
Journal of Computer Graphics Techniques Vol. 3, No. 3, 2014 http://jcgt.org

Physics-Aware Voronoi Fracture with

Example-Based Acceleration

Sara C. Schvartzman
Stanford University

Miguel A. Otaduy
URJC, Madrid

Figure 1. Horses fractured by metal balls. These fractures emphasize the richness and ver-
satility provided by our method: object concavities are correctly resolved, cracks may be
curved, and fracture patterns adapt to the impact and object properties.

Abstract

This paper provides implementation details of the algorithm proposed in Schvartzman and
Otaduy [2014] to simulate brittle fracture. We cast brittle fracture as the computation of
a high-dimensional centroidal Voronoi diagram (CVD), where the distribution of fracture
fragments is guided by the deformation field of the fractured object. We accelerate the fracture
animation process with example-based learning of the fracture degree and a highly parallel
tessellation algorithm.
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1. Introduction

Fracture animation creates spectacular effects in motion pictures, and it is lately mak-
ing its way into video games and virtual reality applications. Physically-based sim-
ulation of fracture involves solving challenging mechanical problems, such as the
computation of deformations, crack generation, and crack propagation. These op-
erations require computationally demanding processes such as remeshing and fine
time-stepping. In this work, we seek a faster, but plausible, solution for brittle, stiff
objects.

Voronoi fracture methods offer a fast alternative to physically based simulation
methods. They compute the locations of fragment centers, and then the fracture frag-
ments are defined as the Voronoi cells of those centers. In contrast to physically
based methods that compute fracture through local crack propagation, Voronoi meth-
ods compute fracture through the global distribution of fragments, thus giving the
artist control over the global appearance of the fracture.

Although Voronoi methods are fast, they pose other challenges: mainly the ver-
satile distribution of fragments according to arbitrary external forces, and the correct
handling of object and crack concavities.

While most previous methods are oblivious of the forces acting on the fractured
object, we introduce a new Voronoi fracture method that distributes fracture fragments
based on the deformation field of the fractured object. Furthermore, our algorithm
properly handles object and crack concavities, allows for intuitive artist control, and
is guided by examples to accelerate computations.

Our method [Schvartzman and Otaduy 2014] produces fast animations where ob-
jects may be fractured in arbitrary non-scripted ways, showing rich and diverse frac-
ture patterns even at close views, such as those in Figure 1.

The first step in the animation of fracture is the computation of elastic deforma-
tions. We adopt a common approach for stiff objects, simulating them as rigid bodies
until an impact is detected, and then computing a quasi-static solution to the elastic
deformation [Müller et al. 2001]. Using the deformation field, we then learn the frac-
ture degree (number of fragments) from a set of precomputed fracture examples and
construct a high-dimensional centroidal Voronoi diagram (CVD). Finally, we tessel-
late the fragments of the CVD and introduce the new fragments into the rigid body
engine.

2. Deformation-Based Voronoi Fracture

In this section, we present a formulation of fracture as a CVD. Our approach is aware
of the collision scenarios suffered by the fractured object and determines the size and
distribution of fragments based on the distribution of deformation energy, as shown
in Figure 2. In addition, we adopt an interior distance metric to handle robustly ob-
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Figure 2. Three horses falling on their heads with different fracture energy thresholds, g
(highest g on the left to lowest on the right).

ject and crack concavities. As shown in Schvartzman and Otaduy [2014], a CVD
under such interior distance metric can be computed efficiently using the well-known
Lloyd’s method by lifting the object representation to higher dimensions. We con-
clude the section describing ways to introduce intuitive artist control into our fracture
method.

2.1. Fracture as a Centroidal Voronoi Diagram

In brittle materials fracture propagates quickly, and the resulting fragments release
their deformation energy and recover their initial shape. Based on this observation,
we propose the following fracture criterion: an object will fracture if its deformation
energy is larger than a certain threshold, g.

We define the distance-weighted deformation energy of an object with volume Wi,
center pi, strain energy density W (x), and points x 2Wi, as

ED,i =
Z

Wi

dist(x, pi)
2W (x)dx.

In essence, ED,i accumulates strain energy, but penalizes the distance to the center of
the object based on some suitable distance metric, dist(x, pi). In this way, an object
with a large deformation concentrated in one place is more prone to fracture than an
object with a moderate homogeneous deformation.

If an object is fractured, we place the centers of the new fragments such that the
post-fracture deformation energy is minimized, i.e., the energy consumed by fracture
is maximized. This procedure can be applied recursively until the maximum sustain-
able deformation energy g is exceeded. With P⇤ = {p⇤i }, the locations of fragment
centers and N = |P⇤|, the fracture degree, we formulate fracture as the computation
of the minimum number of fragments such that the distance-weighted deformation
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energy does not exceed the fracture threshold:

N =min |P⇤| such that ED(P⇤)< g. (1)

P⇤ =argmin
P

ED(P), (2)

with ED = Â
i

ED,i

It turns out that the solution to the optimization problem in Equation (2) is well known,
and it corresponds to the CVD of object W. Then, the solution to the fracture problem
in Equations (1)–(2) is given by the CVD with the fewest number of sites that satisfy
ED < g.

2.2. CVD with Interior Distance Metric

For non-convex objects, the computation of the CVD using the Euclidean distance
metric may produce small fragments topologically far away from the impact loca-
tion. Instead, we correctly handle object concavities computing the CVD using an
interior distance metric. We adopt the interior distance definition by Rustamov et
al. [2009], which is based on a high-dimensional embedding that approximately pre-
serves surface distances. Specifically, given two surface vertices vi and v j with in-
terior distance dist(vi,v j) = di j, the Euclidean distance between their corresponding
high-dimensional coordinates v̄i and v̄ j is also kv̄i� v̄ jk= di j. The high-dimensional
coordinates of surface vertices are computed using a diffusion map, and the high-
dimensional coordinates of interior points are computed through barycentric interpo-
lation using mean-value coordinates. Given a surface mesh, Rustamov et al. [2009]
provide Matlab code to compute the high-dimensional coordinates of a set of points
located on or inside the mesh.

Once the interior distance metric is defined, we present an efficient algorithm
to compute the CVD using such metric. Lloyd’s method is a popular approach to
compute the energy-weighted CVD in Equation (2) for the Euclidean distance metric.
It iterates two steps until convergence: (i) computation of the Voronoi diagram for a
given set of sites, and (ii) moving the sites to the centroids of their Voronoi cells.

The use of an interior distance metric makes the CVD problem highly nonlinear.
However, Schvartzman and Otaduy [2014] demonstrate that for the interior distance
of Rustamov et al. [2009], this nonlinear optimization problem admits a practical
and efficient solution through the computation of an Euclidean CVD in the high-
dimensional embedding space.

2.3. Preprocessing and Runtime Algorithms

Our full fracture algorithm proceeds as follows (See Algorithm 1). During runtime,
given external forces on an object W, we compute the strain energy density W (x)
using a quasi-static finite-element formulation (line 9). Then, the strain energy field
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Figure 3. As a pre-process (top), we compute multiple fracture examples of the same ob-
ject, allowing us to learn a relation between the deformation field and the fracture degree. At
runtime (bottom), given the deformation field of the fracturing object, we compute the frac-
ture degree from the examples, solve a deformation-aware centroidal Voronoi diagram, and
tessellate the resulting fragments.

is used as input for the computation of the fracture fragments (lines 10 - 11). Finally,
the surfaces of the resulting fragments are tessellated (line 12). We use a tetrahedral
mesh to discretize the computations in all three steps.

As shown in Figure 3, as a preprocess we compute a set of example fractures for
each object, and these examples are used at runtime to accelerate the computation of
the fracture degree N (see Section 3 for full details).

Algorithm 2 shows the computation of the location of sites, both for preprocessing
examples or during runtime fracture. We first introduce new Voronoi sites randomly
using as probability function the strain energy field (line 2). The high-dimensional
coordinate of the site is initialized to the coordinates of the random tetrahedral node
selected. Then we solve a discrete version of the high-dimensional CVD on the nodes
of the tetrahedral mesh using Lloyd’s method. In the context of this discretization,
the strain energy W (x), used as distance weight in Equation (2), needs to be evaluated
at mesh nodes. Once the deformation is computed, we integrate strain energy on
tetrahedra, and we set node weights W (x) by summing one fourth of the strain energy
over their incident tetrahedra.
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Algorithm 1 Overall algorithm.
1: preprocess:
2: Create Tetrahedral Mesh
3: Calculate High-Dimensional Coordinates
4: Create Radial Basis Network (RBN) . Section 3

5: runtime:
6: while True do

7: while No impact do

8: Rigid Body Simulation
9: Compute FEM Deformation

10: Learn Fracture Degree from RBN . Section 3
11: Compute CVD . Algorithm 2
12: Tessellate New Fragments . Section 4
13: Insert New Fragments into Rigid Body Engine

Algorithm 2 High-dimensional CVD.
1: for all si Sites do

2: InsertSite(si)

3: n NearestNode(si)

4: n.closestSite si

5: Q.Push(n)

6: while not converged do

7: // Flooding algorithm
8: while Q not empty do

9: Q.Pop(n)
10: for all n j neighbours of n do

11: d kn j.coords�n.closestSite.coordsk2W (n j)

12: if n j.distance > d then

13: n j.distance d
14: n j.site n.site
15: Push n j in Q

16: // Move to centroid
17: for i 1,Number Of Sites do

18: MoveSiteToCentroid(si) . Equation 4
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The execution of Lloyd’s method in the discrete setting requires small changes.
First, the update of Voronoi cells reduces to finding the closest site for each node.
We speed up this computation by flooding Voronoi cells from the sites, exploiting the
graph defined by the tetrahedral mesh and using a queue Q (lines 8 - 15). In addition,
to accelerate the evaluation of interior distances, as a preprocess we compute the high-
dimensional coordinates for all nodes. Second, the computation of high-dimensional
centroids p̄ for each Voronoi cell uses the high-dimensional coordinates of the nodes
of the cell x̄ j:

p̄ =
ÂN

j=1 x̄ j W (x)

N
,

where N is the number of nodes in the Voronoi cell.
We repeat the two steps of Lloyd’s method until convergence. For our examples,

we stop this iterative process when the sites move less than 1e�7.
It turns out that our algorithm does not require the 3D positions of the Voronoi

sites at any time, and it is sufficient to store their high-dimensional positions and the
cell-classification of the nodes.

2.4. Artist Control

A major feature of our proposed fracture algorithm is that it can accommodate many
types of artist control in very simple ways. Other than the trivial energy threshold g
that guides the overall toughness of the object, we have considered artist-driven frac-
ture granularity, inhomogeneous material toughness, anisotropy, and smoothness, but
other properties may also be controllable.

Fracture granularity and material inhomogeneity may be easily controlled by
tweaking the strain energy, W . Using an exponential factor of the strain energy, W a,
affects the influence of the deformation on the fragment distribution (See Figure 4).
Using a spatially varying multiplicative factor, bW , allows for controllable material
inhomogeneity. The artist may “paint” fragile regions with b > 1 and tough regions
with b < 1.

Fracture anisotropy and smoothness may be easily controlled by tweaking the
distance metric. A simple way to do this is to apply a non-uniform transformation

Figure 4. Artist control of fracture granularity through simple modification of the exponent
of strain energy, W a. From left to right: a = 0 (the deformation is ignored), a = 0.5, a = 1.
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Figure 5. Artist control based on the modification of the rest shape. Top: Regular fracture
of a sphere when its rest-shape is not modified. Bottom: Fracture with a preferred direction
obtained by applying anisotropic scaling to the rest shape (on the right).

Figure 6. Fracture of a wooden table enabled by artist control. A wavy transformation is
applied to the rest-shape of the table, and thus it produces concave wood-like fragments upon
fracture.
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to the undeformed reference object where distances are computed. Figure 5 shows
an example of anisotropic material failure obtained by applying non-uniform scaling
to the reference object. Figure 6 shows wood-like fracture of a table, obtained by
applying a wavy transformation to its rest shape.

3. Learning Fracture from Examples

Our fracture model defines both the fracture degree N and the fragment centers P⇤ as
a function of the strain energy W .

To generate a set of examples, we precompute the fracture degree following a
simple optimization process. We initialize the fracture degree N = 1, and we dou-
ble it until the distance-weighted deformation energy ED is smaller than the fracture
threshold g. Then, we perform a bisection search on the fracture degree until we reach
the smallest value for which the distance-weighted deformation energy is smaller than
the fracture threshold.

With this method, computing the fracture degree requires solving a costly iterative
optimization problem. In this section, we introduce a learning method that, based on
a set of precomputed fracture examples, allows us to efficiently estimate the fracture
degree at runtime as a function of the deformation field. We describe our specific
learning method based on a radial basis function (RBF) network, and we discuss its
approximation accuracy.

3.1. RBF Network

Let W be regarded as a vector that concatenates the strain energies of all nodes of the
mesh. Our fracture model can be represented as a process that calculates the fracture
degree N and the fragment centers P⇤ as a process

(N,P⇤) = f (W).

Conceptually, the fracture model can be divided into two functions; determining
the fracture degree:

N = fN(W),

and computing the fragment centers as the CVD:

P⇤ = CVD(N,W).

These two conceptual functions correspond to the optimization problems in Equations
(1) and (2), respectively.

Because of its iterative nature, computing the fracture degree constitutes the bot-
tleneck of our fracture model. We propose an example-based approach to approximate
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fN in a fast manner. As a preprocess, we generate a set of example strain energy vec-
tors {Wi}, and compute the fracture degree Ni for each example. The example-based
approximation of the fracture degree can be formalized as

N = f̂N(W,{Wi,Ni})⇡ fN(W).

To robustly learn the main aspects of the mapping between the deformation field
and the fracture degree, without incurring overfitting, we perform a principal compo-
nent analysis (PCA) of the strain energy data {Wi}, and compute a reduced deforma-
tion basis. This can be easily achieved by using Matlab’s tool princomp. Matlab will
return the principal component coefficients in a matrix P, which we use to project the
strain energy vector W onto the reduced basis. The example-based approximation of
the fracture degree can then be rewritten as

N = f̂N(PW,{PWi,Ni}).

We have designed an example-based model to compute the fracture degree using
an RBF network. Given a strain energy vector W, the fracture degree is computed as

N =
k

Â
i

wif(kPW� cik)+b.

Based on the training examples, we compute the k RBF centers {ci}, the RBF weights
{wi}, and the bias b in Matlab using the function newrbe. We have modified this
function so that the RBF is f(r) = r, with global support. The value k is calculated
by incrementing the number of RBF centers until the net does not exceed a maximum
error using the training examples.

The PCA projection matrix P, together with the RBF centers {ci}, the RBF
weights {wi}, and the bias b are precomputed and used during runtime to efficiently
compute the fracture degree.

3.2. Training and Test Sets

The set of examples used for training the RBF network could depend on the types of
interactions expected at runtime. For example, for the wall benchmark in Figure 4,
we generated training examples by throwing balls with different velocities at differ-
ent points on the wall. However, as a general procedure for example generation, we
propose to drop an object from different heights and with different orientations. We
found that this simple procedure is capable of producing diverse deformation distribu-
tions. The fractures in Figure 1 were produced by throwing balls at the horses, using
examples produced by dropping horses.

To test the quality of the example-based fracture model presented above, we have
compared its results to the iterative algorithm presented in Section 2.3. We have gen-
erated several training and test examples for both the horse and bunny objects shown
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Figure 7. Simulation of the fracture of a bunny with iterative (left), vs. example-based
computation of the fracture degree (right).

in Figure 2 and Figure 7. For training, we drop each object from six different heights
and with 64 random, uniformly distributed orientations. We repeat each experiment
three times, to account for the randomness in the initialization of Voronoi sites. For
testing, we drop the objects from the same six heights, but with 18 different orienta-
tions.

Figures 8 and 9 show the learning results for the horse example (The bunny exam-
ple had very similar results.). The two plots (Figure 8) show that the example-based
fracture degree is very similar to the one computed through the full iterative method,
both for the training and test data sets. On the top, we plot the mean and standard
deviation of the fracture degree across all initial orientations of the horse for the same
drop height. On the bottom, we plot the exact fracture degree for all the orientations
and heights in the test set.

Figure 9 compares the results for various error settings in the PCA projection of
the strain energy, for a drop height of 1 m. With no PCA projection, the method
suffers from overfitting, which results in larger errors in the fracture degree (indicated
by a larger standard deviation). With a PCA error of 10%, the quality of the fitting
degrades too. Therefore, in all the examples in the paper, we used an error tolerance
of 2% in the PCA projection. For the horse example, this error tolerance reduces the
size of the strain energy vector W from 1595 to 54 components.

4. Tessellation of Fragments

Our fracture animation method allows concave crack surfaces through the artist con-
trol methods described in Section 2.4, but curved crack surfaces complicate the
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Figure 10. Four canonical tessellation schemes of a tetrhaedron. The nodes of the tetrahedron
are colored based on the fragment to which they belong, and the fracture vertices are colored
in the following way: black for intersections of Voronoi sheets and tetrahedral edges, white
for intersections of Voronoi edges and tetrahedral faces, and yellow for Voronoi vertices.

tessellation step. In this section, we propose a highly parallel algorithm to tessel-
late the fragments resulting from the CVD. Our algorithm exploits the tetrahedral
mesh used for deformation computations and defines a simple local tessellation pro-
cedure inside each tetrahedron independently (see Algorithm 3). Each tetrahedron is
processed in parallel.

We tessellate the CVD by approximating its intersection with a tetrahedral mesh.
We start by labeling the nodes of each tetrahedron according to their closest Voronoi
site (i.e., fragment center), and then the tessellation remains local to each tetrahe-
dron. Based on the labeling of nodes, we select one out of four canonical tessellation
schemes (shown in Figure 10) that entirely define the arrangement of fracture triangles
inside the tetrahedron (line 2 of Algorithm 3).

The intersection of the CVD with the tetrahedral mesh may produce three types
of fracture vertices:

• If the two nodes of a tetrahedral edge are labeled differently, we compute a
fracture vertex as the intersection of a Voronoi sheet with the edge.

• If the three nodes of a tetrahedral face are labeled differently, we compute a
fracture vertex as the intersection of a Voronoi edge with the face.

• If all four nodes of a tetrahedron are labeled differently, a Voronoi vertex defines
a fracture vertex inside the tetrahedron.
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Once all the nodes have been labeled, we proceed with the parallel tessellation of
all tetrahedra. For each tetrahedron, based on the number of nodes closer to each
of the four possible different sites, the four canonical tessellation schemes can be
summarized as follows (see Figure 10):

• (3,1,0,0): There are three fracture vertices at edges and one fracture triangle.

• (2,2,0,0): There are four fracture vertices at edges and two fracture triangles.

• (2,1,1,0): There are five fracture vertices at edges, two more at faces, and five
fracture triangles.

• (1,1,1,1): There are six fracture vertices at edges, four more at faces, one due
to a Voronoi vertex, and 12 fracture triangles.

All three types of fracture vertices can be computed following a common defi-
nition: Given a simplex with all its M nodes closer to M different Voronoi sites, the
fracture vertex is given by the barycentric combination of the nodes which is equidis-
tant to all sites (line 3 of Algorithm 3). We propose an approximate computation of
the fracture vertex, based on the barycentric interpolation of distances to the Voronoi
sites. We construct a matrix D of size M⇥M, where each term di j stores the distance
from node ni to the Voronoi site p j, which is the site closest to node n j. Then, the
barycentric coordinates b of the fracture vertex and the distance d to the Voronoi sites
are given by the solution to the system

 
D � [1]
[1]T 0

! 
b
d

!
=

 
[0]
1

!
.

[0] and [1] represent column vectors of 0s and 1s of size M.
For an edge, the fracture vertex is guaranteed to lie inside, but this is not true for

a face or a tetrahedron. In such cases, we propose an approximation of the fracture
vertex that optimizes the smoothness of the approximate Voronoi sheets, but is con-
strained to lie inside the face or tetrahedron, therefore guaranteeing the locality of the
tessellation algorithm. Instead of considering arbitrary positions inside a tetrahedron,
we reduce the complexity of the problem by choosing the approximate fracture ver-
tex out of the set of fracture vertices at lower-dimensional simplices or their centroid.

Algorithm 3 Tessellation.
1: for all Tetrahedra do

2: Select tessellation scheme
3: Calculate fracture vertices
4: Store fracture surface
5: Triangulate intersection of fracture surface and triangle mesh

48

http://jcgt.org


Journal of Computer Graphics Techniques
Physics-Aware Voronoi Fracture with Example-Based Acceleration

Vol. 3, No. 3, 2014
http://jcgt.org

Figure 11. A triangle mesh (top left), its corresponding tetrahedral mesh (bottom left) and
one fragment after fracture (right). The fracture surface is created from the low resolution
tetrahedral mesh. The clipping process creates small triangles to merge the low resolution
fracture surface and the original high resolution triangle mesh.

Constraining the tessellation to each tetrahedron simplifies the computational process,
but also improves the smoothness of fracture surfaces.

If the algorithm uses only a high-resolution tetrahedral mesh for simulation and
rendering, then the tessellation would not need any more processing. However, in
our examples, we use tetrahedral meshes of moderate resolution that embed the high-
resolution triangle surfaces. Then, the tessellation requires a final step of clipping
fracture surfaces against the original triangle-based surface (see Figure 11). To accel-
erate this clipping operation, as a preprocess we store in each tetrahedron a list of the
surface triangles it intersects. Then, when a tetrahedron is fractured, we test for in-
tersections of its fracture triangles and its embedded surface triangles (line 5 of Algo-
rithm 3), and we triangulate the surface triangles using the Triangle library [Shewchuk
1996].

The triangulation method is called for each fracture triangle that intersects with
surface triangles, and vice versa. The Triangle library receives as an input 2D points
and segments (that will be included in the final triangulation) and 2D hole points (that
define the concavities of the surface). The whole triangulation process takes place
in the plane defined by the triangle T that is being divided. The segments of the
triangulation are defined by the edges of T and the intersection segments of other
triangles ti with T . We set hole points on the midpoint of each intersection segment,
with a small displacement in the direction of the 2D projection of the normal of ti. In
our examples, we displace the hole point by 1e�7 m.
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The triangulation might generate thin triangles, as shown in Figure 11. This is
a result of trying to merge a high-resolution triangle mesh, with a lower resolution
fracture surface. Small or thin triangles could lead to numerical errors, especially if
the fragment is fractured again. These numerical errors could be avoided by post-
processing the fracture surface to increment its resolution.

It is important to note that the interior of the original model lacks material detail
or texture parameterization. For the creation of our videos, we have exported each
fragment into two separate files: one containing the crack surface and another one
with the rest of the surface triangles. However, for interactive applications, one may
also use methods such as 3D texturing, procedural materials, or dynamically gener-
ated parameterization and texture. Some examples of these techniques are shown in
Pietroni et al. [2010] and Takayama et al. [2010].

5. Results

We have integrated our fracture algorithm in the Bullet Physics simulation engine.
The objects are simulated as rigid bodies until a collision is detected, and then we
compute the resulting deformation field using a quasi-static finite element formula-
tion. We then apply our fracture algorithm, and insert the resulting fragments as rigid
bodies in the Bullet scene.

We have executed several benchmarks in order to analyze different aspects of our
algorithm. All experiments were executed on a 3.4GHz Intel i7-2600 processor with
8GB of RAM, using 8 cores for the parallel tessellation of fragments.

The various examples in the paper highlight the richness and versatility of fracture
patterns with our method, as well as the influence of collision scenarios. As expected,
smaller fragments are concentrated in the zone of impact. Moreover, if an object falls
on a thin part (e.g., when the bunny in Figure 7 falls on its ears), the object naturally
shatters into more fragments than when an object falls on a large part (e.g., when the
horse in Figure 2 falls on its head). Please see the accompanying video. Also, as
expected, the fracture degree grows on average as objects are dropped from a greater
height, as shown in Figure 8. Figure 2 demonstrates the expected behavior when the
material is modified. When the horse is dropped from the same height and with the
same orientation, it breaks into more and smaller fragments with a choice of weaker
material (lower threshold g).

We have already discussed the accuracy of the example-based approach for com-
puting the fracture degree in Section 3.2. Figure 7 shows a comparison of a bunny
whose fracture degree is computed iteratively versus a bunny whose fracture degree is
quickly computed based on examples. We observe that the distribution of fragments
with the example-based approach is very similar to the iterative method, but it reduces
the computation of the final CVD from more than one second to under 70 ms. Fig-
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#tris #tetras #nodes
Horse (Figs. 1 & 2) 38016 5256 1595

Wall (Figure 4) 4800 1408 582
Bunny (Figure 7) 163584 5301 1477

Mushrooms (Figure 12) 768 1309 433

Table 1. Resolution details of our benchmarks. We indicate the resolution of the triangle
meshes and their corresponding tetrahedral meshes.

high-dim RBFs Frac. deg. CVD (iters) CVD (ms) Tessel. (ms)
Horse 74 38 7 / 67 4 / 15 15 / 37 65 / 233
Wall - 18 3 / 18 7 / 3 7 / 7 24 / 58

Bunny 147 45 3 / 48 13 / 18 49 / 67 213 / 272
Mushrooms 250 90 5 / 81 10 / 18 26 / 21 23 / 45

Table 2. Simulation statistics for several benchmarks. First, we indicate the size of their
high-dimensional embedding space for interior distance computation and the number of RBF
centers used for example-based computation of the fracture degree. Then, for two different
fracture examples with each model, we indicate the fracture degree, the number of iterations
needed to compute the CVD, and the time to compute the CVD and the tessellation (in ms.)

ure 8 indicates the same results for a large battery of tests executed on the horse in
Figure 2.

In Tables 1 and 2, we show some statistics and timings to compute a single frac-
ture event in our benchmarks. For a small fracture degree, the cost is dominated by
the CVD computation, but as the fracture degree grows, the cost is rapidly domi-
nated by the tessellation, in particular by the tessellation of the original surface, as
noted by the data from the bunny benchmark. Our implementation takes advantage of
multi-core CPU architectures to parallelize the tessellation, but further performance
improvements would be possible by using the general triangulation routines in Tri-
angle [Shewchuk 1996] only in complex cases. It is worth noting that, for the wall
model, which is originally convex, we simply used the Euclidean metric as a suitable
interior distance metric.

The mushroom benchmark in Figure 12 shows a practical application of our al-
gorithm in an interactive scene. A user throws and drags around the mushrooms
interactively, producing fractures and collisions. As indicated in Table 2, fracture
events in this scene reach a cost of up to 66 ms with our algorithm. The complete
simulation, including collision handling with the Bullet engine, runs at an average
rate of 14.80 fps, and it contains 250 fragments. The interactive horse benchmark in
Figure 1 shows how fracture patterns adapt to the various collision scenarios. This
example also demonstrates the plausibility of example-based fracture. The animation
runs at an average rate of 21.82 fps, and it consists of 69 fragments at the end.
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Figure 12. Breaking Mushrooms. The user throws and drags around mushrooms interactively.
The complete simulation runs at an average rate of 14.80 fps, and it consists of 250 fragments
at the end.

6. Discussion and Future Work

We have presented an algorithm to simulate brittle fracture that combines the flexibil-
ity and plausibility of physically based methods, with the efficiency and artist control
of Voronoi-based geometric methods. The major components of our algorithm are
a formulation of fracture as the computation of an interior CVD, an example-based
learning method to accelerate the computations, and a highly parallel local tessellation
method based on a tetrahedral lattice. In our implementation, the tetrahedral lattice is
the same tetrahedral mesh used for computing elastic deformations, but our algorithm
could easily be extended to other deformation algorithms. It would be sufficient to
evaluate deformation energies at the nodes of the tetrahedral lattice.

The major limitation of our approach is that it relies heavily on preprocessing, at
several levels. First, the computation of the high-dimensional embedding space for
the evaluation of interior distances requires a precomputation step [Rustamov et al.
2009]. Second, the example-based computation of the fracture degree requires the
precomputation of multiple simulation examples for each object. In our benchmarks,
we have computed up to 1152 examples per object (6 heights ⇥ 64 orientations ⇥
3 instances). With an average cost of two seconds per example, this amounts to a
preprocessing cost of 38 minutes. Note that this preprocessing can be trivially paral-
lelized. Fortunately, our results indicate that a general training procedure, based on
dropping objects from various heights and with various orientations, is sufficient even
for runtime simulations with very different dynamics and collisions.

From our experiments, we can easily identify tessellation, in particular the tes-
sellation of the fine surface, as the major bottleneck of the runtime algorithm. As
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mentioned in the previous section, further optimizations would be possible by iden-
tifying simple cases that do not require the general triangulation solution of Trian-
gle [Shewchuk 1996].

In conclusion, we believe that our work also poses interesting questions about
the outreach of current geometry-based and physically based methods for simulating
fracture. A combination of both methods, as done in our algorithm, produces plau-
sible results with high flexibility for artist control. It would be interesting to extend
artist control tools to handle data from real-world fractures. Another open question is
whether Voronoi methods could be used for handling partial and/or ductile fracture.
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