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(a) 16-bit oct16P in RG8 (b) 24-bit snorm8⇥3 in RGB8 (c) 24-bit oct24P in RGB8

Figure 1. Impact on mirror and glossy reflections of selected representations for geome-
try buffer normal storage. (a) The 16-bit oct16P method gives 8⇥ compression of typical
float32⇥3 normals, albeit with visible error. (b) The common, naive 24-bit snorm8⇥3 repre-
sentation takes more space without proportional improvement. (c) The 24-bit oct24P repre-
sentation greatly improves precision at the same storage cost as the naive approach.

Abstract

The bandwidth cost and memory footprint of vector buffers are limiting factors for GPU ren-
dering in many applications. This article surveys time- and space-efficient representations for
the important case of non-register, in-core, statistically independent unit vectors, with empha-
sis on GPU encoding and decoding. These representations are appropriate for unit vectors in a
geometry buffer or attribute stream—where no correlation between adjacent vectors is easily
available—or for those in a normal map where quality higher than that of DXN is required.
We do not address out-of-core and register storage vectors because they favor minimum-space
and maximum-speed alternatives, respectively.

We evaluate precision and its qualitative impact across these techniques and give CPU
reference implementations. For those methods with good quality and reasonable performance,
we provide optimized GLSL GPU implementations of encoding and decoding.
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1. Introduction

Unit vectors are pervasive in 3D computer graphics. Some common applications are
representing surface normals, tangent vectors, and light propagation directions. The
time and space performance of many graphics algorithms, therefore, depend on the
speed of reading, processing, and writing these vectors. Specifically, the bandwidth
required to access attribute streams and geometry buffers (a.k.a. G-buffers) as well
as the memory footprint of that data are limiting factors for GPU rendering in many
applications.

Recent presentations by game developers demonstrate the significance of mini-
mizing bandwidth and memory footprint for real-time applications on modern GPUs.
Those developers have shown a willingness to adopt relatively complex encoding and
decoding schemes and accept visible errors from loss of precision [Kaplanyan 2010].
For example, the video game Destiny is currently in production at Bungie. It packs
all attributes for shading a pixel—position, surface normal, material flags, and full
anisotropic BSDF parameters into 96 bits—which is the footprint of just three scalar
float32 values [Tatarchuk et al. 2013].

In a modern graphics pipeline, 3D vectors reside either in high-bandwidth reg-
isters, medium-bandwidth DRAM memory buffers (and on-chip caches of them), or
some form of relatively low-bandwidth storage, such as local or network disks or
SSDs. The high- and low-bandwidth cases encourage minimizing decode time and
storage space, respectively. Registers encourage a trivial, compute-friendly storage
format for unit vectors that is frequently 96 bits wide: three 32-bit floating-point
numbers representing x-, y-, and z-coordinates. We denote this format “float32⇥3.” It
exclusively favors computation speed over space. Disks and networks have low band-
width compared to on-chip communication pathways. So, those media encourage the
most space-efficient format even at the expense of significant computation for encod-
ing and decoding. General geometry compression in the disk and network context
was well-explored by Deering’s seminal paper [1995] and work that follows it, e.g.,
most recently extended for GPUs by Pool et al. [2012].

For unit vectors in medium-bandwidth DRAM and on-chip caches, a combination
of speed and space requirements introduces interesting tradeoffs. This is the case that
we consider. The bandwidth and latency of accessing in-core memory are orders
of magnitude more favorable than the properties of disk or network, but also orders
of magnitude less favorable than those of register storage. It is therefore desirable
to expend some computation to encode and decode unit vectors between space- and
time-efficient representations, but it is also unacceptable to introduce significant error
or to expend significant amounts of computation in the process.

Specialized compression formats such as DXN/BC5/ATI2/3Dc [ATI 2005] ex-
ploit statistical dependence of spatially local surface normals in a normal map to
reduce bandwidth and storage costs. Compression for normal maps is an industry
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standard practice for real-time applications today. Such formats have limitations, of
course. The error increases with the variance of the normals in a neighborhood, such
formats are often too expensive to encode at runtime, and texture map compression
is not at all appropriate for unit vectors in attribute streams that have no natural 2D
locality.

We survey methods from industry and academia for sets of unit vectors where
no statistical dependence can be assumed between elements. Two examples of cases
in which this is important include the attributes packed in an indexed vertex array
describing geometry, and the surface normals stored in a geometry buffer for deferred
shading [Pranckevičius 2010]. Note that it may also be desirable for encode and
decode costs to be asymmetric. For example, with static geometry in a scene, one is
willing to spend significant offline computation to precompute a space-efficient vertex
normal representation so long as that representation can be decoded to float32⇥3
efficiently at runtime.

For a software developer, the essential parts of this paper are the inline code list-
ings and supplemental code. Those can be copied and employed in GLSL without
further reading. For a hardware designer, the conclusions section may be the most
interesting. The rest of the paper provides a general education on the problem of nu-
meric representation in modern architectures and exhaustive results for unit vectors.
This serves to describe the conditions under which our preferred implementation and
algorithm might change, evaluates much of the prior art (from three different areas:
game developer development presentations, academic compression research, and aca-
demic parameterization research), and hopefully inspires the reader to apply the topics
discussed to other representation problems.

1.1. Formal Problem and Intuition

The goal of the surveyed methods is to represent a unit vector using the fewest bits
at a given, acceptable representation error, or alternatively to minimize representation
error for a fixed bit-width. This is the problem that integer, fixed-point, and floating-
point representations address for intervals of the real line, but extended to points on
the sphere. Representation error is a necessary condition for digital computation in
real-number domains and is pervasive in computer science.

Consider a straightforward representation of points on the unit sphere. A structure
comprising three 32-bit floating scalars (struct { float x, y, z; }) occupies

3 floats / unit vector⇥4 bytes / float⇥8 bits / byte = 96 bits / unit vector.

This representation spans the full 3D real space, R3, distributing precision approxi-
mately exponentially away from the origin until it jumps to infinity. Since almost all
representable points in this representation are not on the unit sphere, almost all 96-bit
patterns are useless for representing unit vectors. Thus, a huge number of patterns
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have been wasted for our purpose, and there is an opportunity to achieve the same set
of representable vectors using fewer bits, or to increase effective precision at the same
number of bits. From this example, it is obvious that one condition for an ideal rep-
resentation format is for every possible bit pattern to represent a unique point on the
sphere. (There are performance reasons—explored in the next section—for why we
might wish to forgo a small number of patterns, but never more than a small constant.)

Spherical coordinates are a natural way to satisfy the requirement that almost
all bit patterns correspond to points on the unit sphere. Indeed, storing two 32-bit
floating-point (or fixed-point) angles for a total of 64 bits / unit vector does dramati-
cally increase representation precision, while simultaneously decreasing storage cost.
Of course, spherical coordinates require some trigonometric operations to convert
back to a Cartesian point for further computation. Those operations themselves in-
troduce error as well as costing time (and power), the kind of tradeoff that we have
already motivated. An ideal format would allow for efficient and accuracy-preserving
compression and decompression.

When considering all 64-bit patterns interpreted as spherical coordinates, note
that the represented unit vectors clump near the poles and are sparse near the equator.
This bias is undesirable in most applications. So, an ideal format would furthermore
distribute representable points uniformly on the sphere to minimize bias and worst-
case representation error.

With these properties in mind, we have several opportunities to capture space,
precision, and efficiency that are presented by the geometry of the sphere. Mappings
between the sphere and the real square in various dimensions can exploit symme-
try [Deering 1995]; for example, positive and negative hemispheres lead to eight re-
flected octants, within an octant all axes have symmetry, and one can even recurse
further if needed. It is tempting to observe that for some applications in graphics
(e.g., camera-space normal vectors) only the hemisphere apparently requires repre-
sentation; however, due to perspective, bump mapping, and vertex normal interpola-
tion many of these applications actually require a full sphere in practice. Furthermore,
reduction to a hemisphere would only save a single bit.

For the specific representations surveyed in this paper, we make the assumption
that one is encoding a Cartesian float32⇥3 vector into a compressed representation
or decoding such a representation into float32⇥3. We measure round-trip encode and
decode error from a float32⇥3 input, since that is the additional precision loss of
including some encoding in a larger program. However, we note that float32⇥3 is
already an approximation of a real vector, so it is possible that for particular applica-
tions the compressed representation may actually be more accurate than the uncom-
pressed one. We further consider the impact of higher-precision intermediate values
during the encoding and decoding step, but observe that the impact on precision is
slight.
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The code listings in the paper are written with the assumption that GPU fixed-
function hardware is available to map between scalar float32 format and various scalar
representations discussed in the next section. We believe that this assumption holds
for all current GPUs, including mobile parts, for typical power-of-two bit sizes (8, 16,
32) as well as some exotic GPU formats (such as 10- and 11-bit float employed by
GL_R11G11B10F, 14-bit fixed point from GL_RGB9_E5, and 10-bit unorm from
GL_RGB10). We also evaluate a hypothetical R11G11B10 snorm format, which mir-
rors the per-channel bit allowance on the existing GL_R11G11B10F format.

Some unit vector representations rely on storage formats that are not natively sup-
ported on CPUs or GPUs, such as snorm12. For storage, however, one can pack
anything into the bits of an unsigned integer. Thus, arbitrary sizes are possible at the
cost of some extra decoding work. For example, a 12-bit unit vector can be packed
with four bits of material flags into a 16-bit unsigned integer texture format. DirectX
9-class GPUs have limited or no integer support, so pure floating-point arithmetic is
preferred over integer operations for this bit packing. Even the newest GPUs have
more ALU support for floating point than integer, so the all-floating point implemen-
tation is also a performance optimization on those machines. Obviously, this could
change on future architectures or ones that can overlap integer and floating-point op-
erations, and it is unfortunate that the all-floating point implementation obfuscates
some code.

1.2. Scalar Unit Real Representations

uintb: An unsigned integer with b bits, capable of exactly representing integers on
[0,2b �1].

fixi. f : Fixed-point representation of an unsigned integer scaled by a constant negative
power of two that represents uniformly distributed values on [0,2i�1+(2 f �1) ·2� f ]

using b = f + i bits total. (There are various notations for this in the literature, some
of which use the total bit size instead of the number of integer bits before the decimal
place in the name). Fixed point is never used by any of the representations surveyed
in this paper, because it cannot exactly represent 1.0 without wasting an entire bit on
the one’s place.

floatb: The IEEE-754/854 floating-point representation with b bits total; sign, man-
tissa, and exponent bits vary with b according to the specification.

unormb: Unsigned normalized fixed point represents the range [0, 1], with exact rep-
resentations for both endpoints. Reinterpreting the bits of a unormb-encoded number
as an unsigned integer i, the encoding and decoding equations for the real number r
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are [Kessenich 2011, 124]:

i = round(clamp(r,0,1) · (2b �1)), (1)

r =
i

2b �1
. (2)

Most GPUs implement these transformations in fixed-function hardware for convert-
ing to and from floating point during texture- or vertex-attribute fetch and frame buffer
write, so there is no observable runtime cost for reading and writing such values.

scaled and biased unormb: One can exploit unorm representations to store signed
values by biasing and scaling them. To encode a real number �1  r  1 in this for-
mat, first remap it to unsigned 0  1

2(r+1) 1, and then encode as a unorm. This is
used in some legacy systems for encoding vectors in, e.g., RGB8 unorm values. En-
coding and decoding cost one fused multiply-add instruction (MADD, a.k.a. FMUL)
per scalar, but more critically lose unorm’s ability to automatically convert to floating
point in texture hardware. This format cannot exactly represent r = 0.

snormb: Signed normalized fixed point addresses the limitations of scaled-and-biased
unorm. Snorm allows two bit patterns to represent the value -1 so that the number line
shifts and zero is exactly representable:

i = round
⇣

clamp(r,�1,1) · (2b�1 �1)
⌘
,

r = clamp
✓

i
2(b�1)�1

,�1,+1
◆
.

As previously mentioned, GPUs currently implement snorm reading and writing in
fixed-function hardware.

2. 3D Unit Vector Representations

This section gives brief descriptions of unit vector representations. We assign each
a meaningful and short name for use in our evaluation section. For accuracy and
clarity, as well as brevity, those names sometimes differ from the ones under which the
representations were originally introduced to graphics. Note that some of these were
historically introduced as parameterizations of the sphere, not compression methods,
and that some have been overlooked in the scientific literature despite appearing in
game developer presentations.

L2 accuracy of the decoded (x,y,z)-vector can be improved for nearly all repre-
sentations by re-normalizing the vector using at least float32 precision after decoding.
However, that can increase the angular deflection from the represented vector. Thus,
we consider projection of decoded vectors onto the sphere to be an application is-
sue, with the best implementation depending on whether the exact unit length or the
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direction is more important in a given context. We do not include it as part of the
decoding.

float⇥3: Store unit vector (x,y,z) directly in floats. As noted in the introduction, most
bit patterns are wasted because they are not the lowest-error representation of any unit
vector. This also has lower precision near the centers of octants, rather than uniformly
distributing precision over the sphere.

snorm⇥3: Store unit vector (x,y,z) directly in snorms. Most bit patterns are wasted
by this encoding, but it is very fast. Because the length as well as the direction of the
vector will implicitly be quantized by this representation, it is necessary to explicitly
re-normalize the vector after decoding it to a higher-precision representation (e.g.,
snorm8⇥3 ! float32⇥3).

spherical: Store spherical coordinates 0  q  p,�p  f  p, mapped to snorm⇥2
(because a mix of unorm and snorm is not supported by hardware). Note that this
differs from Meyer’s implementation[2012], which uses two unorms of equal length
to encode the vector within a hemisphere and an explicit extra bit for the choice of
hemisphere, throwing away a bit for even-length representations. Uniformly-spaced
spherical coordinates are distributed poorly with clumps at poles, and so the repre-
sentation error is fairly high for large bit counts. Encoding and decoding also require
trigonometric functions, which are expensive on some hardware.

cube: Project onto a cube by dividing by the highest-magnitude component, and
then store the cube-face index and coordinates within it (i.e., the standard cube-map
projection). This is not a particularly desirable encoding, because it is hard to work
with, yet still has high error.

The error arises because points are distributed more densely near where the cube
vertices project onto the sphere. The awkwardness and inefficiency is because encod-
ing which of the six faces was dominant consumes three full bits (leaving two patterns
unused), and packing three bits plus two components into a word wastes another bit
for alignment.

The error of this representation is slightly worse than snorm⇥3 at the same bit
size, yet it requires substantially more computation to operate on, so we do not report
further results on this representation.

warpedcube [ISO/IEC 2005]: Use cube parameterization except warp the parameter
space to more evenly distribute the representable points. This gives slightly better
accuracy at the cost of trigonometric operations for the warping. The awkwardness of
the odd bit size remains from cube parameterization, and the error is still substantially
higher than similar methods that project onto an octahedron instead, e.g., as shown by
Meyer [2012].
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Figure 2. The latlong indexing scheme shown for encoding vectors with a maximum error of
10� to make the regions clear (derived from Smith et al.’s [2012] figure 4). Only a few indices
are labelled in the diagram.

latlong [Smith et al. 2012]: Divide the sphere into approximately equal-area latitude-
longitude patches (choosing them to minimize the worst-case error), and then number
all patches as shown in Figure 2. Store each vector as the index of the patch that
contains it. Encode and decode require fetching a 64-bit (for most encoding sizes)
value from a lookup table in addition to the vector itself. Smith et al. called this “Op-
timal Spherical Coordinates,” but it is not optimal among all possible encodings (only
among encodings dividing the sphere into latitude-longitude patches); the spherical-
rectangular patches are the key idea, so we assign the descriptive name. Note that
this method is distinct from the standard latitude-longitude environment map encod-
ing. This method produces the lowest error of all surveyed, but also has a very high
encode and decode cost when implemented in software.

oct [Meyer et al. 2010]: Map the sphere to an octahedron, project down into the z = 0
plane, and then reflect the �z-hemisphere over the appropriate diagonal as shown in
Figure 3. The result fills the [�1,+1]2 square. Store the (u,v)-coordinates in this
square as snorm⇥2. We consider this the best overall method: fast to encode and
decode, and a near-uniform mapping. These encoded vectors were originally called
“Octahedral Normal Vectors (ONV),” but there is no reason to restrict them to normals
(and using “normal” to indicate “unit” in this case is confusing), so we call them “oct”
to parallel the spherical and cube parameterizations. This representation is intuitive,
has nice distribution properties for all bit sizes, is fairly efficient to encode and decode,
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Figure 3. The oct representation maps the octants of a sphere to the faces of an octahedron,
which it then projects to the plane and unfolds into a unit square.

and is close to the lowest error for all bit sizes of the representations surveyed. The
reason that the mapping is computationally efficient (and elegant) is that it maps the
sphere to an octahedron by changing the definition of distance from the L2 (Euclidean)
norm to the L1 (Manhattan) norm. The first-published reference code had errors at
the boundaries due to the use of the sign() function on 0; we correct these in our
CPU reference implementation and provide optimized GPU implementations.

stereo (Stereographic), eqarea (Lambert Equal Area), and eqdist (Equidistant)
[Snyder and Mitchell 2001]: These use classic cartographic projections to map a
hemisphere to a unit-radius disk, using different metrics to minimize distortion. To
capture the precision opportunity of the area outside the disk, we extend these pro-
jections by mapping the disk to a square with another set of equal-area mappings:
concentric [Shirley and Chiu 1997] and elliptical. The latter (which we derived,
but is almost certainly not novel) is shown in our supplemental code. Of those clas-
sic mappings, eqarea requires the fewest operations, while eqdist, with the elliptical
mapping, yields the lowest encoding error.

Meyer [2012] provides the most recent previous survey of unit vector representa-
tions. Our survey extends the theoretical results from that thesis by considering more
methods, measuring both minimum and maximum error, demonstrating the visual
impact under different shading models (for surface normals), measuring encode and
decode performance, and providing optimized implementations of the most useful
methods.

Pool et al. [2012] present methods for lossless compression of large buffers of
arbitrary floating-point data. They reduce the average size of such buffers by at most
one third and theorize a slightly better ratio with range compression of the input. We
do not recommend this approach for buffers in which the entries are known to be unit
vectors. The reason is that knowing the semantics of the data, the methods that we

9

http://jcgt.org


Journal of Computer Graphics Techniques
A Survey of Efficient Representations for Independent Unit Vectors

Vol. 3, No. 2, 2014
http://jcgt.org

survey achieve strictly better space reductions at improved encoding and decoding
performance, with low error rates.

2.1. Bit-length Variants

Each method has precision variants that we parameterize by the total bit size of the
output. For example, oct24 stores an snorm12⇥2 parameterization of the sphere
mapped to the unit square by the oct encoding; oct16 stores snorm8⇥2. As in those
examples, almost all representations encode two parameters to which we assign equal
bit width. Our notation is designed to build upon the existing scalar notation (e.g.,
float32) while indicating the total bit width, which is the interesting number from
both hardware and software implementation perspectives.

In cases where a biased distribution of points on the unit sphere is desirable, it
would be advantageous to assign different precision to different parameters. We are
concerned with the general case, in which uniformity is desirable. In that case, it is
the encoding’s role to distort the sphere to the given parameter space so that uniform
parameter precision gives the best encoding.

There are some exceptions to the uniform dual-parameter space. The raw
snormb⇥3 and floatb⇥3 formats obviously encode to b bits per parameter for a total
of 3b bits. Some formats use extra sign bits to encode which hemisphere/face/octant
the remainder of the parameters describe. These have been discussed in the previous
work and are unambiguously described by the supplemental code accompanying this
paper, better than equations and notation would express in the text.

2.2. Precise Encoding Variants

We define a representation as the semantics of the bit pattern, that is, by the effect
of the decoding algorithm. For most representations, there is a natural, relatively
fast encoding algorithm that maps float32⇥3 unit vectors into that format. It is often
the case that the fast encoding is incapable of generating certain legal bit patterns,
and even when it can, the result can be biased at the final roundoff stage. In these
cases, there must also exist some alternative precise encoding algorithm that finds the
particular bit pattern that reduces the representation error of the round-trip encoded
and then decoded value, compared to the input. The suffix “P” denotes the use of a
precise (and necessarily slower) encoding algorithm in our evaluation table.

For snorm⇥3, the precise encoding algorithm is called Best Fit Normals [Ka-
planyan 2010]. It takes advantage of the fact that non-unit vectors normalize to points
on the unit sphere inexpressible by unit vectors in snorm format and searches for
the non-unit vector that normalizes closest to the desired vector. The search can be
reduced to a table lookup of vector lengths, compressed by taking advantage of sym-
metry. The representation still has a poor distribution of points on the sphere even
with the precise encoding. However, the significant advantages of this representa-
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tion under precise encoding are that one can mix encoded and unencoded normals
and that it still has zero decode overhead compared to non-optimized snorm⇥3, the
fastest method for decoding. We evaluate two variants of this algorithm, the first is the
exact method implemented by Crytek in the original presentation. This suffers from
worse maximum error than any other method we tested, due to the discretization of
the lookup table. We refer to this method as CrytekBFN. The second variant, which
we refer to as snorm⇥3P is the precise variant, which tests the four lengths encoded
in the closest texels of the lookup table and the original vector, choosing the one that
minimizes error. This brings the maximum error down below that of simple snorm⇥3
encoding and further decreases mean error.

Many methods operate by mapping the real sphere S2 to the real plane R2, and
then to a subset of the integer plane Z2. There is a small amount of error introduced
by the finite-precision floating-point math during the S2 ! R2 transformation. We
consider the impact in practice of using float32 and float64 in the implementation
of that mapping for intermediate results. More significant error is frequently intro-
duced by the R2 ! Z2 mapping. Furthermore, simply rounding to the nearest integer
after scaling will produce more and biased error, since each method of unwrapping
the sphere necessarily has some asymmetry. Therefore, algorithms that operate by
these mappings can be made more precise by choosing between the floor and ceiling
operators along each axis based on minimizing round-trip error.

For several representations, the error inherent in the representation was already so
much worse than alternatives that precise encoding only made the method undesirably
slow without making the quality competitive. To focus this survey on the most attrac-
tive methods, we do not report the error difference between precise and fast encoding
for such low-quality representations.

2.3. The Precise Decoding Variant of Latlong

We have already discussed precise encoding. The latlong representation has the un-
usual property that it always requires a large table for decoding, and the way that the
table is typically compressed makes it expensive to read from during decoding. This
is especially unfortunate because this representation gives the best quality of those
surveyed, and decoding it would otherwise be very fast. Encoding is inherently slow,
but in some applications that can be performed as a preprocessing step for static data.

To explore the quality and performance tradeoffs within the latlong representation,
we evaluate both a fast version called “latlong” with a fast decoder at the expense of
using a less optimal distribution of points on the sphere, and an alternative called
“latlongD” that uses the high-quality decoder described by Smith et al. [2012]. Note
that the latter differs from the “P” variants of other methods that increase encoding
precision.
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2.4. Decoding Tables

Note that, for any net 16 or 24-bit format, it is possible to decode in a single float32⇥3
texture fetch by indexing into a 216 (= 2562) element (⇡ 8 MB) or 224 = 40962 element
(⇡ 200 MB) lookup table. The size of that lookup table can be trivially reduced
for some formats by a factor of eight by exploiting sphere symmetry. Of course,
when the goal is not just to minimize DRAM space but the time to read that DRAM
due to bandwidth limitations, this is not a good approach, and spending a few ALU
operations for decoding becomes attractive.

We note that the Quake 2 video game developed by id Software and published
by Activision in 1997 used this method. It encoded unit vertex normals into eight
bits total by indexing optimally distributed points on the sphere and decoding with a
lookup table.

Likewise, it is possible to use a cube map to directly encode any format. In prac-
tice, that cube map has to be quite large—even for 16-bit encodings—because addi-
tional error is introduced by the cube map texel distortion if it is not extremely high
resolution (i.e., you need more cube map texels than possible encodings to represent
the shape of those encodings projected onto a cube; for 16-bit spherical encoding,
each cube map face needs to be larger than 20482 to avoid introducing significant
extra error).

3. Optimized Implementations

We provide reference CPU implementations of all methods for total encoded bit sizes
of 16, 24, and 32 in our supplemental material. Some methods are obviously inferior
on current GPU hardware, so we provide optimized GPU implementations only for
the subset of these that would realistically be considered in practice. In this section,
we describe the OpenGL GPU implementation of oct with emphasis on the precise
encoding at 16 bits and how the 24-bit version packs the two values into three bytes.
This demonstrates the important implementation techniques that we employed across
all methods. These two representations are also among the best under several evalua-
tion criteria, so they are likely the most interesting to implementers.

3.1. Oct

The GLSL implementation of fast (vs. precise) oct encode is given in Listing 1. The
implementation is independent of bit size (for 16- through 32-bit output). Its output
is still in float32⇥2 format, awaiting hardware conversion to snorm⇥2 on write. The
decode implementation is in Listing 2.
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// Returns ±1
vec2 signNotZero(vec2 v) {

return vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0);
}

// Assume normalized input. Output is on [-1, 1] for each component.
vec2 float32x3_to_oct(in vec3 v) {

// Project the sphere onto the octahedron, and then onto the xy plane
vec2 p = v.xy * (1.0 / (abs(v.x) + abs(v.y) + abs(v.z)));

// Reflect the folds of the lower hemisphere over the diagonals
return (v.z <= 0.0) ? ((1.0 - abs(p.yx)) * signNotZero(p)) : p;

}

Listing 1. Fast float32⇥3 ! oct variant for any bit size.

vec3 oct_to_float32x3(vec2 e) {
vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
if (v.z < 0) v.xy = (1.0 - abs(v.yx)) * signNotZero(v.xy);
return normalize(v);

}

Listing 2. General oct ! float32⇥3 decode for any bit size, assuming snorm!float32 con-
version has already been performed on input, when read.

We made several GPU-style implementation choices. Divisions in the underlying
algorithm were converted to multiplication by inverses wherever possible, so there
should be a single division operation during the encoding. The branches are expressed
as conditional assignment operations, and the branch conditions themselves will be
in condition codes rather than explicit tests on hardware that contains condition codes
for non-negative values.

3.2. Oct16 Precise Encoding

Recall that oct16P is the same representation as oct16, but encoded using an algorithm
that maximizes precision during the rounding operation when converting to snorm. To
do so, it replaces the round operator in Equation (1) with the floor operator, and then
considers the impact on error of the four total choices of floor or ceil for each of the
two components.

At the borders of the square, this will not test wrapping onto another face (the
wrapping is nontrivial anyway—it is not a simple modulo). Other edges between
octahedron faces will be correctly tested.
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vec2 float32x3_to_octn_precise(vec3 v, const in int n) {
vec2 s = float32x3_to_oct(v); // Remap to the square
// Each snorm’s max value interpreted as an integer,
// e.g., 127.0 for snorm8
float M = float(1 << ((n/2) - 1)) - 1.0;

// Remap components to snorm(n/2) precision...with floor instead
// of round (see equation 1)
s = floor(clamp(s, -1.0, +1.0) * M) * (1.0 / M);
vec2 bestRepresentation = s;
float highestCosine = dot(oct_to_float32x3(s), v);

// Test all combinations of floor and ceil and keep the best.
// Note that at +/- 1, this will exit the square... but that
// will be a worse encoding and never win.
for (int i = 0; i <= 1; ++i)

for (int j = 0; j <= 1; ++j)
// This branch will be evaluated at compile time
if ((i != 0) || (j != 0)) {

// Offset the bit pattern (which is stored in floating
// point!) to effectively change the rounding mode
// (when i or j is 0: floor, when it is one: ceiling)
vec2 candidate = vec2(i, j) * (1 / M) + s;
float cosine = dot(oct_to_float32x3(candidate), v);
if (cosine > highestCosine) {

bestRepresentation = candidate;
highestCosine = cosine;

}
}

return bestRepresentation;
}

Listing 3. Precise float32⇥3 ! octn encoding.

A natural question is whether one can predict the optimal rounding direction more
efficiently than exhaustively testing all possibilities. Figure 4 is a map of the optimal
rounding directions observed when encoding millions of vectors to oct24 storage.1

The pattern of optimal rounding for the x-component is the transpose. The image
intuitively demonstrates that there is structure in the fractal Moiré pattern, but we see
no way to efficiently exploit this in order to avoid the explicit test in the encoding
algorithm. See Meyer’s thesis [2012] Section 4.7.1 for a discussion of theoretical
properties of quantization error and the resulting Voronoi regions in the parameteri-
zation space.

1The image in this PDF is at reduced resolution in order to keep the size of the document reasonable,
but we include the full-resolution image with our supplemental material.

14

http://jcgt.org


Journal of Computer Graphics Techniques
A Survey of Efficient Representations for Independent Unit Vectors

Vol. 3, No. 2, 2014
http://jcgt.org

Figure 4. Optimal rounding direction for the y-component during float!snorm conversion
under the precise oct encoding algorithm at 12 bits per pixel. Black = floor, white = ceiling.

3.3. Packing oct24 into GL_RGB8

Like many other representations, oct24 requires underlying storage of snorm12⇥2
(or at least uint12⇥2 to emulate it), which is not supported by either CPU or GPU.
Yet, this is still a desirable format in practice because it integrates directly into the
space already allocated in implementations that use the popular snorm8⇥3 format,
increasing precision without increasing storage cost. In general, packing two 12-
bit values into RGB8 texture formats as unorm or uint is a desirable
property.

Listing 4 shows a natural but slow method for packing the two snorm12-precision
float scalars that represent oct24 into three unorm8-precision floats suitable for stor-
age in a GL_RGB8 buffer. The required integer operations are not available on all
DX9 class hardware (such as Xbox 360-generation consoles and some WebGL imple-
mentations today) and are slow compared to floating-point operations on most GPUs
today. Listing 5 shows a better solution that implements the same arithmetic using
only floating-point operations.
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/

*

The caller should store the return value into a GL_RGB8 texture

or attribute without modification.

*

/

vec3 snorm12x2_to_unorm8x3_slow(vec2 f) {
// Convert to 12-bit snorm stored in a uint, using a bias (we’ll
// reverse the bias at decode prior to division to avoid the
// typical scaled-and-biased unorm problems)
uint2 u = uint2(round(clamp(f, -1.0, 1.0) * 2047 + 2047));

// Shift the bits and encode in a float, then perform unorm
// unpacking. If storing to GL_RGB8UI, omit the division
return vec3((u.x >> 4),

((u.x & 0xF) << 4) | (u.y >> 8),
u.y & 0xFF) / 255.0;

}

vec2 unorm8x3_to_snorm12x2_slow(vec3 u) {
// on [0, 255]
uint3 v = uint3(u * 255.0);
// on [0, 4095]
uint2 p = uint2(v.x << 4) | ((v.y >> 4) & 15),

((v.y & 15) << 8) | v.z);
// on [-1.0, +1.0]
return (vec2(p) - 2047.0) / 2047.0;

}

Listing 4. Natural but slow packing of snorm12⇥2 data suitable for GL_RGB8 storage. We
show this implementation only to explain the algorithm. Do not use this code—use Listing 5
instead.

4. Quantitative Evaluation

4.1. Accuracy

Table 1 reports the accuracy of all methods surveyed, measured on AMD and Intel
64-bit processors with \fp:strict under MSVC 2012 using float32 intermediate
values for the computation and float64 values during error computation, as described
below. Measurements marked with a ± suffix had substantially lower error when
using float64 intermediates or different compiler flags, although we do not report
those results in full because they do not occur for the high-precision methods.

For each method of representation, we measure error in terms of angular devia-
tion between a unit float32⇥3 vector and the float32⇥3 result after encoding and then
decoding. This assesses the loss of precision in the process of encoding or compress-
ing the vector. Since we are only concerned with unit vectors, only the direction of
the vector is relevant and length need not be preserved. To measure for angular error,
we create one million random vectors on the unit sphere (enough so that the average
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/

*

The caller should store the return value into a GL_RGB8 texture

or attribute without modification.

*

/

vec3 snorm12x2_to_unorm8x3(vec2 f) {
vec2 u = vec2(round(clamp(f, -1.0, 1.0) * 2047 + 2047));
float t = floor(u.y / 256.0);

// If storing to GL_RGB8UI, omit the final division
return floor(vec3(u.x / 16.0,

fract(u.x / 16.0) * 256.0 + t,
u.y - t * 256.0)) / 255.0;

}

vec2 unorm8x3_to_snorm12x2(vec3 u) {
u *= 255.0;
u.y *= (1.0 / 16.0);
vec2 s = vec2(u.x * 16.0 + floor(u.y),

fract(u.y) * (16.0 * 256.0) + u.z);
return clamp(s * (1.0 / 2047.0) - 1.0, vec2(-1.0), vec2(1.0));

}

Listing 5. Optimized snorm12⇥2 packing into unorm8⇥3.

angle between a vector and its closest match in the testing set is an order of magni-
tude lower than the precision we measure) and calculate the angular error between the
original and the compressed and decompressed output. Over the set of random vec-
tors, we compute the mean error and maximum error. Angular error is computed by
converting both the input and output vectors to arrays of three doubles, normalizing
them, and then taking the absolute value of the arc cosine of the dot product.

Normalization at double precision is important for accurate angle measurements.
If we normalize at float32 precision during this process, the measurement error arti-
ficially appears an order of magnitude larger for 32-bit encoding methods. For 24-
and 16-bit representations, the difference is negligible because the representations
themselves produce significant error already.

We also evaluate every representation, computing the encoding and decoding at
both float32 and float64 precision for intermediate values. Increasing the intermediate
precision yields negligible change in mean or max error (less than 10�5 degrees), with
the following exceptions: latlong32 maximum error increases by 1.5⇥ using float32
instead of float64 intermediates, but the mean does not shift detectably because the
additional error occurs at few locations on the sphere; the stereo, eqarea, and eqdist
spherical projections when composed with the elliptical mapping to a square likewise
exhibit significantly greater worst-case error at float32 intermediate precision.
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Name Bits Mean Error (�) Max Error (�)
CrytekBFN24 24 0.04027 4.78260
snorm5⇥3 15 1.45262 3.26743
stereo+concentric16 16 0.37364 1.29985
eqdist+concentric16 16 0.36114 1.05603
eqarea+concentric16 16 0.36584 1.00697
stereo16 16 0.40140 1.00318
stereo+ellipse16 16 0.38233 1.00318
eqarea16 16 0.38716 0.96092
oct16 16 0.33709 0.94424
eqarea+ellipse16 16 0.35217 0.90617
eqdist+ellipse16 16 0.35663 0.79669±
eqdist16 16 0.38452 0.78944
latlong16 16 0.35560 0.78846
spherical16 16 0.35527 0.78685
oct16P 16 0.31485 0.63575
latlong16D 16 0.30351 0.56178
snorm8⇥3 24 0.17015 0.38588
snorm8⇥3P 24 0.03164 0.33443
stereo+concentric20 20 0.09290 0.32722
stereo+ellipse20 20 0.09494 0.26171
eqdist+concentric20 20 0.08975 0.25856
stereo20 20 0.09980 0.24779
eqarea+concentric20 20 0.09096 0.24671
eqarea20 20 0.09627 0.24355
oct20 20 0.08380 0.23467
eqarea+ellipse20 20 0.08758 0.22567
eqdist20 20 0.09541 0.19667
eqdist+ellipse20 20 0.08851 0.19633
spherical20 20 0.08847 0.19632
stereo+concentric22 22 0.04642 0.16228
oct20P 20 0.07829 0.15722
stereo+ellipse22 22 0.04746 0.14104
eqdist+concentric22 22 0.04484 0.12983
stereo22 22 0.04979 0.12437
eqarea+concentric22 22 0.04545 0.12304
eqarea22 22 0.04806 0.11915
oct22 22 0.04180 0.11734
eqarea+ellipse22 22 0.04374 0.11238
eqdist+ellipse22 22 0.04418 0.10132
spherical22 22 0.04423 0.09809
eqdist22 22 0.04768 0.09806
snorm10⇥3 30 0.04228 0.09598
stereo+concentric24 24 0.02319 0.08305
stereo+ellipse24 24 0.02372 0.08093±
oct22P 22 0.03905 0.07898
snorm11-11-10 32 0.02937 0.06776
eqdist+concentric24 24 0.02241 0.06548
eqarea+concentric24 24 0.02273 0.06265
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Name Bits Mean Error (�) Max Error (�)
stereo24 24 0.02490 0.06230
eqarea24 24 0.02402 0.06067±
oct24 24 0.02091 0.05874
eqdist+ellipse24 24 0.02208 0.05704±
eqarea+ellipse24 24 0.02185 0.05615±
latlong24 24 0.02211 0.04907
spherical24 24 0.02209 0.04906
eqdist24 24 0.02387 0.04899
oct24P 24 0.01953 0.03928
latlong24D 24 0.01895 0.03504
float16⇥3 48 0.00635 0.02635
stereo+ellipse32 32 0.00149 0.02592±
eqdist+ellipse32 32 0.00138 0.01807±
eqarea+ellipse32 32 0.00137± 0.01705±
spherical32 32 0.00138 0.00957
stereo32 32 0.00155 0.00547±
stereo+concentric32 32 0.00146 0.00522
eqdist+concentric32 32 0.00141 0.00409
eqarea+concentric32 32 0.00142± 0.00391
eqarea32 32 0.00150 0.00383
latlong32D 32 0.00119 0.00381±
oct32 32 0.00131 0.00370
latlong32 32 0.00138 0.00324±
eqdist32 32 0.00149 0.00307
oct32P 32 0.00122 0.00246
snorm16⇥3 48 0.00066 0.00149
snorm16⇥3P 48 0.00060 0.00149

Table 1. Representations sorted by decreasing max error, with lines denoting a
change in bit size from adjacent rows. Highlighted rows indicate techniques also
implemented and evaluated on the GPU.

CPU compilers typically support up to three methods for processing high-level
floating-point arithmetic: fast (fuse, distribute, and reorder operations to maximize
performance), strict (store all intermediates into registers and do not reorder instruc-
tions), and precise (reorder to maximize precision, using 80-bit extended floating-
point intermediates on some processors). In Microsoft Visual Studio these are en-
abled by the \fp:fast, \fp:strict, and \fp:precise compiler options. All
except \fp:strict generate code that may produce different results when run on
different processors.

Enhanced instruction sets (e.g., SSE and AVX) interact with these in complex
ways, although we exclusively used scalar operations in our CPU experiments.
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4.2. Performance

Our CPU reference implementations are reasonable, but we did not seek peak per-
formance from them. For example, one could likely make SSE or AVX vectorized
implementations with much higher throughput based on the structure of the surround-
ing program. We do not report timings, since performance was not a target.

We optimized the GPU implementations—which are intended for direct produc-
tion use—for peak performance and report results in Table 2. The GPU decoders
take floating-point values regardless of the underlying representation because texture
and attribute fetches perform unorm- and snorm-to-float conversion in fixed function
logic. Likewise, the encoders always return floating-point values. Our timing method-
ology is to encode or decode a buffer of one million unit vectors 100 times within a
pixel shader, accumulating results and slightly biasing the input for each iteration
to prevent the GLSL compiler from optimizing out intermediate results. We time a
baseline of simply fetching and summing components and subtract that baseline from
the time for each algorithm. Of course, in the context of an otherwise bandwidth- or
compute-limited shader, the net ALU cost would manifest differently.

We provide some intuition for the timing results. Marketing specifications quote
this GPU at about 3 teraflop/s, although that counts FMUL as two operations since
it has the equivalent of 1536 scalar cores operating at 1 GHz. That indicates a the-
oretical maximum of 3000 fused scalar floating-point operations per nanosecond, or
1500 MUL operations. The fastest decode operation in Table 2 is spherical32, which

Name Bits GPU Encode (ns/vector) GPU Decode (ns/vector)

latlong32 32 0.107695 0.623098
oct32P 32 0.130082 0.023423
oct32 32 0.023160 0.023341
eqarea+ellipse32 32 0.020001 0.017153
spherical32 32 0.020034 0.001661
latlong24 24 0.097284 0.045110
oct24P 24 0.134439 0.030122
oct24 24 0.026816 0.030102
eqarea+ellipse24 24 0.027087 0.017230
spherical24 24 0.022747 0.001904
snorm8⇥3P 24 1.135096 0.001888
CrytekBFN24 24 0.574226 0.001887
latlong16 16 0.068668 0.033396
oct16P 16 0.129718 0.023333
oct16 16 0.023132 0.023384
eqarea+ellipse16 16 0.020020 0.017153
spherical16 16 0.020027 0.001656

Table 2. GPU encode and decode times for the highest quality methods at various precisions,
as measured on NVIDIA GeForce GTX 680 (Kepler architecture).
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requires 0.003680 ns per vector. That is the equivalent cost of about 5.5 scalar MUL
operations per vector at the GeForce GTX 680’s theoretical maximum throughput.
The decode equation comprises four trigonometric operations and two products, so
the measured results appear consistent with theoretical results although they obvi-
ously depend on the architecture and may only be accurate to one significant digit for
the fastest methods.

4.3. Representable Point Distribution

To understand the maximum error, we show the distribution on the sphere of all rep-
resentable points for each format at net 16 bit precision. For comparison, we also
show the 24-bit snorm⇥3 distribution, which is very poor compared to even the 16-
bit alternatives. Recall that an ideal representation will produce a uniform distribution
of points and that the darker areas in this figure indicate areas that are biased towards
lower error, while the lighter areas represent regions of higher error. For any particular
vector, the error depends on the exact local distribution, however.

4.4. Qualitative Evaluation

The primary concern for a graphics application is often not quantitative representation
error but how perceptible the artifacts are in the final image that manifest as a result
of that error. Thus, while it is important to quantify the surveyed representations, an
implementor will often make a final design decision based on an image.

Image quality as a function of unit vector representation depends on how the
unit vectors are applied in the rendering pipeline, the lighting conditions, and the
materials and geometry involved. For example, a scene with bumpy, glossy surfaces
lit by photon mapping is likely to be more sensitive to representation error in per-pixel
surface normals than to representation error in per-vertex tangent vectors, and far less
sensitive to representation error in incident photon directions.

One reasonable qualitative metric is the smoothness and accuracy of the shading
as the surface normal representation changes. We created a scene with a mixture of
curvy, polygonal, and bumpy objects and rendered it with three reflectance models:
Lambertian, glossy, and mirror reflective. We use deferred shading with the normals
encoded in the G-buffer, which introduces per-pixel representation error. The mirror
reflective curvy object is the one that is most sensitive to normal representation error.
We show images with the three reflectance models for the methods that we optimized
for the GPU, since those are the ones most interesting for practical application. For
each, we consider 16-, 24-, and 32-bit net variants and precise variants where relevant.
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(a) stereo+concentric16 (b) eqdist+concentric16 (c) eqarea+concentric16 (d) stereo+ellipse16

(e) stereo16 (f) eqarea16 (g) oct16 (h) eqarea+ ellipse16

(i) eqdist+ellipse16 (j) eqdist16 (k) latlong16 (l) spherical16

(m) oct16P (n) latlong16D (o) snorm8⇥3

Figure 5. Distribution of representable unit vectors at 16-bit precision, with 24-bit snorm8⇥3
added for comparison. 24- and 32-bit representations yield distributions too dense to visualize
effectively at this scale. Darker areas represent regions of lower error.

22

http://jcgt.org


Journal of Computer Graphics Techniques
A Survey of Efficient Representations for Independent Unit Vectors

Vol. 3, No. 2, 2014
http://jcgt.org

(a) float32⇥3

(b) eqarea+ellipse16

(c) Difference: ((a)� (b))⇥8

Figure 6. Normal representations yield minimal differences in shading under a Lambertian
BRDF, even comparing the implemented GPU representation with the highest mean error to
float32⇥3. See the supplementary materials for images generated with all of the implemented
GPU methods.
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(a) float32⇥3

(b) eqarea+ellipse16

(c) Difference: ((a)� (b))⇥8

Figure 7. Differences in shading are far more apparent under a glossy BRDF than under a
Lambertian one. Discretization is visible on nearly flat surfaces and the 8⇥ difference image
reveals moderate error in eqarea+ellipse16. See the supplementary materials for a comparison
with all implemented methods.
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(a) float32⇥3 (b) oct16

(c) eqarea+ellipse16 (d) spherical16 (e) oct16P

(f) latlong16 (g) snorm8⇥3 (h) eqarea+ellipse24

(i) oct24 (j) spherical24 (k) oct24P

(l) latlong24 (m) eqarea+ellipse32 (n) spherical32

(o) oct32 (p) latlong32 (q) oct32P

Figure 8. Various normal representations yield significant differences in shading under a mir-
ror BRDF. See the supplementary materials for the full uncropped images and corresponding
difference images.
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5. Conclusions and Future Work

The oct and spherical representations are clearly the most practical. They are close
to minimal error among the surveyed methods and have very efficient implementa-
tions that require no tables. Spherical has better decode speed than oct on the tested
architecture, and oct has slightly better quality and encode speed. For low bit sizes,
the precise oct variant gives significantly better quality. The oct mapping is suffi-
ciently simple and stateless that we suggest future graphics APIs provide a hardware
abstraction of oct32 attribute and texture formats, with future GPUs then able to sup-
port texture and attribute fetch (and framebuffer and attribute write) in fixed-function
hardware, akin to sRGB, to eliminate the remaining time cost.

When perception of error—particularly shading error—is more important than
actual error, we suggest that adding a little noise during either encoding or decoding
based on the known mean error of the method would help to break up the quantization
artifacts arising from limited precision. We observe that Crytek’s implementation of
snorm8⇥3P does this in Crysis 2, albeit not in a controlled fashion. The open chal-
lenge is to add noise in a way that is somewhat temporally coherent under animation
and does not increase mean error.

There are several places in a GPU pipeline where one might wish to encode a
3D unit vector to reduce memory resource demands: vertex attributes, interpolators,
normal maps, and geometry buffers. We explicitly focused on storage of spatially
independent vectors, which implicitly means vertex attributes and geometry buffers,
in our work. We do not recommend compressing interpolators; the octahedral format
was designed for storage, not computation, and although it will interpolate linearly
with small amounts of error over small distances away from the boundaries of the
unit square, we have not found that error and the complexity of handling boundaries
to be justified even by a 3x bandwidth/register size reduction for interpolators.

Low-frequency normal maps benefit from spatial compression in formats like
DXN, and the additional gain from switching to oct is likely to be modest at best.
For high-frequency normal maps, it would be interesting to explore the use of oct as
a compressed format, since DXN will produce large error (it has a fixed compression
ratio) in this case. One nice but important limitation of doing so is that oct eliminates
the redundant information of the normal’s length, so, for example, the common use of
Toksvig’s method [Toksvig 2005] of using the MIP-mapped normal’s reduced length
as an inexpensive metric for surface normal variance does not apply—this informa-
tion has to be explicitly stored. We note that rotating and scaling the standard oct
encoding so that the +Z hemisphere covers the unit square in parameter space adds
few operations and eliminates the branch in the encoding function, while doubling
the number of bit patterns used to encode the hemisphere (see Listing 6). In Table 3,
we compare this "hemi-oct" encoding to storing only the X- and Y-components of
the original unit vector, which is an encoding scheme used in several tangent-space
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// Assume normalized input on +Z hemisphere.
// Output is on [-1, 1].
vec2 float32x3_to_hemioct(in vec3 v) {

// Project the hemisphere onto the hemi-octahedron,
// and then into the xy plane
vec2 p = v.xy * (1.0 / (abs(v.x) + abs(v.y) + v.z));

// Rotate and scale the center diamond to the unit square
return vec2(p.x + p.y, p.x - p.y);

}

vec3 hemioct_to_float32x3(vec2 e) {
// Rotate and scale the unit square back to the center diamond
vec2 temp = vec2(e.x + e.y, e.x - e.y) * 0.5;
vec3 v = vec3(temp, 1.0 - abs(temp.x) - abs(temp.y));
return normalize(v);

}

Listing 6. Fast float32⇥3 ! hemi-oct variant and its inverse for any bit size.

normal map compression algorithms[van Waveren and Castaño 2008]. Hemi-oct has
significantly less mean and max error than the xy-only encoding, over uniformly dis-
tributed unit vectors in the +Z hemisphere. We note this as a promising area for future
research.

Name Bits Mean Error (�) Max Error (�)

XYOnly16 16 0.46669 5.71419
XYOnly32F 32 0.07759 2.10047
XYOnly24 24 0.03844 1.43251
oct16P 16 0.31485 0.63574
HemiOct16 16 0.24000 0.55112
XYOnly32 32 0.00298 0.35281
oct24P 24 0.01953 0.03928
HemiOct24 24 0.01489 0.03406
oct32P 32 0.00122 0.00246
HemiOct32 32 0.00093 0.00213

Table 3. The hemi-oct format encodes unit vectors on the hemisphere with significantly
more accuracy than the standard xy-only encoding, and even improves substantially upon
the precise oct variant at equivalent bit sizes. These values were computed over one million
vectors uniformly chosen over the hemisphere.

We have exclusively considered 3D unit vectors. What about other dimensions?
It takes only one bit to encode the two possible 1D unit vectors, -1 and +1. 2D
unit vectors are trivially space-optimally encoded by a fixed point (scaled by 2p). In
4D, it would be desirable to encode unit quaternions using a 4D analog of the oct
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format, however, the symmetries are much more complex and it does not scale easily
or obviously.

For many applications (e.g., normal maps, G-buffers), it is important to have high
precision on only half of the sphere and relatively low precision can be assigned to
the other half. For example, in a G-buffer, most surface normals point towards the
camera. One approach suggested to us by Peter-Pike Sloan is to use the oct encoding,
but distort the unit square before the final mapping to snorm during encoding.
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