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Figure 1. A 180◦ panorama of terrain generated using elevation data from Utah.

Abstract

The standard way to procedurally generate random terrain for video games and other applica-
tions is to post-process the output of a fast noise generator such as Perlin noise. Tuning the
post-processing to achieve particular types of terrain requires game designers to be reason-
ably well-trained in mathematics. A well-known variant of Perlin noise called value noise is
used in a process accessible to designers trained in geography to generate geotypical terrain
based on elevation statistics drawn from widely available sources such as the United States
Geographical Service. A step-by-step process for downloading and creating terrain from real-
world USGS elevation data is described, and an implementation in C++ is given.

1. Introduction

Terrain generation is an example of what is known in the game industry as procedu-
ral content generation. Procedural content generation needs to have three important
properties. First, it needs to be fast, meaning that it has to use only a fraction of the
computing power on a current-generation computer. Second, it needs to be both ran-
dom and structured so that it creates content that is varied and interesting. Third, it
needs to be controllable in a natural and intuitive way.

As noted in the excellent survey paper by Smelik et al. [2009], procedural terrain
generation is often based on fractal noise generators such as Perlin noise [Perlin 1985;
Perlin 2002] (for more details see, for example, the book by Ebert et al. [2003]). While
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Perlin noise is fast, it lacks somewhat in that it tends to create terrain that is uniform
and boring, often requiring significant post-processing to add interesting features. It
is also not intuitive to control for a design professional who is not mathematically
inclined.

We describe how to use a variant of Perlin noise called value noise for the pro-
cedural generation of terrain data for use in a video game or terrain simulator. We
then perform a spatial analysis of elevation data for the state of Utah from the United
States Geological Survey and show how the results of such an analysis can be easily
integrated with value noise to generate procedural terrain that shares height charac-
teristics with real terrain.

The remainder of this paper is divided into three sections. Section 2 contains
an overview of value noise and describes how to use it to generate random terrain.
Section 3 describes the results of a spatial analysis of GIS data from some interesting
terrain. Section 4 shows how to use the GIS data from Section 3 in the value noise
algorithm.

2. Procedural Terrain from Value Noise

Perlin noise was developed by Ken Perlin [1985; 2002] as a source of smooth random
noise because generic random noise is too harsh for many applications, such as pro-
cedural texture generation. Formally, the 2D Perlin noise function h : R2→ [−1,1].
The Perlin noise algorithm starts by computing random gradient vectors at integer
grid points. To find a noise value y at (x,z) ∈ R2, it first finds the four closest inte-

Figure 2. Perlin noise interpolates and smooths between random gradients at grid points.
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Figure 3. Terrain generated from Perlin noise.

ger points (bxc,bzc), (bxc+ 1,bzc), (bxc,bzc+ 1), and (bxc+ 1,bzc+ 1), where for
all x ∈ R+, bxc ∈ Z+ is the smallest integer that does not exceed x. It then interpo-
lates and smooths between those four gradients to get the noise value y as shown in
Figure 2.

The algorithm then adds noise values at various frequencies and amplitudes in a
process called 1/ f noise or turbulence. Noise at a single frequency is called an octave.
The amplitude is multiplied by the persistence (usually 0.5) from one octave to the
next. The frequency is multiplied by the lacunarity (usually 2.0) from one octave to
the next.

For the purposes of terrain generation, y = h(x,z) is multiplied by a scale value
and used as the height of the terrain at horizontal point (x,z) for each point (x,z) in
the 2D Cartesian plane. Figure 3 shows an example of terrain generated from Perlin
noise using eight octaves, persistence 0.5, and lacunarity 2.0. (All terrain images in
this paper were rendered using Terragen1 from a DEM file.) Notice how the terrain
in Figure 3 looks uniform and nondescript; there is an absence of distinctive terrain
features that can be used for navigation. Part of the problem is the height distribution
of Perlin noise (see Figure 4).

The well-known value noise algorithm differs from the Perlin noise algorithm in
that it chooses a random height at each grid point and interpolates between those
instead of between gradients, as shown in Figure 5. Unlike Perlin Noise, value noise
is not constrained to be zero at grid points. Terrain generated with Perlin noise usually

1Available for free download from http://planetside.co.uk/products/terragen3.
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Figure 4. Perlin noise height distribution with persistence 0.5, lacunarity 2.0, and (from
bottom to top ) 1–8 octaves.

consists of ranges of mountains or hills separated by valleys. Hitting zero elevation
means that there are no large valleys. Smaller valleys don’t join, they are blocked by
intermediate hills. Figure 6 shows some terrain generated from value noise which,
like the terrain generated from Perlin noise shown in Figure 3, looks uniform and
nondescript.

Value noise uses four fewer floating-point multiplications than Perlin noise per
point per octave. This leads to a small speedup. Figure 7 shows the running time in
milliseconds for both value noise and Perlin noise computing 2D noise values for 108

random points, with persistence 0.5, lacunarity 2.0 and 1–16 octaves on an Intel R©
CoreTM i7-3930K CPU @ 3.2 GHz. Figure 8 shows that this is faster by 10–18%. In
comparison, simplex noise [Perlin 2002] is reputed to be about 10% faster than Perlin
noise [Perlin 1985], although the advantage can only be seen in higher dimensions.

Figure 5. Value noise interpolates and smooths between random heights at grid points.
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Figure 6. Terrain generated from value noise.

Figure 7. Running time for Perlin noise and value noise measured in milliseconds for com-
puting 2D noise values for 108 random points, with persistence 0.5, lacunarity 2.0 and 1–16
octaves.

Figure 8. Percentage speedup for value noise computing 2D noise values for 108 random
points, with persistence 0.5, lacunarity 2.0 and 1–16 octaves.
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3. Analysis of Geospatial Data

Spatial dependency is the term used by geographers for the observation that the el-
evation of terrain at any point (x,z) ∈ R2 tends, in general, to be correlated to the
elevation of the terrain at points (x+ δx,z+ δz) for the appropriate small values of
δx,δz ∈ R. The commonly accepted wisdom [Berry 2004; Berry 2013] is that terrain
elevation over a geographically contiguous area is usually somewhat, but almost never
exactly normally distributed, and that the variations from a perfect normal distribution
are often things that make the terrain “interesting”.

Common deviations from a normal distribution include noise, which can be but is
not necessarily from measurement error, spikes, which can sometimes be correlated
with localized geographic features such as mesas, escarpments or whoodoos, skew-
ness, which is a measure of asymmetry about the mean, and kurtosis, which measures
the second derivative at the highest point(s) of the distribution, that is, whether the
bell-curve is pointed or flat.

A casual examination of elevation data from the United States Geographical Ser-
vice (USGS) reveals that on a local scale (say tens of square kilometers) elevation
often appears to have an underlying normal distribution, but on a larger scale (say
hundreds of square kilometers), the sources of abnormality tend to predominate. This
is consistent with Tobler’s First Law of Geography [Tobler 1970], which states that
“All things are related, but nearby things are more related than distant things”.

For example, Figure 9 (taken from the Utah Automated Geographic Reference
Center, which serves elevation data2 for the state of Utah from the United States

Figure 9. Map of a 400 square kilometer region of Utah from the UAGRC (left) with its height
distribution (right). The horizontal axis of the height distribution shows elevation ranges, and
the vertical axis shows the number of data points within each range.

2Available for free download from http://gis.utah.gov/data/.
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Figure 10. Height distributions of the sixteen 25 square kilometer subgrids of the area shown
in Figure 9. The horizontal axes shows elevation ranges, and the vertical axes show the number
of data points within each range.

Geological Survey correlated with digital satellite images) shows a map of approxi-
mately 400 square kilometers and its corresponding height distribution. The distribu-
tion is clearly only vaguely bell-shaped, and the dominant feature is a large spike on
the left of the distribution. Figure 10 shows the height distributions for all of the 25
square kilometer subgrids from Figure 9, which similarly show various amounts of
normalness, noise, spikes, skewness, and kurtosis.

4. Terrain Design Using USGS Elevation Data

A designer wishing to generate a a particular type of terrain need only carry out the
following procedure.

1. Identify a geographical location whose height distribution suits the needs of the
design. For example, the designer might pick Utah for mountainous terrain.
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Figure 11. Map of an interesting region of Utah from the UAGRC (left) with its height
distribution (right). The horizontal axis of the height distribution shows elevation ranges, and
the vertical axis shows the number of data points within each range.

2. Download elevation data for the area chosen in Step 1 and extract a part of it
that has interesting characteristics. For example, the designer might pick the
1.34 square kilometers of real terrain from Utah shown in Figure 11 (left).

3. Extract a height distribution from the elevation data obtained in Step 2. For
example, Figure 11 (right) shows the height distribution for the terrain shown
in Figure 11 (left) in bands of 10 m elevation.

4. Scale the elevations from Step 3 to the range [−1,1]. Suppose that the data
has elevation values for p points, and there are s elevation bands. Choose a
small number (say s/10) of scaled bands for the height distribution table. For
each band [α,β), let ` be the number of points whose scaled height h lies in
the range α ≤ h < β (if β = 1 then let the last inequality be “≤” instead of
“<”). Let n = round(s`/p) where for all x ∈ R, round(x) ∈ Z is the closest
integer to x. Then n is the number of values in the height distribution table to
be chosen from the range [α,β). For example, each row of Table 1 shows the
corresponding values of α, β, and n. The resulting height distribution table will
be a quantized version of the original distribution.

5. Generate terrain using the table from Step 4.

6. Check samples of the terrain from Step 5 for suitability.

Steps 1 and 6 are the only ones that require the creativity of a design professional.
Steps 2–5 can be automated or carried out by an assistant.

For example, Figure 12 shows some terrain generated directly from GIS data for
the area of Utah shown in Figure 11, while Figures 1 and 13 show some random
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Figure 12. Terrain generated directly from GIS data for the area of Utah shown in Figure 11.

Figure 13. Terrain generated using value noise with a height distribution from the area of
Utah shown in Figure 11.
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From To Count From To Count
-1.00 -0.91 8 0.04 0.13 17
-0.91 -0.83 10 0.13 0.22 14
-0.83 -0.74 14 0.22 0.30 13
-0.74 -0.65 21 0.30 0.39 11
-0.65 -0.57 19 0.39 0.48 10
-0.57 -0.48 17 0.48 0.57 7
-0.48 -0.39 15 0.57 0.65 4
-0.39 -0.30 15 0.65 0.74 3
-0.30 -0.22 15 0.74 0.83 2
-0.22 -0.13 13 0.83 0.91 1
-0.13 -0.04 11 0.91 1.00 1
-0.04 0.04 15

Table 1. The height distribution table corresponding to the terrain in Figure 11. The entries in
the third column are the number of values randomly chosen from the range indicated by the
entries in the first two columns. Note that the entries in the “Count” columns sum to 256.

terrain generated using value noise with a displacement height distribution obtained
from GIS data for the same area of Utah. Figures 14 shows four examples of terrain
generated from other height distributions.

Figure 14. Terrain generated from four different height distributions.
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5. Conclusion

We have described how value noise can be used in terrain generation to reduce the
need for post-processing to achieve thematic terrain style. Our method allows intuitive
designer control of the generated terrain using height distributions obtained from a
spatial analysis of GIS data. Remaining open problems include the identification
of interesting height distributions from world-wide GIS data and the design of an
algorithm for artificially generating plausible height distributions that appear similar
to those found in the real world, such as those shown in Figure 10.
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Index of Supplemental Materials

The supplementary material consists of a zip file containing four folders.

1. Data. This folder contains a DEM file 12SVH200800.asc and the corresponding
satellite image downloaded from the Utah Automated Geographic Reference Center.
This is used as a running example in the code.

2. Analyze. This folder contains a Visual Studio 2012 Solution and C++ source code
that, when compiled and executed, reads 12SVH200800.asc from the Data folder
and outputs two text files, output.txt which contains data for a histogram, and
code.txt which contains a code snippet to be added to the Designer Worlds gener-
ator. There is also an Excel spreadsheet data.xlsx containing a histogram drawn
from the data in output.txt.
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3. Generate. This folder contains a Visual Studio 2012 Solution and C++ source code for
the Designer Worlds Generator. The code from code.txt in the Analyze folder has
been pasted into the appropriate place in main.cpp. Each time this code is executed
it will output a DEM file for a piece of random terrain similar to the original DEM
file 12SVH200800.asc in the Data folder. It also contains a generated DEM file
1293054609.asc.

4. View. This folder contains a Terragen Project File that will render the terrain de-
scribed by 1293054609.asc in the Generate folder. There is also an image file
1293054609.jpg generated by running Terragen on that Project file.
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