regarding the nearest primitive intersected by a ray, as shown in the left
panel of Figure 1. When applied recursively, first-hit traversal can also be used to
incorporate visual effects such as reflection, refraction, and other forms of indirect
illumination. As a result, most ray tracing engines are heavily optimized for first-hit
performance.

A second class of ray traversal, any-hit traversal, has also received some atten-
tion. With any-hit traversal, the intersection query is not constrained to return the
nearest primitive, but simply whether or not a ray intersects any primitive within a
specified interval. Any-hit traversal is particularly useful for effects such as shadows
and ambient occlusion, as shown in the center panel of Figure 1.

A third class of traversal, multi-hit ray traversal, has received far less attention. In
this case, the intersection query returns information concerning the N closest primi-
tives intersected by a ray. We observe that multi-hit traversal generalizes both first-
hit traversal (where N = 1) and all-hit traversal, a scheme in which ray queries return
information concerning every intersected primitive (where N =∞), while accommo-
dating arbitrary values of N between these extremes.

Multi-hit traversal is useful in a number of computer graphics applications. For
example, fast and accurate rendering of transparent objects is an open problem in
computer graphics. Current raster-based solutions impose expensive fragment sorting
on the GPU [Maule et al. 2011]. Furthermore, these techniques must be extended
to render coplanar objects correctly [Vasilakis and Fudos 2012]. Ray-traced trans-
parency has also received some attention. For example, Stephens et al. [2006] use
transparent rendering to enhance spatial context when inspecting large engineering
CAD models in a ray-based visualization system. Similarly, Ize and Hansen [2011]
consider attenuated occlusion, in which case a valid ray/primitive intersection does
not necessarily terminate traversal. While these works feature ray-traced transparency,
they do not provide either algorithm details or performance metrics, nor do they ad-
dress the problem of coplanar objects. Our multi-hit traversal algorithm provides a
straightforward means to implement high-performance transparent rendering while
handling overlapping coplanar objects correctly.

Importantly, multi-hit traversal can also be used in a wide variety of physics-based
simulations, or so-called non-optical rendering, as shown in the right panel of Fig-
ure 1. In fact, domains such as ballistic penetration, radio frequency propagation,
and thermal radiative transport, among others, motivate this work. In these domains,
the interesting phenomena are governed by equations similar to the Beer-Lambert
Law, and so require ray/primitive intervals, not just intersection points: these sim-
ulations are similar to rendering scenes in which all objects behave as participating
media.

An enticing solution with first-hit traversal is to simply “continue” tracing with a
new ray using the recently-generated hit point, adjusted by a small ε term, as its origin.

2

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

Figure 2. The problem of overlapping coplanar triangles. These images depict rays along
which two or more overlapping coplanar triangles are encountered when rendering three mod-
els: truck (left) and tank (center), which are engineering CAD models used in the physics-
based simulations motivating our work; and conference (right), a scene commonly used in the
computer graphics literature. Here, intensity of the red channel is determined by the number
of coplanar intersections encountered: brighter red indicates more such intersections. (CAD
models courtesy of L. Butler, US Army Research Laboratory.)

However, the physical objects modeled for these simulations tend to have surfaces in
perfect contact with each other: surfaces between objects are modeled explicitly and
are coplanar. The problem of overlapping coplanar triangles is particularly acute in
the engineering CAD models used in simulations motivating this work. For example,
the left and center panels of Figure 2 depict rays along which two or more overlapping
coplanar triangles are encountered when rendering two such models.

However, as shown in the right panel of Figure 2, the problem is not unique to
geometry from engineering CAD: scenes common to the computer graphics literature
exhibit such overlap as well. In fact, the data in Figure 3 show that all models used
in this work—most of which come from the computer graphics literature—exhibit at
least some overlapping coplanar triangles.

Most optical ray tracers do not handle intersections at the shared interface cor-
rectly, as illustrated in Figure 4. If a new ray is traced using a negative ε-offset, inter-
sections may be incorrectly repeated. Similarly, if a new ray is traced using a positive
ε-offset, intersections may be incorrectly missed. In general, there is no mechanism
to reliably and correctly compute multiple intersections for models with overlapping
coplanar facets using traditional first-hit traversal. An accurate and efficient solution
to multi-hit traversal is thus necessary to resolve overlapping coplanar triangles, both
in computer graphics applications and in physics-based simulations.

Moreover, the overhead imposed by the necessary workarounds makes perfor-
mance of a first-hit solution unacceptable for real-time applications. For example,
the impact of re-traversing the acceleration structure—an operation that already dom-
inates many ray tracing applications—simply exacerbates the situation. When com-
bined with the overhead of launching new rays to find additional intersections—as
in GPU-based ray tracing engines—any gains provided by using massively parallel
architectures are quickly and significantly reduced.

3

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

sibe fair truck conf tank sanm pplant % rays 

equality 

epsilon 

equality epsilon
scene # hits # coplanar hits % total # coplanar hits % total
sibe 786432 6237 0.79% 6336 0.81%
fair 576370 104082 18.06% 104316 18.10%
truck 406507 269658 66.34% 275636 67.81%
conf 786432 29715 3.78% 39907 5.07%
tank 317953 151087 47.52% 162558 51.13%
sanm 780664 4376 0.56% 9901 1.27%
pplant 333828 101016 30.26% 112571 33.72%

Figure 3. Overlapping coplanar triangles are a common problem. Though more prevalent
in engineering CAD models, overlapping coplanar triangles are not unique to these models.
Here, the graph depicts the percentage of rays intersecting geometry that also encounter over-
lapping triangles for all scenes depicted in this work. In the equality case (red), a coplanar hit
is counted if the floating-point test for equality (for example, operator== in C++) between
two or more t-values along the ray is true. In the epsilon case (gray), a coplanar hit is counted
if the difference between two or more t-values along the ray is less than a scene-dependent
ε-value.

-ɛ

+ɛ

repeated missed

Figure 4. The problem of “continuing” first-hit ray traversal. Approximating multi-hit traver-
sal with ε-offsets in a first-hit engine is insufficient in the case of fully or partially overlapping
coplanar triangles (left). Intersections may be erroneously repeated (center) or missed entirely
(right), leading to incorrect results.

4

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

In contrast, a system that supports multi-hit traversal as a fundamental operation
alleviates these issues: it avoids inaccurate, incorrect approximations using ε-offsets;
it properly resolves intersections at overlapping coplanar facets; and it generates
additional intersections without re-traversing the acceleration structure or explicitly
launching new rays.

We introduce an efficient multi-hit ray traversal algorithm that returns, in order,
multiple primitives intersected by a ray. We also investigate its performance in a GPU
ray tracer, and demonstrate two problems easily solved with our algorithm.

2. Multi-Hit Ray Traversal

A multi-hit ray traversal algorithm is one that returns information concerning one or
more, and possibly all, primitives intersected by a ray. Multi-hit traversal generalizes
both first-hit and all-hit traversal schemes, though distinguishing among them may be
beneficial for performance (see Section 3). While not strictly required, we assume
multi-hit traversal reports intersections in ray-order, as most applications utilizing
multi-hit results will require such ordering.

Naive multi-hit ray traversal. Algorithm 1 provides pseudocode for a naive multi-
hit traversal algorithm. The algorithm maintains a per-ray data structure to record in-
formation about each intersection and proceeds in two phases. First, the ray iteratively
traverses the acceleration structure, recording information about each intersection in
sorted order (lines 4–10). Second, a per-hit user-level callback is invoked to process
each intersection point once traversal is complete (lines 11–13). The return value
indicates whether or not additional intersections should be processed (lines 12–13).
Any user-level processing required to finalize the trace operation can be performed
after traversal and intersection processing are complete.

This algorithm is simple and effective: it imposes very few constraints on an
actual implementation, it does not assume a particular acceleration structure, and it
allows the user to process as many intersections as desired.

However, this algorithm is potentially very slow: it effectively implements the all-
hit traversal scheme as opportunities for early-exit occur during intersection process-
ing, only after all intersections have been found. All-hit is a particular specialization
of multi-hit traversal and should not be imposed in cases for which users require only
a subset of the intersections. Instead, we seek an efficient multi-hit traversal algorithm
that permits opportunities for early-exit during ray traversal, so that unnecessary op-
erations are avoided when possible.

Buffered multi-hit ray traversal with early-exit. Algorithm 2 provides pseudocode
for just such an algorithm. As before, this version maintains a per-ray data structure
to record information about each intersection. However, rather than allow the list to
grow without bound, an ordered buffer of a fixed size is used.

5

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

1: function TRAVERSE(root, ray)
2: INITIALIZE(hitList)
3: node← root
4: while VALID(node) do
5: if !EMPTY(node) then
6: for triangle in node do
7: if INTERSECT(triangle, ray) then
8: hitData← (t, u, v, tID, ...)
9: INSERT(hitList, hitData)

10: node← NEXT(node)

11: for hitData in hitList do
12: if !USERHIT(ray, hitData) then
13: return

Algorithm 1. Naive multi-hit ray traversal.

1: function TRAVERSE(root, ray)
2: INITIALIZE(hitList)
3: node← root
4: while VALID(node) do
5: if !EMPTY(node) then
6: INITIALIZE(hitMask)
7: repeat
8: repeatNode← FALSE
9: for triangle in node do

10: if !CONTAINS(hitMask, tID) then
11: if INTERSECT(triangle, ray) then
12: hitData← (t, u, v, tID, ...)
13: if FULL(hitList) then
14: repeatNode← TRUE

15: INSERT(hitList, hitData)

16: for hitData in hitList do
17: if !USERHIT(ray, hitData) then
18: return
19: if repeatNode then
20: ADD(hitMask, hitData.tID)

21: until !repeatNode

22: node← NEXT(node)

Algorithm 2. Buffered multi-hit ray traversal.

6

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

In the common case—where the number of primitives, and thus possible intersec-
tions, in a given node is less than the number of buffer entries—the algorithm collects
intersections and dispatches the per-hit callback for each intersection on a per-node
basis (lines 7–15 and 16–20).

Multiple passes handle nodes with more primitives than buffer entries (lines 7–
21). To account for this possibility, the algorithm also maintains a per-primitive flag
indicating whether or not each primitive was intersected in a previous pass (lines 6
and 19–20).

In each pass, all unflagged primitives are tested for intersection, and that informa-
tion is added to the buffer in sorted order as necessary (lines 11–15). If the buffer is
full, each nearer intersection pushes the last entry off the end of the buffer and a flag
is set to indicate another pass is required (lines 13–15). After all primitives have been
tested, the per-hit callback is invoked on the buffered entries (lines 17–18), and the
algorithm either prepares for the next pass (lines 19–21) or continues to the next node
(line 22). Finally, once all nodes have been traversed or all required intersections have
been found, any user-level processing required to finalize the trace operation can then
be performed, as in the naive algorithm.

This algorithm provides an opportunity for early-exit: as before, the per-hit call-
back indicates whether or not additional intersections are desired. For cases in which
they are not, ray traversal—not just intersection processing—ends (line 18). Other-
wise, the primitive is marked as complete (lines 19–20), and processing continues
with the next entry.

To enable early-exit while guaranteeing correctness, we assume an acceleration
structure based on space-partitioning: nodes do not overlap and can therefore be tra-
versed in strict front-to-back order.1 Correctly intersecting a primitive that spans mul-
tiple nodes remains an issue, however. As noted by Ize and Hansen [2011], an ap-
proach similar to mailboxing can be used to mitigate this issue, and primitive splitting
offers another straightforward solution. We avoid multiple intersection as a conse-
quence of our implementation: rays are effectively clipped to the bounds of each leaf
node during traversal, creating a line segment. Such a ray cannot intersect a primi-
tive across multiple nodes, except on boundary conditions that acceleration structure
construction prevents; so, if a ray intersects a primitive, it will do so only within the
bounds of one node.

Thus, in a space-partitioning structure, the buffered algorithm potentially im-
proves performance relative to the naive algorithm:

• by simplifying the data structure used to record intersection information, as it
need not grow without bound; and,

1Acceleration structures based on object-partitioning will work with a modified version of our
buffered multi-hit algorithm; however, these structures impose additional complexity to exploit the early-
exit case, as all overlapping nodes must be resolved to ensure required intersections are computed and
ordered correctly before allowing early-exit.

7

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

• by reducing in-memory storage requirements, as there is no need to retain all
intersections along a ray.

Ultimately, the buffered algorithm leads to better overall performance—even in the
all-hit case, as shown in Section 3.

3. Results

To understand the impact of multi-hit ray traversal as a fundamental operation, we
investigate performance in a GPU ray tracer and demonstrate two problems easily
solved with multi-hit traversal.

3.1. Performance

To evaluate multi-hit performance, we render the five test scenes shown in Figure 5
under several different scenarios using an NVIDIA GTX 690 GPU. For all scenes
except tank, we use the geometry and viewpoints provided by Aila et al. [2009; 2012].

Implementation details. Traversal algorithms are implemented in the open source
GPU ray-tracing engine, Rayforce.2 The engine uses a graph-based spatial index-
ing structure to accelerate ray/primitive intersection operations [Gribble and Naveros
2013] and achieves first-hit performance in the range of 200–800 million rays per
second (Mrps) for the test scenes on the test hardware. Performance is thus commen-
surate with other state-of-the-art, GPU-optimized first-hit ray-tracing systems (for
example, Aila et al. [2009; 2012] and OptiX [Parker et al. 2010]).

The INSERT function used by both the naive (Algorithm 1, line 9) and the buffered
(Algorithm 2, line 15) multi-hit implementations uses insertion sort to order intersec-
tion points along each ray. Though more sophisticated sorting algorithms could be
used, maintaining points in sorted order has very little impact on overall traversal
performance—we opted for simplicity in this case.

sibe
80K tris

fair
174K tris

conf
282K tris

tank
1M tris

sanm
10M tris

Figure 5. Scenes used for performance evaluation. Five scenes of varying geometric and
depth complexity are used to evaluate the performance of multi-hit ray traversal. Observe that
in the tank scene, the first-hit visible surfaces hide significant internal complexity. This model
is representative of real datasets used in ballistic penetration simulations and is, therefore,
particularly useful as a test of multi-hit traversal.

2Rayforce: Exceptional performance through non-traditional means. Source code is available via
http://rayforce.survice.com.

8

http://jcgt.org
http://rayforce.survice.com


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

For naive multi-hit traversal, the USERHIT function (Algorithm 1, line 12) simply
logs intersection information required for shading. To finalize the trace operation,
alpha-blending accumulates per-ray samples and terminates intersection processing
when appropriate; pixel values in the framebuffer are then set accordingly.

In the case of our buffered implementation, USERHIT (Algorithm 2, line 17) accu-
mulates per-ray samples for alpha-blending and indicates whether or not ray traversal
should continue. After traversal, the trace operation is finalized simply by setting
pixel values to the incrementally computed results. Finally, in our buffered imple-
mentation, three entries are used: this size was empirically determined to provide the
highest performance on the test hardware.

Experimental setup. We render a series of 1000 frames at 1024× 768 pixels on
an NVIDIA GeForce GTX 690 and measure the resulting performance. We report
results in terms of millions of intersections per second (Mips). Although millions of
rays per second (Mrps) is a more common metric for ray-traversal performance, in this
context it is less meaningful in an absolute sense: with multi-hit traversal, the number
of intersections per ray is generally greater than one. While scaling Mrps by the
average number of intersections per ray or performing similar manipulations may give
a reasonable indicator of performance, we choose Mips as a direct indicator of multi-
hit performance, even if raw traversal performance is less obvious when compared
to traditional first-hit engines. We note, however, that Mips is equivalent to Mrps
in cases for which only the nearest intersection is required. Thus, multi-hit results
relative to first-hit performance, as in the find-first-intersection tests discussed below,
can be compared directly.

As noted above, shaders use only a simple alpha-blending operation; nevertheless,
all per-frame overhead—GPU kernel launch, ray generation, host/device synchro-
nization, and so forth—is included. For each test, a separate counting pass is used to
accurately determine the total number of intersections computed during rendering.

Find-first-intersection. We first measure the impact of maintaining the internal state
necessitated by our buffered multi-hit algorithm when computing just the nearest in-
tersection. Figure 6 compares a standard first-hit traversal algorithm to our multi-
hit scheme in this case. Multi-hit clearly imposes some overhead—about 30% in
these tests—but it generally performs quite well, even in this specialized find-first-
intersection case.

Find-all-intersections. We next measure the impact of our buffered multi-hit traversal
algorithm when computing all intersections. Figure 7 compares the naive and buffered
algorithms for this find-all-intersections case. As can be seen, our buffered algorithm
outperforms the naive algorithm by about 10% in these tests—the speedup, though
modest, is measurable. This result is very encouraging: we expect to do at least this
well in the find-some-intersections case.

9

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

0 

100 

200 

300 

400 

500 

600 

700 

800 

sibe fair conf tank sanm 

-31.69% 

-30.75% 

Mips 

-29.08% 

-31.76% -30.44% 

first-hit 

buffered multi-hit 

Figure 6. Multi-hit traversal overhead. Here, the graph compares performance (in Mips)
between first-hit traversal and buffered multi-hit traversal when the user requests only the
nearest intersection point. Though multi-hit traversal imposes some overhead to maintain
internal state, performance degrades by only about 30% for our test scenes.

0 

100 

200 

300 

400 

500 

600 

700 

800 

sibe fair conf tank sanm 

+8.07% 

+12.30% 
+11.80% 

Mips 

naive multi-hit 

buffered multi-hit 

+9.74% 

+7.42% 

Figure 7. Naive v. buffered: find-all-intersections. Here, the graph compares performance
(in Mips) of naive multi-hit and buffered multi-hit traversal when the user requests all in-
tersections. Our buffered algorithm outperforms the naive algorithm by about 10% in these
tests.

0 

100 

200 

300 

400 

500 

600 

700 

800 

sibe fair conf tank sanm 

+100.52% 
+80.97% 

+14.95% 

Mips 

naive multi-hit 

buffered multi-hit 

+8.38% 

+15.40% 

Figure 8. Naive v. buffered: find-some-intersections. Here, the graph compares performance
(in Mips) of naive multi-hit and buffered multi-hit traversal when the user requests only the
first five intersections along a ray. Our buffered algorithm outperforms the naive algorithm by
about 44% for the scenes tested.

10

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

Find-some-intersections. Finally, we measure the impact of our buffered multi-
hit traversal algorithm when computing only the first five intersections. Figure 8
shows that buffered multi-hit outperforms the naive algorithm by about 44%, with a
more dramatic impact for models of high geometric complexity.

3.2. Examples

We demonstrate the utility of multi-hit traversal by applying our buffered algorithm
to two important problems: optical transparency in computer graphics and ballistic
penetration simulation in non-optical rendering.

Optical transparency. Fast and accurate transparency is an open problem in com-
puter graphics. To deal with issues that are difficult to solve in object-space, current
raster-based solutions utilize fragment sorting on the GPU. Unfortunately, this oper-
ation can be more expensive than geometry sorting, and it fails in cases of coplanar
objects. However, efficient multi-hit traversal in a ray-based rendering system pro-
vides an attractive alternative to raster-based transparency. Figure 9 shows the results
of using our buffered multi-hit implementation to render a model with coplanar ge-
ometry using alpha-blending. This image can be generated at interactive rates using
our implementation on an NVIDIA GTX 690.

Figure 9. Optical transparency. Direct support for multi-hit traversal permits fast and accurate
transparent rendering, even in cases of coplanar objects. Here, multi-hit traversal is used to
render the power plant model, in which about one-third of rays intersecting geometry also
encounter overlapping coplanar facets. (Model courtesy of M. McGuire, Williams College
and NVIDIA Research.)

11

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

Ballistic penetration simulation. Vulnerability/lethality (V/L) analysis employs bal-
listic penetration simulation to evaluate threat-target interactions and plan live-fire
testing events. In these non-optical rendering scenarios, ray tracing is used to deter-
mine the path and interaction of projectiles and debris with other objects. In a manner
similar to optical transparency, ballistic simulation computes the energy absorbed as
projectiles (rather than photons) pass through objects. Ballistic penetration follows a
type of exponential decay similar to the Beer-Lambert Law; however, the equations
are derived empirically and are typically functions of both material properties and
threat parameters [Butler and Stephens 2007].

Figure 10 shows one simulation generated using our buffered multi-hit imple-
mentation. Here, pixel color is computed by an absorbance function based on object
material and distance traveled. Performance is sufficient to execute the simulation and
produce the corresponding visualization at interactive rates using our implementation
on an NVIDIA GTX 690.

Figure 10. Ballistic penetration simulation. Direct support for multi-hit traversal permits fast
and accurate ballistic penetration simulation for V/L analysis. Here, multi-hit traversal is used
to simulate the impact of a threat against a vehicle target.

4. Discussion

We have introduced an efficient algorithm for ordered multi-hit ray traversal. As
multi-hit traversal generalizes the first-hit scheme, one could imagine implementing

12

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

only multi-hit in a ray-tracing engine; however, as shown in Section 3, a separate
first-hit traversal mechanism provides a clear performance advantage for instances in
which only the nearest intersection is required. Similarly, all-hit specializes multi-
hit ray traversal, but evaluation shows the performance impact of our buffered al-
gorithm outweighs the additional logic it requires, even in the find-all-intersections
case. Therefore, supporting a separate, naive version of the algorithm specific to all-
hit traversal is (probably) not justified.

We have also demonstrated two potential applications of multi-hit ray traversal:
it offers an interesting alternative for optical transparency in computer graphics, and
it could radically transform legacy V/L applications by providing real-time simula-
tion and visualization capabilities. Other possible applications of multi-hit traversal
include:

• Alpha textures. The use of alpha textures implies that, even in first-hit scenarios,
more than one intersection point may be required. In instances when traversal
kernels do not have access to texture data, multi-hit may be of value: ray traver-
sal can easily return several intersection points—for example, the first two or
three such points encountered in the nearest node of an acceleration structure—
for use during shading. We observe that even a first-hit traversal algorithm
must test all primitives in a node to determine the closest intersection; there-
fore, leveraging multi-hit traversal to make several intersection points available
during shading may reduce the overhead imposed by locating the nearest inter-
section on an opaque object in the presence of alpha textures.

• Thin fibers. A similar approach may also improve performance when rendering
thin fibers—for example, hair or fur. Alpha-blending is commonly used in hair
rendering, as light-colored hair is semi-transparent and hair strands are gener-
ally much thinner than pixels are wide. Some recent methods utilize advanced
features of GPUs to determine (possibly approximate) primitive order when
rendering semi-transparent phenomena [Sintorn and Assarsson 2008; Sintorn
and Assarsson 2009; Yu et al. 2012], while others rely on random, sub-pixel
stipple patterns to correctly alpha-blend geometry on average [Enderton et al.
2010]. In contrast, multi-hit traversal computes any number of intersection
points along a ray in sorted order and naturally permits correct alpha-blending
of many fibers. As such, multi-hit may improve performance relative to other
methods for optical transparency when rendering semi-transparent surfaces and
can be easily incorporated into rendering pipelines already utilizing ray tracing
for other visual effects.

• Constructive solid geometry. Constructive solid geometry (CSG) methods model
complex objects by performing set operations over collections of simpler ob-

13

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

left right

L:
R:

L + R:
L & R:
L - R:

Figure 11. Multi-hit ray traversal for CSG modeling. Multi-hit traversal provides a straight-
forward mechanism with which to implement Roth-style CSG, as evaluating set operations
such as union (+), intersection (&), and difference (−), reduces to classification of intersec-
tion points along a ray with respect to solid objects. (Figure after Roth [1982].)

jects. Roth [1982] introduces ray casting as a means to implement CSG model-
ing. As illustrated in Figure 11, evaluating set operations reduces to classifica-
tion of intersection points along a ray with respect to solid objects. Multi-hit ray
traversal is a natural fit in this context, as multiple intersection points along a
ray are required to evaluate these operations correctly.

We are excited to see how these and other problems in rendering can be solved by
applying multi-hit ray traversal.

5. Future Work

We have focused exclusively on multi-hit traversal in which rays do not change di-
rection at points of intersection. Such an algorithm would be particularly useful for
handling dielectric objects in a Whitted-style ray tracer, for example. We plan to im-
plement such an algorithm in the GPU ray-tracing engine used for the performance
evaluation in this work.

Similarly, we have implemented our buffered multi-hit traversal using an acceler-
ation structure based on space-partitioning. We also plan to implement the modifica-
tions necessary to accommodate structures based on object-partitioning in the future.

Acknowledgments

Discussions with several people helped to shape the ideas presented here, including Lee But-
ler (US Army Research Laboratory); Jefferson Amstutz, Mark Butkiewicz, and Scott Shaw
(SURVICE Engineering); and, Carsten Benthin, Ingo Wald, and Sven Woop (Intel Labs).

14

http://jcgt.org


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

Alexis Naveros is chief architect of the Rayforce engine, which has been funded in part by
research grants from the US Office of Naval Research and the US Army Research Laboratory.

Ethan Kerzner is funded in part by the US Army Research Laboratory “Cooperative
Agreement: Applying GPU Computing and Computer Graphics to Engineering Analysis and
Military Applications.”

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of ray traversal on GPUs. In
Proceedings of High Performance Graphics, 2009, ACM, New York, NY, USA, 145–149.
http://doi.acm.org/10.1145/1572769.1572792. 8

AILA, T., LAINE, S., AND KARRAS, T. 2012. Understanding the efficiency of
ray traversal on GPUs – Kepler and Fermi addendum. Tech. Rep. NVR-2012-
02, NVIDIA Research. https://research.nvidia.com/publication/

understanding-efficiency-ray-traversal-gpus-kepler-and-fermi

-addendum. 8

BUTLER, L. A., AND STEPHENS, A. 2007. Bullet ray vision. In 2007 IEEE Symposium on
Interactive Ray Tracing, IEEE, Los Alamitos, CA, 167–170. 12

ENDERTON, E., SINTORN, E., SHIRLEY, P., AND LUEBKE, D. 2010. Stochastic trans-
parency. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, ACM, New York, NY, I3D ’10, 157–164. http://doi.acm.

org/10.1145/1730804.1730830. 13

GRIBBLE, C., AND NAVEROS, A., 2013. Ray tracing with a graph. Unpublished manuscript.
8

IZE, T., AND HANSEN, C. 2011. RTSAH traversal order for occlusion rays. Computer
Graphics Forum 30, 2, 297–305. http://onlinelibrary.wiley.com/doi/10.
1111/j.1467-8659.2011.01861.x/abstract. 2, 7

MAULE, M., COMBA, J. L., TORCHELSEN, R. P., AND BASTOS, R. 2011. A survey of
raster-based transparency techniques. Computers & Graphics 35, 1023–1034. 2

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, K., HOBEROCK, J., LUEBKE, D.,
MCALLISTER, D., MCGRUIRE, M., MORLEY, K., ROBISON, A., AND STICH, M. 2010.
OptiX: a general purpose ray tracing engine. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH 2010) 29, 4, 66:1–66:13. http://doi.acm.org/10.1145/

1778765.1778803. 8

ROTH, S. D. 1982. Ray casting for modeling solids. Computer Graphics and Image Pro-
cessing 18, 2 (February), 109–144. 14

SINTORN, E., AND ASSARSSON, U. 2008. Real-time approximate sorting for self shadowing
and transparency in hair rendering. In Proceedings of the 2008 Symposium on Interactive
3D Graphics and Games, ACM, New York, NY, I3D ’08, 157–162. http://doi.acm.
org/10.1145/1342250.1342275. 13

15

http://jcgt.org
http://doi.acm.org/10.1145/1572769.1572792
https://research.nvidia.com/publication/understanding-efficiency-ray-traversal-gpus-kepler-and-fermi
https://research.nvidia.com/publication/understanding-efficiency-ray-traversal-gpus-kepler-and-fermi
-addendum
http://doi.acm.org/10.1145/1730804.1730830
http://doi.acm.org/10.1145/1730804.1730830
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.01861.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.01861.x/abstract
http://doi.acm.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/1778765.1778803
http://doi.acm.org/10.1145/1342250.1342275
http://doi.acm.org/10.1145/1342250.1342275


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

SINTORN, E., AND ASSARSSON, U. 2009. Hair self shadowing and transparency depth
ordering using occupancy maps. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, ACM, New York, NY, USA, I3D ’09, 67–74. http://doi.acm.
org/10.1145/1507149.1507160. 13

STEPHENS, A., BOULOS, S., BIGLER, J., WALD, I., AND PARKER, S. G. 2006. An
application of scalable massive model interaction using shared memory systems. In
Proceedings of the 6th Eurographics Conference on Parallel Graphics and Visualiza-
tion, Eurographics Association, Aire-la-Ville, Switzerland, EG PGV’06, 19–27. http:

//dx.doi.org/10.2312/EGPGV/EGPGV06/019-026. 2

VASILAKIS, A. A., AND FUDOS, I. 2012. Depth-fighting aware methods for multifragment
rendering. IEEE Transactions on Visualization and Computer Graphics 19, 6, 967–977.
http://dx.doi.org/10.1109/TVCG.2012.300. 2

YU, X., YANG, J. C., HENSLEY, J., HARADA, T., AND YU, J. 2012. A framework for
rendering complex scattering effects on hair. In Proceedings of the ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, ACM, New York, NY, I3D ’12, 111–118.
http://doi.acm.org/10.1145/2159616.2159635. 13

Author Contact Information
Christiaan Gribble
Applied Technology Operation
SURVICE Engineering Company
6014 Penn Avenue
Pittsburgh, PA 15206
christiaan.gribble@survice.com
http://www.rtvtk.org/~cgribble/

Alexis Naveros
Applied Technology Operation
SURVICE Engineering Company
1362 Brass Mill Road, Suite 5
Belcamp, MD 21017
alexis.naveros@suvice.com

Ethan Kerzner
SCI Institute
University of Utah
72 Central Campus Drive
Salt Lake City, UT 84112
kerzner@sci.utah.edu

Christiaan Gribble, Alexis Naveros, Ethan Kerzner, Multi-Hit Ray Traversal, Journal of Com-
puter Graphics Techniques (JCGT), vol. 3, no. 1, 1–17, 2014
http://jcgt.org/published/0001/02/01/

Received: 2013-08-26
Recommended: 2013-11-20 Corresponding Editor: Matt Pharr
Published: 2014-02-07 Editor-in-Chief: Morgan McGuire

16

http://jcgt.org
http://doi.acm.org/10.1145/1507149.1507160
http://doi.acm.org/10.1145/1507149.1507160
http://dx.doi.org/10.2312/EGPGV/EGPGV06/019-026
http://dx.doi.org/10.2312/EGPGV/EGPGV06/019-026
http://dx.doi.org/10.1109/TVCG.2012.300
http://doi.acm.org/10.1145/2159616.2159635
mailto:christiaan.gribble@survice.com
http://www.rtvtk.org/~cgribble
mailto:alexis.naveros@survice.com
mailto:kerzner@sci.utah.edu
http://jcgt.org/published/0001/02/01/


Journal of Computer Graphics Techniques
Multi-Hit Ray Traversal

Vol. 3, No. 1, 2014
http://jcgt.org

c© 2014 Christiaan Gribble, Alexis Naveros, Ethan Kerzner (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

17

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

