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Figure 1. A texture generated from 2D noise.

Abstract

Perlin noise is often used to compute a regularly spaced grid of noise values. The amortized

noise algorithm takes advantage of this regular call pattern to amortize the computation cost of
floating-point computations over interpolated points using dynamic programming techniques.
The 2D amortized noise algorithm uses a factor of 17/3≈ 5.67 fewer floating-point multipli-
cations than the 2D Perlin noise algorithm, resulting in a speedup by a factor of approximately
3.6–4.8 in practice on available desktop and laptop computing hardware. The 3D amortized
noise algorithm uses a factor of 40/7≈ 5.71 fewer floating-point multiplications than the 3D
Perlin noise algorithm; however, the increasing overhead for the initialization of tables lim-
its the speedup factor achieved in practice to around 2.25. Improvements to both 2D Perlin
noise and 2D amortized noise include making them infinite and non-repeating by replacing the
permutation table with a perfect hash function, and making them smoother by using quintic
splines instead of cubic splines. While these improvements slow down 2D Perlin noise down
by a factor of approximately 32–92, they slow 2D amortized noise by a negligible amount.

1. Introduction

Perlin noise [Perlin 1985] was developed as a source of smooth random noise for use
in applications such as procedural texture generation and modeling (see, for example,
the book by Ebert et al. [2003]). Figure 1 shows an example of a texture rendered from
2D noise by converting the noise value calculated at each pixel into a grayscale value.
Perlin’s code is heavily optimized since applications typically call it often. Although
the results of each call to the Perlin noise function are computed independently of ev-
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Set Definition
N Natural numbers ∪{0}
R Real numbers
U {x ∈ R | 0≤ x≤ 1}
U± {x ∈ R | −1≤ x≤ 1}
Un {i/n | i ∈ N}∩U

Table 1. The sets used in this paper and their definitions.

ery other call, many applications (such as textures and height maps) use it to compute
a grid of noise values at regularly spaced points. The amortized noise algorithm takes
advantage of this regular call pattern to amortize the computation cost using dynamic
programming techniques. These are the kinds of optimizations that developers make
in practice, and although they may have been applied to noise generation in the past,
the results do not appear to have been published in the open literature. This is the
first publication to systematically describe and evaluate the performance gains to be
obtained from amortizing the Perlin noise algorithm.

The remainder of this paper is divided into six main sections. Section 2 gives
some definitions and notation to be used throughout the rest of the paper. Section 3
describes the 2D amortized noise generator in some detail. Section 4 describes the
3D amortized noise generator in slightly less detail. Section 5 shows that some im-
provements to the noise quality that slow down 2D Perlin noise by a factor of 63 have
negligible effect on the running time of 2D amortized noise.

2. Notation

Let R denote the set of real numbers, and N denote the set of natural numbers starting
at zero. Let U denote the real line segment from 0 to 1 inclusive and U± denote
the real line segment from −1 to 1 inclusive. That is, U = {x ∈ R | 0 ≤ x ≤ 1},
U± = {x ∈ R | − 1 ≤ x ≤ 1}. Suppose n ∈ N. Let Un be the set of n+ 1 evenly-
spaced points from U; that is, Un = {i/n | i ∈ N}∩U. This notation is summarized
in Table 1 for the reader’s convenience. If S is a set, then for n ≥ 1, Sn denotes the
n-wise Cartesian product of S,

Sn = S×S×·· ·×S︸ ︷︷ ︸
n times

.

3. 2D Noise

The 2D Perlin noise algorithm computes a function P2 : U×U→ U±. To com-
pute P2(x,y) the algorithm chooses pseudorandom gradients ~g00 = [x00,y00], ~g01 =

[x01,y01], ~g10 = [x10,y10], and ~g11 = [x11,y11] at integer points [0,0], [0,1], [1,0], and
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Figure 2. 2D Perlin noise interpolates and smooths between pseudorandom gradients at inte-
ger grid points.

[1,1], respectively, and interpolates and smooths between them as shown in Figure 2.
Table 2 shows some pseudocode for one octave of the 2D Perlin noise generator on
input ~p = [x,y] ∈ U×U. It uses a cubic spline function s_curve(x) = x2(3−2x) and
a linear interpolation function lerp(ε,x,y) = x+ ε(y− x). While the 2D Perlin noise
algorithm computes ua(~p) for any vector ~p ∈ U×U, in practice we only need to
compute it for ~p ∈ Un×Un for some n ∈ N. For example, Figure 3 shows a square
grid with n = 5, with the integer gridpoints shown as black dots and the non-integer
gridpoints as white dots. Call n the noise granularity and let δ = 1/n, δ ∈ R.

The remainder of this section is divided into three subsections. Section 3.1 sketches
the 2D amortized noise algorithm by investigating how 2D Perlin noise works on an
example. Section 3.2 describes the implementation of 2D amortized noise. Sec-
tion 3.3 contains both a theoretical and an experimental analysis of the run-time of
2D amortized noise compared to 2D Perlin noise.

0. Input ~p = [x,y]
1. sx = s_curve(x)
2. sy = s_curve(y)
3. ua = ~p ·~g00

4. va = ~p ·~g10

5. a = lerp(sx,ua,va)

6. ub = ~p ·~g01

7. vb = ~p ·~g11

8. b = lerp(sx,ub,vb)

9. Output lerp(sy,a,b)

Table 2. The 2D Perlin noise algorithm.

33

http://jcgt.org


Journal of Computer Graphics Techniques
Amortized Noise

Vol. 3, No. 2, 2014
http://jcgt.org

Figure 3. A grid of regularly spaced points. The corner points (black dots) have integer
coordinates, while the interior points (white dots) have rational coordinates. The corners of
this grid correspond to the corners of the square in Figure 2.

3.1. 2D Amortized Noise

Suppose, for example, that the gradient vectors at the corners of the grid (0,0), (1,0),
(0,1), and (1,1) shown in Figure 3 are, respectively,

~g00 = [−0.53,−0.848]

~g10 = [−0.4472,0.8944]

~g01 = [0.9285,0.3714]

~g11 = [−0.9578,0.2873].

Note that all four vectors have unit length. Let P= {0,0.2,0.4,0.6,0.8,1}.
Line 3 of the 2D Perlin noise algorithm in Table 2 computes the vector dot product

~g00 ·~p for all ~p ∈ P×P. If we store this in a table ua(x,y) =~g00 · [x,y] for all x,y ∈ P
we get the results shown in Table 3. For example, the entry for [0.8,0.6] is

ua(0.8,0.6) = ~g00 · [0.8,0.6]
= [−0.53,−0.848] · [0.8,0.6]
= −0.9328.

0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 -0.1060 -0.2120 -0.3180 -0.4240 -0.5300
0.2 -0.1696 -0.2756 -0.3816 -0.4876 -0.5936 -0.6996
0.4 -0.3392 -0.4452 -0.5512 -0.6572 -0.7632 -0.8692
0.6 -0.5088 -0.6148 -0.7208 -0.8268 -0.9328 -1.0388
0.8 -0.6784 -0.7844 -0.8904 -0.9964 -1.1024 -1.2084
1.0 -0.8480 -0.9540 -1.0600 -1.1660 -1.2720 -1.3780

Table 3. A table of ua(y,x) =~g00 · [x,y] for all x,y ∈ P. Notice that in the first row and the first
column, the cyan entries are integer multiples of the red entry.

34

http://jcgt.org


Journal of Computer Graphics Techniques
Amortized Noise

Vol. 3, No. 2, 2014
http://jcgt.org

Although the entries of Table 3 were computed independently of each other dur-
ing different calls to the 2D Perlin noise algorithm, some clear patterns emerge. Ob-
viously the top-left entry is zero since ua(0,0) =~g00 ·~0 = 0. Looking at the top row
of Table 3, we see that

ua(0.0,0.2) =~g00 · [0.2,0] =−0.53×0.2 =−0.106,

(highlighted in cyan) and ua(0.0,0.2i) = −0.106i for all 1 ≤ i ≤ 5 (highlighted as a
group in cyan). Instead of using five floating-point multiplications to compute these
values we can use five additions by observing that ua(0.0,0.2) equals 0.2 times the
x-coordinate of~g00 and for all 2≤ i≤ 5,

ua(0.0,0.2i) = ua(0.0,0.2(i−1))−0.106

= ua(0.0,0.2(i−1))+ua(0.0,0.2).

Similarly, looking at the left column of Table 3, we see that

ua(0.2,0.0) =~g00 · [0,0.2] =−0.848×0.2 =−0.1696,

(highlighted in cyan) and ua(0.2 j,0.0) =−0.1696 j for all 1≤ j≤ 5 (highlighted as a
group in cyan). Again, instead of using five floating-point multiplications to compute
these values we can use five additions by observing that ua(0.2,0.0) equals 0.2 times
the y-coordinate of~g00 and for all 2≤ j ≤ 5,

ua(0.2 j,0.0) = ua(0.2( j−1),0.0)−0.1696

= ua(0.2( j−1),0.0)+ua(0.2,0.0).

Furthermore, as shown in Table 4, each of the remaining entries (which were also
computed using a single floating-point multiplication each) equals the sum of the en-
try in the same row, column 0, and the same column, row 0. For example, ua(0.6,0.8)
(highlighted in blue) equals the sum of ua(0.0,0.8) and ua(0.6,0.0) (both highlighted
in green).

0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 -0.1060 -0.2120 -0.3180 -0.4240 -0.5300
0.2 -0.1696 -0.2756 -0.3816 -0.4876 -0.5936 -0.6996
0.4 -0.3392 -0.4452 -0.5512 -0.6572 -0.7632 -0.8692
0.6 -0.5088 -0.6148 -0.7208 -0.8268 -0.9328 -1.0388
0.8 -0.6784 -0.7844 -0.8904 -0.9964 -1.1024 -1.2084
1.0 -0.8480 -0.9540 -1.0600 -1.1660 -1.2720 -1.3780

Table 4. A table of ua(y,x) =~g00 · [x,y] for all x,y ∈ P. Notice that the blue entry is equal to
the sum of the green entries.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0 -0.4472 -0.3578 -0.2683 -0.1789 -0.0894 0
0.2 -0.2683 -0.1789 -0.0894 0.0000 0.0894 0.1789
0.4 -0.0894 0.0000 0.0894 0.1789 0.2683 0.3578
0.6 0.0894 0.1789 0.2683 0.3578 0.4472 0.5367
0.8 0.2683 0.3578 0.4472 0.5367 0.6261 0.7155
1.0 0.4472 0.5367 0.6261 0.7155 0.8050 0.8944

Table 5. A table of va(y,x) =~g10 · [x,y] for all x,y ∈ P.

x 0.0 0.2 0.4 0.6 0.8 1.0
s_curve(x) 0.0000 0.1040 0.3520 0.6480 0.8960 1.0000

Table 6. Values of the cubic spline function s_curve(x) = 3x2−2x3 at points x ∈ P.

Similar observations can be made about va in Table 5, using the last column in-
stead of the first.

The value a is computed from ua and va in Line 5 of the 2D Perlin noise algorithm
in Table 2 using a linear interpolation and a cubic spline. Since we only need cubic
splines for values in P, we can pre-compute these and store them in a table as shown,
for example, in Table 6. From Line 5 of Table 2,

a(y,x) = (1−s_curve(x))ua(y,x)+s_curve(x)va(y,x).

Table 7 shows the values of a(y,x) for our example.
The process for computing ub, vb, and b in Lines 6–8 of Table 2 is similar, differ-

ing mostly in which rows and columns are greyed out. The final result computed in
Line 9 of Table 2 for input (x,y) is

(1−s_curve(y))a(y,x)+s_curve(y)b(y,x).

There is no need to explicitly store the tables for a and b since each entry is used
only once. Furthermore, we only need to store one row and one column of ua, va, ub,
and vb since the remaining entries are used only once each. We are left with eight
one-dimensional arrays of six entries each (five if the zero is not stored explicitly).

0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 -0.1322 -0.2318 -0.2279 -0.1242 0
0.2 -0.1696 -0.2655 -0.2788 -0.1716 0.0184 0.1789
0.4 -0.3392 -0.3989 -0.3257 -0.1154 0.1610 0.3578
0.6 -0.5088 -0.5323 -0.3726 -0.0592 0.3037 0.5367
0.8 -0.6784 -0.6656 -0.4196 -0.0030 0.4463 0.7155
1.0 -0.8480 -0.7990 -0.4665 0.0532 0.5890 0.8944

Table 7. Computing a.
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3.2. Implementation of 2D Amortized Noise

This section describes a C implementation of the amortized noise algorithm. The
code described here is simplified slightly from the ideal implementation in order to fit
within the confines of the page width and still be human-readable. A full implemen-
tation in C++ is provided in the supplementary material. We begin with some defines
lifted directly from Perlin’s original code1:

#define B 0x100

#define BM 0xff

#define N 0x1000

#define lerp(t, a, b) (a + t*(b - a))

We also use Perlin’s gradient and permutation tables.

float g2[B][2]; //Perlin gradient table.

int p[B]; //Perlin permutation table.

These tables are initialized in essentially the same way that they are in Perlin’s code.

void initPerlinNoiseTables(){

//random normalized gradient vectors

for(int i=0; i<B; i++){

g2[i][0] = (float)((rand()%(B + B)) - B)/B;

g2[i][1] = (float)((rand()%(B + B)) - B)/B;

float m = sqrt(g2[i][0]*g2[i][0] + g2[i][1]*g2[i][1]);

g2[i][0] /= m; g2[i][1] /= m;

} //for

//identity permutation

for(int i=0; i<B; i++)

p[i] = i;

//random permutation

for(int i=B-1; i>0; i--){

int tmp = p[i];

int j = rand()%(i+1); //minor correction to Perlin’s code

p[i] = p[j]; p[j] = tmp;

} //for

} //initPerlinNoiseTables

The preceding initialization is done once at the start of the program. Next we need
some initialization done once per octave, starting with the spline table.

1http://mrl.nyu.edu/~perlin/doc/oscar.html#noise.
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float spline[n+1];

void initSplineTable(const int n){

for(int i=0; i<n; i++){

float t = (float)i/n;

spline[i] = (t * t * (3.0f - 2.0f*t));

} //for

} //initSplineTable

We need eight arrays to store the interpolated gradient tables, two for each edge of a
square. Table 8 shows the arrays and their contents.

Array From To
uax ua(0,0) ua(0,1)
uay ua(0,0) ua(1,0)
vax va(0,0) va(0,1)
vay va(0,1) va(1,1)
ubx ub(1,0) ub(1,1)
uby ub(0,0) ub(1,0)
vbx vb(1,0) vb(1,1)
vby vb(0,1) vb(1,1)

Table 8. Interpolated 2D gradient tables and their contents using the values defined in Sec-
tion 3.1.

float uax[n+1], uay[n+1];

float vax[n+1], vay[n+1];

float ubx[n+1], uby[n+1];

float vbx[n+1], vby[n+1];

Four of these tables need to be filled in from bottom to top, and the others from top to
bottom. This is done with the following two helper functions.

void FillUp(float* t, float f, int n){

t[0] = 0.0f; t[1] = f/n;

for(int i=2; i<=n; i++)

t[i] = t[i-1] + t[1];

} //FillUp

void FillDn(float* t, float f, int n){

t[n] = 0.0f; t[n-1] = -f/n;

for(int i=n-2; i>=0; i--)

t[i] = t[i+1] + t[n-1];

} //FillDn
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These are used to initialize the interpolated gradient tables as follows.

void initEdgeTables(int x0, int y0, int n){

//compute gradients at corner points

unsigned int b0 = h(x0, y0);

unsigned int b1 = h(x0, y0+1);

unsigned int b2 = h(x0+1, y0);

unsigned int b3 = h(x0+1, y0+1);

//fill inferred gradient tables from corner gradients

FillUp(uax, g2[b0][0], n); FillDn(vax, g2[b1][0], n);

FillUp(ubx, g2[b2][0], n); FillDn(vbx, g2[b3][0], n);

FillUp(uay, g2[b0][1], n); FillUp(vay, g2[b1][1], n);

FillDn(uby, g2[b2][1], n); FillDn(vby, g2[b3][1], n);

} //initEdgeTables

The function h in the above code is Perlin’s hash function:

unsigned int h(unsigned int x, unsigned int y){

return p[(p[x & BM] + y) & BM];

} //h

Once initialization is complete, a single point of noise can be generated using the
following function:

float getNoise(int i, int j){

float u, v, a, b;

u = uax[j] + uay[i];

v = vax[j] + vay[i];

a = lerp(spline[j], u, v);

u = ubx[j] + uby[i];

v = vbx[j] + vby[i];

b = lerp(spline[j], u, v);

return lerp(spline[i], a, b);

} //getNoise

An n×n noise grid can be generated by iterating this process.

void getNoise(int n, int i0, int j0, float** cell){

for(int i=0; i<n; i++)

for(int j=0; j<n; j++)

cell[i0 + i][j0 + j] = getNoise(i, j);

} //getNoise

Notice that the only floating-point multiplications used are for the three linear inter-
polations per point in getNoise(int, int).

Finally, the following function generates octaves m0 through m1 into cell, whose
top-left point is assumed to be at integer coordinates (x, y).
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float generate(int x, int y, int m0, int m1, int n, float** cell){

int r = 1; //side of cell divided by side of subcell.

//Skip over unwanted octaves.

for(int i=1; i<m0; i++){

n /= 2; r += r;

} //for

//generate first octave directly into cell

initSplineTable(n);

for(int i0=0; i0<r; i0++)

for(int j0=0; j0<r; j0++){

initEdgeTables(x + i0, y + j0, n);

getNoise(n, i0*n, j0*n, cell);

} //for

float scale = 1.0f; //scale factor

//add the other octaves into cell

for(int k=m0; k<m1 && n>=2; k++){

n /= 2; r += r; x += x; y += y; scale *= 0.5f; //rescale

initSplineTable(n);

for(int i0=0; i0<r; i0++)

for(int j0=0; j0<r; j0++){

initEdgeTables(x + i0, y + j0, n);

addNoise(n, i0*n, j0*n, scale, cell);

} //for

} //for each octave

//Compute 1/magnitude and return it.

//Multiply noise by this to bring it to [-1,1].

return M_SQRT2/(2.0f - scale);

} //generate

The return value M_SQRT2/(2.0f - scale) may at first seem obscure. Note
that scale is always a power of 2. A single octave of Perlin noise returns a value
of magnitude at most 1/

√
2. Adding magnitudes over all scaled octaves gives a total

magnitude of
1√
2
(1+ 1

2 +
1
4 + ...+scale) =

2−scale√
2

(using the standard formula for the sum of a geometric progression). The inverse
magnitude is therefore √

2
2−scale

.

In order to avoid the unnecessary expense of zeroing out memory, the first octave
is generated directly into the cell using getNoise described above, while subse-
quent octaves are scaled and added into the cell using addNoise:
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void addNoise(int n, int i0, int j0, float scale, float** cell){

for(int i=0; i<n; i++)

for(int j=0; j<n; j++)

cell[i0 + i][j0 + j] += scale * getNoise(i, j);

} //addNoise

3.3. Analysis of 2D Amortized Noise

The 2D Perlin noise algorithm uses 17 floating-point multiplications per point per
octave (see Table 9), and thus requires 17n2 floating-point multiplications per oc-
tave to find noise values for an n× n grid. The techniques described in the previous
section replace the cubic splines and dot products in Table 9 with table lookups and
floating-point additions. We are left with a single floating-point multiplication per
point for each of three linear interpolations. The number of floating-point multiplica-
tions required to generate noise on an n×n grid is therefore 3n2 +O(n) per octave, a
reduction in the number of floating-point multiplications by a factor of 17/3 ≈ 5.67
over 2D Perlin noise.

Since a good deal of the computation time used by 2D Perlin noise is taken up by
floating-point multiplications, we can achieve a significant speedup factor in practice.
Whether we can come close to the theoretical factor of 5.7 depends on the speed of
floating-point multiplications compared to other operations. To test this, we measured
the run-time of our algorithm on various desktop and laptop computers and found that
in practice 2D amortized noise is approximately 3.6–4.8 times faster than 2D Perlin
noise (see Figure 4).

Task Lines Number Mults Total
Cubic spline 1, 2 2 3 6
Linear interpolation 3–5 3 1 3
Dot product 3, 4 4 2 8

Total 17

Table 9. Number of floating-point multiplications used by 2D Perlin noise per point per
octave. The line numbers in the second column refer to the algorithm in Table 2.

4. 3D Noise

The 3D Perlin noise algorithm computes a function P3 : U3 → U±. To compute
P3(x,y,z), it picks pseudorandom gradients ~gi jk = [xi jk,yi jk,zi jk] at the eight integer
points [i, j,k], respectively, for i, j,k ∈ {0,1}, and interpolates and smooths between
them. The 2D amortized noise algorithm from Section 4 generalizes to 3D in a fairly
straightforward manner. Instead of eight interpolated gradient tables, there are 24.
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Figure 4. Speedup factor obtained by amortized noise over Perlin noise for computing 2D
noise values for grids of n×n points, where 16≤ n≤ 512.

The 3D Perlin noise algorithm uses 40 floating-point multiplications per point per
octave (see Table 9), and thus requires 40n3 floating-point multiplications per octave
to find noise values for an n× n× n grid. The techniques described in the previous
section replace the cubic splines and dot products in Table 10 with table lookups and
floating-point additions. We are left with a single floating-point multiplication per
point for each of seven linear interpolations. The number of floating-point multipli-
cations required to generate noise on an n×n grid is therefore 7n2 +O(n) per octave,
a reduction in the number of floating-point multiplications by a factor of 40/7≈ 5.71
over 3D Perlin noise.

We found that, on the hardware described above, 3D amortized noise is approxi-
mately 2.25 times faster than 3D Perlin noise. Figure 5 shows the ratio of the Perlin
noise CPU time divided by the amortized noise CPU time on an Intel Core i7-3930K
@ 3.2GHz. We can see that the overhead for initializing the large number of ar-
rays is beginning to become a more significant fraction of the CPU time. One can
conjecture from this result that amortized noise will likely be of little or no use for
higher-dimensional noise.

Task Number Mults Total
Cubic spline 3 3 9
Linear interpolation 7 1 7
Dot product 8 3 24

Total 40

Table 10. Number of floating-point multiplications used by 3D Perlin noise per point per
octave.
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Figure 5. Speedup factor obtained by amortized noise over Perlin noise for computing 3D
noise values for grids of n×n×n points, where 8≤ n≤ 128.

5. Infinite Smooth 2D Noise

There are improvements to the Perlin noise algorithm that increase the variability
and smoothness of the noise, but unfortunately increase its running time by a large
amount. These improvements have negligible effect on the running time of the amor-
tized noise algorithm. The first improvement is in variability. Perlin noise repeats
with period nB, where B is the size of Perlin’s permutation and gradient tables (which
was originally equal to 256). This defect in Perlin noise could be remedied on an
m-bit computer by computing the gradients at integer grid points using a perfect hash
function for m-bit integers; that is, a hash function whose domain and range are the
set of m-bit integers. (For more information about hash functions, see, for example,
the standard textbook by Knuth [1998].)

Let h :N→N be a hash function. For all n∈N, define h :N2→{0,1, . . . ,n−1} to
be h(x,y)= h(h(x)+y) mod n. Compute gradients g(~p)∈N×N at integer points ~p∈
N×N as follows. Choose an angular granularity n ∈ N and let {û0, û1, . . . , ûn−1} be
the set of n uniformly spaced vectors around the unit circle. We then define~g([x,y]) =
ûh(x,y). The resulting noise will be, if not infinite, then as close as possible to being
infinite depending on the quality of the hash function. We have had particular success
with MurmurHash32.

For example, the hashed gradient at a corner point can be computed from its
integer coordinates as follows:

float h(unsigned int x, unsigned int y){

unsigned int result;

unsigned long long key = ((unsigned long long)x<<32) | y;

MurmurHash3_32(&key, 8, seed, &result);

return (float)result;

} //h

2 Open source, https://code.google.com/p/smhasher/wiki/MurmurHash3.

43

http://jcgt.org
https://code.google.com/p/smhasher/wiki/MurmurHash3


Journal of Computer Graphics Techniques
Amortized Noise

Vol. 3, No. 2, 2014
http://jcgt.org

The edge tables are then computed as follows:

void initEdgeTables(int x, int y, int n){

//compute gradients at corner points

float b0=h(x, y), b1=h(x, y+1), b2=h(x+1, y), b3=h(x+1, y+1);

//fill inferred gradient tables from corner gradients

FillUp(uax, cosf(b0), n); FillDn(vax, cosf(b1), n);

FillUp(ubx, cosf(b2), n); FillDn(vbx, cosf(b3), n);

FillUp(uay, sinf(b0), n); FillUp(vay, sinf(b1), n);

FillDn(uby, sinf(b2), n); FillDn(vby, sinf(b3), n);

} //initEdgeTables

The second improvement is in smoothness. Perlin [2002] has proposed replacing
his original cubic spline function 3t2−2t3 with a quintic spline function 6t5−15t4 +

10t3. The quintic spline function has the advantage that its first and second derivatives
at 0 and 1 are both zero, leading to smoother noise with no discontinuities at integer
points.

These two improvements, when implemented in the obvious manner, slow the
2D Perlin noise generator drastically by a factor of around 8.9–19.5, as shown in
Figure 6. As Figure 7 shows, 2D improved amortized noise is only negligibly slower
than 2D amortized noise since the cost of computing gradients at integer grid points is
amortized over the computation at the remaining points, and is therefore about 32–92
times faster than 2D improved Perlin noise.

Figure 6. Slowdown factor for the 2D improved Perlin noise algorithm over Perlin noise for
a grid of n×n points, where 16≤ n≤ 256.
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Figure 7. Speedup factor for the 2D improved amortized noise algorithm over Perlin noise
for a grid of n×n points, where 16≤ n≤ 512.

6. Conclusion

We have seen that, on available desktop and laptop computing hardware, the 2D amor-
tized noise algorithm is approximately 3.6–4.8 times faster than the 2D Perlin noise
algorithm, and that the 3D amortized noise algorithm is approximately 2.25 times
faster than the 3D Perlin noise algorithm. We have also seen that improvements to
the noise quality that cause the 2D Perlin noise algorithm to slow down by a factor of
32–92 cause almost no slowdown of the 2D amortized noise algorithm.

While the Perlin noise algorithm provides random access to a source of smooth
noise, amortized noise saves computation by computing noise values in a nearby
neighborhood, and is therefore only useful when noise values are computed in an
evenly-spaced grid such as a texture or height map. The amortized noise algorithm is
likely only useful as a sequential computation running on a traditional von Neumann
architecture CPU. The running time of a shader implementation of Perlin noise (such
as the one by Green in GPU Gems 2 [2005]) is typically dominated by factors such
as the the speed of texture addressing rather than the speed of floating-point multipli-
cation, and hence will see little or no benefit from amortization.

Interesting open problems include a full investigation of candidate hash functions
for 2D improved amortized noise.
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Index of Supplemental Materials

Source code and data is available under the GNU All-Permissive License in a zipfile on the
JCGT website (as of the publication date) for this paper, and maintained after publication
at https://github.com/Ian-Parberry/AmortizedNoise. The contents of the
supplemental data are as follows:

2D Evaluator has a Microsoft Visual Studio 2012 project, an iOS Xcode project, and a
Unix makefile for the evaluator used to measure the running time of amortized noise
compared to Perlin noise.

2D Generator has a Microsoft Visual Studio 2012 project, an iOS Xcode project, and a
Unix makefile for a generator that will save a grayscale image of 2D finite or infinite
amortized noise.

3D Generator has a Microsoft Visual Studio 2012 project, an iOS Xcode project, and a
Unix makefile for a generator that will save grayscale images of 3D finite or infinite
amortized noise.

Data has files Data2D.xlsx and Data3D.xlsx containing the test data in Microsoft
Excel format.

Examples has four image files as follows:

File Name Size Type Dims. Finity
i0s512o36s9999r23c14.png 512×512 png image 2D finite
i1s512o36s9999r23c42.png 512×512 png image 2D infinite
finite.gif 256×256 animated gif 3D finite
infinite.gif 256×256 animated gif 3D infinite

The code quoted in this paper differs slightly from the code in the GitHub archive in that the
former is simplified to fit within the tight width restrictions of this medium, while the latter is
engineered for comprehension and use by programmers in the real world. Links to Doxygen-
generated documentation of the source code can be found at http://larc.unt.edu/
ian/research/amortizednoise/.
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