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Abstract

This paper presents a suite of routines for computing the distance between combinations of
triangles, lines and points that we optimized for the x86 SSE SIMD (vector) instruction set.
We measured between two and seven times throughput improvement over the naive non-SSE
optimized routines.

1. Introduction

In recent years, SIMD utilization has become a major theme of high performance
computing. Modern CPUs support SIMD extensions that can be used to gain some of
the benefits of many-core computation while avoiding some of the drawbacks. SIMD
extensions are CPU implementations of the SIMD architecture described in Flynn’s
Taxonomy [Flynn 1972], and they allow a CPU core to perform a single instruction on
multiple pieces of data in parallel, while maintaining the low response time inherent
in CPU processing. A benefit of SIMD is the possibility to combine SIMD extensions
with threaded multi-core CPU processing for even greater exploitation of parallelism.
Intel’s Streaming SIMD Extensions (SSE) is a SIMD instruction set that is supported
by the great majority of modern processors, and it utilizes 128-bit registers that al-
lows a core to perform up to four single-precision floating point operations at once.
Although the SSE instruction set can process at most four floating-point values at a
time, with the more recent AVX and AVX2 instructions it is possible to process up to
eight floating-point values in parallel. Thakkur and Huff [1999] gives a more in-depth
description of SSE and SIMD extensions in general.

When it comes to basic, low-level computer graphics routines, there is great in-
terest in exploiting SSE, with articles exploring fast SIMD-based ray-triangle inter-
section tests [Havel and Herout 2010], sphere-box intersection tests [Larsson et al.
2007], etc. Mostly, such tests focus on using SSE in a more serial fashion where one
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exploits SSE functions while testing one object against another. The potential prob-
lem is that compilers are growing so much better at optimizing code that hand-written
serial optimizations may soon be unnecessary (depending on the application). This is
why we focus on a more parallel approach to SIMD, whereby instead of simply trying
to improve a single test, we use SIMD to be able carry out up to four distance tests
at once. The benefit of such an approach is a more natural utilization of all SIMD
registers (for three dimensional problems) than utilizing three registers for coordinate
data and wasting the final register, [Havel and Herout 2010].

In this article we present new SIMD-based triangle-triangle distance routine to ef-
ficiently exploit the x86 SSE instructions. Achieving this goal, however, required us
to develop a number of other SSE based distance routines such as triangle-point dis-
tance, line segment-line segment distance and triangle-triangle collision. We present
all the other necessary algorithms before presenting our SSE based triangle-triangle
distance routine. In addition, we avoid bloating this paper with comments more than
is absolutely necessary because the basic idea behind each routine is not new. We
have simply taken existing C++ code and converted it (with the necessary small mod-
ifications and optimizations) to SSE friendly code using a Structure-of-Arrays (SoA)
approach. Where changes are made that significantly effect the performance of the
code and these changes deviate from the original code then we point this out. Other-
wise the reader is referred to the original articles/code to see detailed explanations of
the code flow and meaning.

The motivation for our routines comes from scenarios where it is important to
have fast distance queries between triangle meshes for path planning [Hermansson
et al. 2013; Spensieri et al. 2008] in robotics, [Spensieri et al. 2013]. Routines such
as those presented here can be used for bounding volume hierarchies to speed up the
final distance routines, [Shellshear et al. 2013].

In the next section we describe our new SSE based primitive routines. After that,
in Section 3 we present our experimental setup and benchmark cases. In Section 4 we
then present our results and in Section 5 we conclude. We also supply supplementary
code for our routines in Section 6.

2. SIMD-Based Geometry Routines

We approach our SIMD based distance tests by using a SoA data layout, [Klimovitski
2001], instead of the Array-of-Structures (AoS) data layout. This means that instead
of storing one array of three dimensional coordinates specifying our points, lines or
triangles, we store three arrays containing sets of x, y and z coordinates, respectively.
The approach we use (for SSE) is to load the x coordinates from four triangles into
one SSE register, and the y and z coordinates from the same triangles into two other
registers, then process all four triangles in parallel. All code described in this section
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can be found in the code listings of Section 6.
SSE code can be written directly using inline assembly language instructions or

using compiler intrinsics. However, to simplify the coding and the notation in this
article, the Embree package (version 1.1) [Intel 2014] was used to provide basic vector
functions via operator overloading, etc. In code listing 5, we present the definitions of
the basic data SSE structures and their respective operations. These data structures are
from the Embree package and are the basic building blocks from which all other data
structures are built. For the sake of illustration, some of the basic functions included
in these data structures are also given. To see all the included functions, the reader is
referred to the Embree project source.

From the ssef data structure defined in code listing 5, we create the SoA that
is used to store the data for multiple points, lines and triangles. These collections of
primitives are in turn based on another data structure given in Embree, Vec3. Vec3
has a number of overloaded functions to allow one to use SIMD data structures in the
template. Examples of a few such functions are also given in code listing 6.

The two basic types ssef and Vec3 were used to define other data structures
such as our SSE points, lines and triangles. See the code listing 7 for the definition of
each data type.

Each of our distance routines is based on rewriting the fastest known (to the au-
thors) distance tests into a SIMD friendly format. We compared well-known routines
as well as those published at Geometric Tools website [Eberly 2007], with the ones
presented here. The line segment-line segment and triangle-point distance tests were
adapted from the routines presented in the book Real-Time Collision Detection [Eric-
son 2004]. This turned out to be faster than basing the code on the routines at the Ge-
ometric Tools website and was mostly likely due to the significant branching present
in the routines there. The triangle-triangle distance test is taken from the PQP [Larsen
et al. 2014] source code, as our SIMD version of this code turned out to be faster than
our SIMD version of the triangle-triangle distance routine presented on the Geometric
Tools website. The authors are unaware of the triangle-triangle distance routine from
the PQP source code having been published via any outlet other than as source code
on the previously mentioned reference.

In the following subsections we briefly describe the algorithms used in the original
code from Real-Time Collision Detection and PQP, and the changes that we made to
make it more SSE friendly and to improve performance. We used the SSE intrinsic
instructions via the Embree wrapper functions to write the code and used instructions
from versions up to and including SSE4. All routines return the squared distance
between the primitives, hence the 2 after each name. The only remaining function
needed to understand the code in the subsections is our clamp function in code listing
8.
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2.1. Line Segment-Line Segment Distance Test

The first distance test we present code for is the line segment-line segment distance
routine in code listing 9. The SIMD version is a simple adaption of the well-known
distance test presented in the book Real-Time Collision Detection [Ericson 2004].

A brief outline of the distance test is as follows. The closest points between two
segments is found by finding a vector perpendicular to both line segments. This can
always be found by infinitely extending the lines in both directions. If the two found
closest points lie within the line segments then the computation is finished. If not,
then one needs to be careful when clamp the closest points to the segments so that the
nearest points on the line segments are found. More details can be found in the book
Real-Time Collision Detection.

To make the code more SIMD friendly, a lot of the branching for handling de-
generate line segments has been replaced by hard minimum and maximum values in
our SSE implementation to prevent unnecessary branching. Although this can result
in slightly different results in degenerate cases, in all tests performed here (which
included such degenerate cases) we noticed no difference in the final results. In nu-
merous places we also utilized the select function provided by Embree which is
a wrapper for the _mm_blendv_ps intrinsic to make sure the values are chosen for
the correct triangles. However, the Embree version swaps the order of the first two
arguments in _mm_blendv_ps, i.e. _mm_blendv_ps(a,b,mask) = select(mask,b,a).
By doing so we managed to avoid code such as in code listing 1 which can be SIMD
unfriendly due to branching. Such code was replaced with much more SIMD friendly
code such as that in code listing 2. Note that the code in code listing 1 has been op-
timized for the different t values which is why there is no t value in the computation
for s.

1 if (t < 0.0f) {

2 t = 0.0f;

3 s = clamp(-c / a, 0.0f, 1.0f);

4 } else if (t > 1.0f) {

5 t = 1.0f;

6 s = clamp((b - c) / a, 0.0f, 1.0f);

7 }

Listing 1. Standard clamping code for segment-segment distance

1 const simdFloat newT = clamp(t, simdFloat(zero), simdFloat(one));

2 simdBool mask = (newT!=t);

3 s = select(mask, clamp((newT*b - c) / a, simdFloat(zero),

simdFloat(one)), s);

Listing 2. SIMD friendly clamping code for segment-segment distance
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Finally, the code also uses the Embree defined constant ul p which is defined by
std :: numeric_limits < f loat >:: epsilon(), e.g. a minimal, positive value, to avoid
divisions by zero.

2.2. Triangle-Point Distance Test

The second distance test we present code for is the triangle-point distance routine in
code listing 10. The SSE version is a simple adaption of the well-known distance test
presented in the book Real-Time Collision Detection. A brief outline of the distance
test is as follows. To find the closest point on a triangle to a given point, we first
project the given point onto the triangle’s plane. If the point orthogonally projects
inside the triangle, then the projection point is the closest point to the given point. If
the given point projects outside the triangle, then the closest point must instead lie on
one of the triangle’s edges. To find which edge, one computes which of the triangle’s
Voronoi feature regions the given point is in.Once determined, only the orthogonal
projection of the given point onto the corresponding feature must be computed to find
the closest point.

The main difference between the original version and our version is that after
each computation of the closest point for each Voronoi region of a triangle, we then
check if that point is the closest point, closest points found so far and if so, set the
corresponding bit in a mask variable (maskX, X = 1,...,6). We compute the bitwise
OR of this mask with all previous masks (six in total) until all closest points have been
found (all mask bits set) or until we reach the end of the function. So instead of the
code in code listing 3 we have the code in code listing 4 with additional bitwise OR
operations for each future test.

1 if (d1 <= 0.0f && d2 <= 0.0f) return a; // barycentric coordinates

(1,0,0)

2 ...

3 if (d3 >= 0.0f && d4 <= d3) return b; // barycentric coordinates

(0,1,0)

Listing 3. Branching example from triangle-point distance code

1 const simdBool mask1 = (d1 <= simdFloat(zero)) & (d2 <= simdFloat

(zero));

2 oTriPoint = iTri[0];

3 simdBool exit(mask1);

4 if(all(exit))

5 return length2(oTriPoint - iPoint); // barycentric coordinates

(1,0,0)

6 ...

7 exit |= mask2;

8 oTriPoint = select(mask2, iTri[1], oTriPoint);

9 if(all(exit))
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10 return length2(oTriPoint - iPoint); // barycentric coordinates

(0,1,0)

Listing 4. SIMD friendly branching example from triangle-point distance code

2.3. Triangle-Triangle Distance Test

The final routine we present code for is the triangle-triangle distance routine. This
function is adapted from the C++ code in the PQP [Larsen et al. 2014] source code, to
SSE optimized code. It performs similar steps as in the original code but the routine
has been optimized for SIMD style computations. A brief outline of the distance
test is as follows. The triangle-triangle distance test is based on an initial fast test to
see if the closest points are between an pair of edges of the two triangles. If this is
unsuccessful then we know that no edge pairs contain the closest points. Hence, we
know that either

• the closest points must be between the vertex of a triangle and the face of the
other triangle,

• the triangles are intersecting,

• the edge of one triangle is parallel to the other’s face (in this case we can take
the closest points from the initial computation),

• the triangles are degenerate.

Each of these cases is then tested in turn to determine which case we are in.
To be able to carry out the distance test we require a triangle-triangle intersection

function which we present in code listing 11. This function was also adapted from the
triangle-triangle intersection function in the PQP software, which takes two sets of
three triangle vertices as input and outputs whether the two triangles are colliding or
not via separating axis tests. Our version of the function simply has each of the C++
data types and functions swapped for SSE data types and functions. Again we are
unaware of the original algorithm being published anywhere apart from in the afore-
mentioned software. We also do not claim this to be the fastest routine for triangle-
triangle intersection, however, the routine is simple to convert to SSE code due to
the only branching occurring as early-outs. Additionally, this routine contributed less
than five percent of total computation time in the triangle-triangle distance routine.
Hence we leave it to future research to investigate the quality of this routine in com-
parison to SSE versions of other routines [Möller 1997; Guigue and Devillers 2003],
as intersection testing is not the focus of this paper.

The triangle-triangle distance test uses a number of smaller subfunctions that
carry out a number of repetitive tasks. In code listing 13, we present the triangle-
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triangle distance function first and then two smaller subfunctions. The first subfunc-
tion, closestEdgeToEdge, computes for four triangle pairs the closest distance
between all edges in the first triangle and one particular edge in the second triangle.
The second subfunction, closestVertToTri, computes distances between four
triangles and four single triangle vertices.

As is the case with the line segment-line segment and triangle-point distance tests,
the major differences between the original triangle-triangle distance code and that pre-
sented here is in the judicious use of masks and the select function to avoid branching
and checking whether all triangles now fulfill a given early out criterion.

3. Benchmarks

To test the performance of the distance functions, we created a number of benchmarks
that encompass the cases commonly encountered by the authors. Three benchmarks
were used to test the performance of both the SIMD and non-SIMD versions. The
geometries used in the benchmarks are presented in Figures 1, 2 and 3. The first
geometry is a CAD geometry that contains many irregular triangles (33k in total)
and called cembox here. This geometry is a proprietary CAD geometry and was
chosen due to the high number of degenerate and irregular triangles. The second
geometry is the well-known armadillo, Figure 2, which contains much more regular
triangles (345k in total) as seen in Figure 3 and comes from the Stanford 3D scanning
repository, [2014].

It is important to note that in each case when we compared the given SIMD routine
against a non-SIMD routine, we always chose the fastest non-SIMD routine. In all
cases, this happened to be the one our SIMD variant was based on. For both the
triangle-point distance and the line segment-line segment routine, according to our
tests, the fastest non-SIMD routines are from the book Real-Time Collision Detection
[2004]. The fastest non-SIMD triangle-triangle routine is the one found in the PQP
package [2014].

In each of the benchmark cases we moved one object via 10 steps from an ini-
tial non-colliding position through the other object to another non-colliding position.
During the movements the moving object rotated 360 degrees and we computed the
distance from a set of 10,000 triangles in the moving object to a set of 10,000 trian-
gles in the static object. Note that when using SIMD instructions, branch divergence
among the data can cause severe performance losses. In order to test the quality of our
code with respect to branch divergence we ran two sets of tests. In the first three tests,
we proceeded by testing four triangles at a time that all share a vertex in the moving
geometry, against a single triangle from the static geometry. In the final three tests
we tested four random triangles from the moving geometry against a single triangle
in the static geometry. When computing line segment-line segment and triangle-point
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distances we proceeded as with the triangle-triangle distances but we computed all
combinations of edge (line segment) distances and triangle-point distances.

It is important to note that the data layout for SIMD tests is different to the normal
data layout for single distance tests. Hence, we decided also to test the non-SIMD
routines with our SIMD data layout to see the effect of this on performance. This data
layout was the SoA data layout as explained in Section 2.

All benchmarks were run on a 64 bit 2.67 GHz Intel Core i7-920 CPU (Nahelem
architecture, Bloomfeld model) with 8 GB RAM under Windows 7 using Microsoft
Visual Studio 2012 with the \O2 optimization on for all tests. All data was tested
using 4 byte floats meaning that it was possible to pack four floats into a single SSE
register.

Figure 1. Cembox showing triangles imposed on the geometry. Photo courtesy of Volvo Cars.

93

http://jcgt.org


Journal of Computer Graphics Techniques
Fast Distance Queries for Triangles, Lines, and Points using SSE Instructions

Vol. 3, No. 4, 2014
http://jcgt.org

Figure 2. Armadillo.

Figure 3. A close up of Armadillo showing triangles

4. Results

In the following tables we present our results. In each table Tri stands for triangle and
Seg stands for line segment. In each case, each entry is the number of 107 tests/s per
second. We present results for the non-SIMD code both with and without SIMD style
data layout. For these non-SIMD routines, we called the non-SIMD layout test "non-
SIMD layout" and the SIMD style data layout test "SIMD layout". We also present
results whereby all optimizations are switched off (the \Od command for command
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line optimization in the Visual Studio compiler) and add a no-opt to each test name to
signify the tests without optimizations.

Cembox vs Cembox neighboring triangles
Test Type Tri-Point Seg-Seg Tri-Tri Tri-Point

no-opt
Seg-Seg
no-opt

Tri-Tri
no-opt

SIMD 3.33 2.94 2.63 0.166 0.148 0.035
SIMD layout 2.44 2.04 0.8 0.196 0.157 0.090
non-SIMD layout 2.08 1.6 0.79 0.132 0.111 0.075

Table 1. Results from the Cembox-Cembox benchmark with neighboring triangles.

Cembox vs Armadillo neighboring triangles
Test Type Tri-Point Seg-Seg Tri-Tri Tri-Point

no-opt
Seg-Seg
no-opt

Tri-Tri
no-opt

SIMD 3.57 2.94 2.63 0.161 0.15 0.111
SIMD layout 2.17 1.92 0.35 0.196 0.158 0.042
non-SIMD layout 1.96 1.54 0.35 0.13 0.14 0.039

Table 2. Results from the Cembox-Armadillo benchmark with neighboring triangles.

Armadillo vs Armadillo neighboring triangles
Test Type Tri-Point Seg-Seg Tri-Tri Tri-Point

no-opt
Seg-Seg
no-opt

Tri-Tri
no-opt

SIMD 3.33 2.94 2.5 0.151 0.149 0.023
SIMD layout 2.22 1.79 0.59 0.197 0.158 0.063
non-SIMD layout 2.04 1.56 0.52 0.132 0.114 0.056

Table 3. Results from the Armadillo-Armadillo benchmark with neighboring triangles.

Cembox vs Cembox random triangles
Test Type Tri-Point Seg-Seg Tri-Tri Tri-Point

no-opt
Seg-Seg
no-opt

Tri-Tri
no-opt

SIMD 3.45 3.03 2.56 0.162 0.15 0.033
SIMD layout 1.56 1.59 0.78 0.196 0.155 0.09
non-SIMD layout 1.3 1.25 0.76 0.135 0.115 0.076

Table 4. Results from the Cembox-Cembox benchmark with random triangles.
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Cembox vs Armadillo random triangles
Test Type Tri-Point Seg-Seg Tri-Tri Tri-Point

no-opt
Seg-Seg
no-opt

Tri-Tri
no-opt

SIMD 3.57 3.13 2.5 0.159 0.15 0.111
SIMD layout 1.59 1.6 0.35 0.198 0.156 0.042
non-SIMD layout 1.31 1.33 0.34 0.123 0.131 0.039

Table 5. Results from the Cembox-Armadillo benchmark with random triangles.

Armadillo vs Armadillo random triangles
Test Type Tri-Point Seg-Seg Tri-Tri Tri-Point

no-opt
Seg-Seg
no-opt

Tri-Tri
no-opt

SIMD 3.28 3.2 2.38 0.154 0.15 0.019
SIMD layout 1.59 1.6 0.53 0.2 0.157 0.064
non-SIMD layout 1.35 1.31 0.49 0.125 0.113 0.057

Table 6. Results from the Armadillo-Armadillo benchmark with random triangles.

4.1. Discussion of results

The first thing that one notices in each of the above benchmark cases is that the SSE
based routines are twice as fast in the triangle-point and segment-segment routines
and up to seven times as fast in the triangle-triangle distance routine for each case
with full optimization on (i.e. the \O2 setting). This result is quite counterintuitive
because the maximum performance gain that one would expect is about a four times
speed up (due to similar data layout). We examine this phenomenon in more detail at
the end of this section.

When it comes just to the data layout part of the speed up, we can see, on average,
about a twenty percent performance improvement just based on the SIMD style data
layout for the non-SIMD code.

When analyzing the unoptimized code using typical performance analysis tools,
one finds the performance differences due to the closestEdgeToEdge from list-
ing 13. In the case of cembox vs cembox or armadillo vs armadillo, one needs to
go through numerous cases and the closestEdgeToEdge takes about 95 percent
of the computation with half of the time being spent on the first call and the other
half on the next two. For the case of cembox vs armadillo (in both cases), the clos-
est distances can be quickly determined by the aforementioned routine, which takes
about 90 percent of the computation. In the cembox vs armadillo case, however, the
first closestEdgeToEdge accounts for already 85 percent of all the computation.
This result is due to the small armadillo triangles being tested against the usually much
larger and narrower cembox triangles and demonstrates the benefits of data coherence
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that the fully optimized program seems to be able to even out.
In general, one can see that the non-SIMD code tends to perform better on the

more irregular triangles, whereas the SIMD based code varies little. In the cases
where the triangles are randomly chosen, we do not notice a performance loss based
on the lack of geometric proximity between triangles. We can see that the SIMD code
does not seem to suffer from additional branch divergence when the triangles are
spread out instead of clustered together. The two different classes of tests (random vs
neighboring triangles) also indicate that the tests are not memory bandwidth limited
due to the similar results in both cases. Hence, it is the computations themselves that
appear to limit the performance.

The most interesting part of the results, however, seems to be when one compares
the non-optimized code with the optimized code. For the non-optimized code, the
SSE based routines are often slower for all types of distance routine except for the
cembox vs armadillo test case (where the SSE code is about three times faster). How-
ever, once optimization is turned on, the compiler is obviously able to optimize the
SSE based code much better resulting in between a twenty and more than one hun-
dred times speed up. However, the non-SIMD based code only improves about ten
times more in each case. The final high quality results seem to be based on, in part,
the ability of the compiler to optimize the code much better. Hence, the seven time
speed up can be seen to be due mainly to the ability of the compiler to optimize the
SIMD code much better than the non-SIMD code.

5. Conclusion and future work

In this paper we have demonstrated the ability to significantly accelerate distance
computations between geometric primitives such as points, lines and triangles. Our
results show that up to seven times performance gains are possible when using simple
SIMD adaptations to available algorithms.

Possible future work for the results presented here would be to extend the tests to
the new AVX and AVX2 instructions.

Also given the improvements resulting from the compiler optimizations, it would
be interesting to retest these results with a number of different compilers to see how
much of the effect seen here depends on the Microsoft Visual Studio compiler.

6. Supplementary code

In this section we present the details of the routines mentioned earlier in the text. We
have also provided the code for our own functions listed in the code listings inside a
supplementary header and source file called ssedistance.h and ssedistance.cpp
respectively. To run this code it is necessary to download and link the files to the Em-
bree package [2014]. The armadillo geometry can be downloaded from the Stanford

97

http://jcgt.org


Journal of Computer Graphics Techniques
Fast Distance Queries for Triangles, Lines, and Points using SSE Instructions

Vol. 3, No. 4, 2014
http://jcgt.org

1 struct sseb

2 {

3 // data

4 union { __m128 m128; int32 v[4]; };

5 };

6 // operations

7 const sseb operator &( const sseb& a, const sseb& b ) { return

_mm_and_ps(a, b); }

8 const sseb operator |( const sseb& a, const sseb& b ) { return

_mm_or_ps (a, b); }

9 const sseb operator ^( const sseb& a, const sseb& b ) { return

_mm_xor_ps(a, b); }

10 bool all ( const sseb& b ) { return _mm_movemask_ps(b) == 0xf; }

11 bool any ( const sseb& b ) { return _mm_movemask_ps(b) != 0x0; }

12 bool none ( const sseb& b ) { return _mm_movemask_ps(b) == 0x0; }

13

14 struct ssef{

15 // data

16 union { __m128 m128; float v[4]; int i[4]; };

17 };

18 // operations

19 const ssef operator +(const ssef& a, const ssef& b) {return

_mm_add_ps(a.m128, b.m128);}

20 const ssef operator -(const ssef& a, const ssef& b) {return

_mm_sub_ps(a.m128, b.m128);}

21 const ssef min(const ssef& a, const ssef& b) {return _mm_min_ps(a.

m128, b.m128);}

22 const ssef sqr(const ssef& a) {return _mm_mul_ps(a, a);}

23 const ssef sqrt(const ssef& a) {return _mm_sqrt_ps(a.m128);}

24 const ssef select(const sseb& mask, const ssef& t, const ssef& f) {

return _mm_blendv_ps(f, t, mask);}

Listing 5. Basic Data Types

3D Scanning Repository [2014]. The cembox used here is proprietary and unfortu-
nately cannot be distributed.
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1 template<typename T> struct Vec3{

2 // data

3 T x, y, z;

4 }

5 // operations

6 template<typename T> Vec3<T> operator+(const Vec3<T>& a, const Vec3

<T>& b) {return Vec3<T>(a.x + b.x, a.y + b.y, a.z + b.z);}

7 template<typename T> Vec3<T> operator-(const Vec3<T>& a, const Vec3

<T>& b) {return Vec3<T>(a.x - b.x, a.y - b.y, a.z - b.z);}

8 template<typename T> Vec3<T> rcp(const Vec3<T>& a) {return Vec3<T>(

rcp (a.x), rcp (a.y), rcp (a.z));}

9 template<typename T> Vec3<T> rsqrt(const Vec3<T>& a) {return Vec3<T

>(rsqrt(a.x), rsqrt(a.y), rsqrt(a.z));}

10 template<typename T> T dot(const Vec3<T>& a, const Vec3<T>& b) {

return a.x*b.x + a.y*b.y + a.z*b.z;}

11 template<typename T> T length2(const Vec3<T>& a) {return dot(a,a);}

Listing 6. Vec3 and some of the overloaded functions it provides

1 typedef sseb simdBool;

2 typedef Vec3<ssef> simdFloatVec;

3 typedef std::array<simdFloatVec, 3> simdTriangle_type;

4 typedef std::array<simdFloatVec, 2> simdLine_type;

5 typedef simdFloatVec simdPoint_type;

Listing 7. Typedefs used throughout the paper

1 template<typename T> T clamp(const T& x, const T& lower, const T&

upper) { return max(lower, min(x,upper)); }

Listing 8. Templated clamp function
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1 simdFloat simdSegmentSegment2(simdFloatVec& oLine1Point,

simdFloatVec& oLine2Point, const simdLine_type& iLine1, const

simdLine_type& iLine2){

2 const simdFloatVec dir1 = iLine1[1] - iLine1[0];

3 const simdFloatVec dir2 = iLine2[1] - iLine2[0];

4 const simdFloatVec lineDiff = iLine1[0] - iLine2[0];

5 //The following are a set of values to assist computations

6 const simdFloat a = dot(dir1, dir1);

7 simdFloat e = dot(dir2, dir2);

8 const simdFloat f = dot(dir2, lineDiff);

9 const simdFloat c = dot(dir1, lineDiff);

10 const simdFloat b = dot(dir1, dir2);

11

12 //s and t are the parameter values from iLine1 and iLine2.

13 simdFloat s,t;

14 simdFloat denom = a*e-b*b;

15 denom = max(denom, ulp);

16 s = clamp((b*f - c*e) / denom, simdFloat(zero), simdFloat(one));

17 e = max(e, ulp);

18 t = (b*s + f) / e;

19 //If t in [0,1] done. Else clamp t, recompute s for the new

value of t and clamp s to [0, 1]

20 const simdFloat newT = clamp(t, simdFloat(zero), simdFloat(one));

21 simdBool mask = (newT!=t);

22

23 //Now choose correct values for s based on what positions the

line segments were in.

24 s = select(mask, clamp((newT*b - c) / a, simdFloat(zero),

simdFloat(one)), s);

25 //Compute closest points and return distance.

26 oLine1Point = iLine1[0] + dir1 * s;

27 oLine2Point = iLine2[0] + dir2 * newT;

28 return length2(oLine1Point - oLine2Point);

29 }

Listing 9. Segment-Segment Distance
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1 const simdFloat simdTriPoint2(simdFloatVec& oTriPoint, const

simdTriangle_type& iTri, const simdPoint_type& iPoint){

2 const simdFloatVec ab = iTri[1] - iTri[0];

3 const simdFloatVec ac = iTri[2] - iTri[0];

4 const simdFloatVec ap = iPoint - iTri[0];

5 const simdFloat d1 = dot(ab, ap);

6 const simdFloat d2 = dot(ac, ap);

7 const simdBool mask1 = (d1<= simdFloat(zero)) & (d2<= simdFloat(

zero));

8 oTriPoint = iTri[0];

9 simdBool exit(mask1);

10 if(all(exit))

11 return length2(oTriPoint - iPoint);

12

13 const simdFloatVec bp = iPoint - iTri[1];

14 const simdFloat d3 = dot(ab, bp);

15 const simdFloat d4 = dot(ac, bp);

16 const simdBool mask2 = (d3 >= simdFloat(zero)) & (d4 <= d3);

17 //Closest point is the point iTri[1]. Update if necessary.

18 oTriPoint = select(exit, oTriPoint, select(mask2, iTri[1],

oTriPoint));

19 exit |= mask2;

20 if(all(exit))

21 return length2(oTriPoint - iPoint);

22

23 const simdFloatVec cp = iPoint - iTri[2];

24 const simdFloat d5 = dot(ab, cp);

25 const simdFloat d6 = dot(ac, cp);

26 const simdBool mask3 = (d6>=simdFloat(zero)) & (d5<=d6);

27 //Closest point is the point iTri[2]. Update if necessary.

28 oTriPoint = select(exit, oTriPoint, select(mask3, iTri[2],

oTriPoint));

29 exit |= mask3;

30 if(all(exit))

31 return length2(oTriPoint - iPoint);

32

33 const simdFloat vc = d1*d4 - d3*d2;

34 const simdBool mask4 = (vc<=simdFloat(zero)) & (d1>=simdFloat(

zero)) & (d3<=simdFloat(zero));

35 const simdFloat v1 = d1 / (d1 - d3);

36 const simdFloatVec answer1 = iTri[0] + v1 * ab;

37 //Closest point is on the line ab. Update if necessary.

38 oTriPoint = select(exit, oTriPoint, select(mask4, answer1,

oTriPoint));

39 exit |= mask4;

40 if(all(exit))

41 return length2(oTriPoint - iPoint);

42

43 const simdFloat vb = d5*d2 - d1*d6;
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44 const simdBool mask5 = (vb<=simdFloat(zero)) & (d2>=simdFloat(

zero)) & (d6<=simdFloat(zero));

45 const simdFloat w1 = d2 / (d2 - d6);

46 const simdFloatVec answer2 = iTri[0] + w1 * ac;

47 //Closest point is on the line ac. Update if necessary.

48 oTriPoint = select(exit, oTriPoint, select(mask5, answer2,

oTriPoint));

49 exit |= mask5;

50 if(all(exit))

51 return length2(oTriPoint - iPoint);

52

53 const simdFloat va = d3*d6 - d5*d4;

54 const simdBool mask6 = (va<=simdFloat(zero)) & ((d4 - d3)>=

simdFloat(zero)) & ((d5 - d6)>=simdFloat(zero));

55 simdFloat w2 = (d4 - d3) / ((d4 - d3) + (d5 - d6));

56 const simdFloatVec answer3 = iTri[1] + w2*(iTri[2] - iTri[1]);

57 //Closest point is on the line bc. Update if necessary.

58 oTriPoint = select(exit, oTriPoint, select(mask6, answer3,

oTriPoint));

59 exit |= mask6;

60 if(all(exit))

61 return length2(oTriPoint - iPoint);

62

63 const simdFloat denom = simdFloat(one) / (va + vb + vc);

64 const simdFloat v2 = vb * denom;

65 const simdFloat w3 = vc * denom;

66 const simdFloatVec answer4 = iTri[0] + ab * v2 + ac * w3;

67 const simdBool mask7 = length2(answer4 - iPoint) < length2(

oTriPoint - iPoint);

68 //Closest point is inside triangle. Update if necessary.

69 oTriPoint = select(exit, oTriPoint, select(mask7, answer4,

oTriPoint));

70 return length2(oTriPoint - iPoint);

71 }

Listing 10. Point-Triangle Distance
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1 bool simdTriContact(const simdFloatVec &P1,const simdFloatVec &P2,

const simdFloatVec &P3,const simdFloatVec &Q1,const simdFloatVec

&Q2,const simdFloatVec &Q3) {

2

3 const simdFloatVec p1 = 0; //P1 - P1;

4 const simdFloatVec p2 = P2 - P1;

5 const simdFloatVec p3 = P3 - P1;

6

7 const simdFloatVec q1 = Q1 - P1;

8 const simdFloatVec q2 = Q2 - P1;

9 const simdFloatVec q3 = Q3 - P1;

10

11 const simdFloatVec e1 = P2 - P1;

12 const simdFloatVec e2 = P3 - P2;

13

14 const simdFloatVec f1 = Q2 - Q1;

15 const simdFloatVec f2 = Q3 - Q2;

16

17 simdBool mask(true);

18

19 const simdFloatVec n1 = cross(e1, e2);

20 mask &= simdProject6(n1,p1,p2,p3,q1,q2,q3);

21 if(none(mask)) return 0;

22 const simdFloatVec m1 = cross(f1, f2);

23 mask &= simdProject6(m1,p1,p2,p3,q1,q2,q3);

24 if(none(mask)) return 0;

25 const simdFloatVec ef11 = cross(e1, f1);

26 mask &= simdProject6(ef11,p1,p2,p3,q1,q2,q3);

27 if(none(mask)) return 0;

28 const simdFloatVec ef12 = cross(e1, f2);

29 mask &= simdProject6(ef12,p1,p2,p3,q1,q2,q3);

30 if(none(mask)) return 0;

31

32 const simdFloatVec f3 = q1 - q3;

33 const simdFloatVec ef13 = cross(e1, f3);

34 mask &= simdProject6(ef13,p1,p2,p3,q1,q2,q3);

35 if(none(mask)) return 0;

36 const simdFloatVec ef21 = cross(e2, f1);

37 mask &= simdProject6(ef21,p1,p2,p3,q1,q2,q3);

38 if(none(mask)) return 0;

39 const simdFloatVec ef22 = cross(e2, f2);

40 mask &= simdProject6(ef22,p1,p2,p3,q1,q2,q3);

41 if(none(mask)) return 0;

42 const simdFloatVec ef23 = cross(e2, f3);

43 mask &= simdProject6(ef23,p1,p2,p3,q1,q2,q3);

44 if(none(mask)) return 0;

45

46 const simdFloatVec e3 = p1 - p3;

47 const simdFloatVec ef31 = cross(e3, f1);
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48 mask &= simdProject6(ef31,p1,p2,p3,q1,q2,q3);

49 if(none(mask)) return 0;

50 const simdFloatVec ef32 = cross(e3, f2);

51 mask &= simdProject6(ef32,p1,p2,p3,q1,q2,q3);

52 if(none(mask)) return 0;

53 const simdFloatVec ef33 = cross(e3, f3);

54 mask &= simdProject6(ef33,p1,p2,p3,q1,q2,q3);

55 if(none(mask)) return 0;

56 const simdFloatVec g1 = cross(e1, n1);

57 mask &= simdProject6(g1,p1,p2,p3,q1,q2,q3);

58 if(none(mask)) return 0;

59 const simdFloatVec g2 = cross(e2, n1);

60 mask &= simdProject6(g2,p1,p2,p3,q1,q2,q3);

61 if(none(mask)) return 0;

62 const simdFloatVec g3 = cross(e3, n1);

63 mask &= simdProject6(g3,p1,p2,p3,q1,q2,q3);

64 if(none(mask)) return 0;

65 const simdFloatVec h1 = cross(f1, m1);

66 mask &= simdProject6(h1,p1,p2,p3,q1,q2,q3);

67 if(none(mask)) return 0;

68 const simdFloatVec h2 = cross(f2, m1);

69 mask &= simdProject6(h2,p1,p2,p3,q1,q2,q3);

70 if(none(mask)) return 0;

71 const simdFloatVec h3 = cross(f3, m1);

72 mask &= simdProject6(h3,p1,p2,p3,q1,q2,q3);

73 if(none(mask)) return 0;

74 return 1;

75 }

Listing 11. Triangle-Triangle Collision
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1 //A common subroutine for each separating direction

2 inline simdBool simdProject6(const simdFloatVec &ax,const

simdFloatVec &p1,const simdFloatVec &p2,const simdFloatVec &p3,

const simdFloatVec &q1, const simdFloatVec &q2,const

simdFloatVec &q3) {

3 simdFloat P1 = dot(ax, p1);

4 simdFloat P2 = dot(ax, p2);

5 simdFloat P3 = dot(ax, p3);

6

7 simdFloat Q1 = dot(ax, q1);

8 simdFloat Q2 = dot(ax, q2);

9 simdFloat Q3 = dot(ax, q3);

10

11 simdFloat mx1 = max(P1,P2,P3);

12 simdFloat mn1 = min(P1,P2,P3);

13 simdFloat mx2 = max(Q1,Q2,Q3);

14 simdFloat mn2 = min(Q1,Q2,Q3);

15

16 return (mn1 <= mx2) && (mn2 <= mx1);

17 }

Listing 12. Triangle-Triangle Collision Projection Subroutine

1 simdFloat simdTriTri2(simdFloatVec& oTri1Point, simdFloatVec&

oTri2Point, const simdTriangle_type& iTri1, const

simdTriangle_type& iTri2){

2

3 //The three edges of the triangle. Keep orientation consistent.

4 const simdLine_type tri1Edges[3] = {{iTri1[1], iTri1[0]}, {iTri1

[2], iTri1[1]}, {iTri1[0], iTri1[2]}};

5 const simdLine_type tri2Edges[3] = {{iTri2[1], iTri2[0]}, {iTri2

[2], iTri2[1]}, {iTri2[0], iTri2[2]}};

6

7 simdFloatVec tri1Vector, tri2Vector;

8 simdBool isFinished(False);

9

10 simdFloat minDistsTriTri = closestEdgeToEdge(isFinished,

oTri1Point, oTri2Point, tri1Edges, tri2Edges[0], iTri2[2]);

11 if(all(isFinished))

12 return minDistsTriTri;

13

14 simdFloat tmpMinDist = closestEdgeToEdge(isFinished, tri1Vector,

tri2Vector, tri1Edges, tri2Edges[1], iTri2[0]);

15 simdBool mask = tmpMinDist < minDistsTriTri;

16 minDistsTriTri = select(mask, tmpMinDist, minDistsTriTri);

17 oTri1Point = select(mask, tri1Vector, oTri1Point);

18 oTri2Point = select(mask, tri2Vector, oTri2Point);

19 if(all(isFinished))

20 return minDistsTriTri;

21
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22 tmpMinDist = closestEdgeToEdge(isFinished, tri1Vector, tri2Vector

, tri1Edges, tri2Edges[2], iTri2[1]);

23 mask = tmpMinDist < minDistsTriTri;

24 minDistsTriTri = select(mask, tmpMinDist, minDistsTriTri);

25 oTri1Point = select(mask, tri1Vector, oTri1Point);

26 oTri2Point = select(mask, tri2Vector, oTri2Point);

27 if(all(isFinished))

28 return minDistsTriTri;

29

30 //Now do vertex-triangle distances.

31 tmpMinDist = closestVertToTri(tri2Vector, tri1Vector, iTri2,

iTri1);

32 mask = tmpMinDist < minDistsTriTri;

33 oTri1Point = select(mask, tri1Vector, oTri1Point);

34 oTri2Point = select(mask, tri2Vector, oTri2Point);

35 minDistsTriTri = select(mask, tmpMinDist, minDistsTriTri);

36

37 tmpMinDist = closestVertToTri(tri1Vector, tri2Vector, iTri1,

iTri2);

38 mask = tmpMinDist < minDistsTriTri;

39 oTri1Point = select(mask, tri1Vector, oTri1Point);

40 oTri2Point = select(mask, tri2Vector, oTri2Point);

41

42 minDistsTriTri = select(mask, tmpMinDist, minDistsTriTri);

43 //We need to rule out the triangles colliding with each other.

Hence test for collision.

44

45 simdBool colliding = simdBool(simdTriContact(iTri1, iTri2));

46 return select(colliding, simdFloat(zero), minDistsTriTri);

47 }

48

49 //Compute the distance between a triangle vertex and another

triangle

50 simdFloat closestVertToTri(simdFloatVec& oTriAPoint, simdFloatVec&

oTriBPoint, const simdTriangle_type& iTriA, const

simdTriangle_type& iTriB) {

51 simdFloatVec Ap, Bp, Cp;

52

53 const simdFloatVec edge[2] = {iTriA[1] - iTriA[0], iTriA[2] -

iTriA[1]};

54 simdFloatVec TriNormal = cross(edge[1], edge[0]);

55 const simdFloat norm2 = length2(TriNormal);

56

57 const simdFloat A = simdTriPoint2(Ap, TriNormal, norm2, iTriA,

iTriB[0]);

58 const simdFloat B = simdTriPoint2(Bp, TriNormal, norm2, iTriA,

iTriB[1]);

59 const simdFloat C = simdTriPoint2(Cp, TriNormal, norm2, iTriA,

iTriB[2]);
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60

61 const simdBool AB = A < B;

62 const simdFloat ABdist = select(AB, A, B);

63 const simdFloatVec ABp = select(AB, Ap, Bp);

64

65 const simdBool ABC = ABdist < C;

66 oTriAPoint = select(ABC, ABp, Cp);

67 oTriBPoint = select(ABC, select(AB, iTriB[0], iTriB[1]), iTriB

[2]);

68

69 return select(ABC, ABdist, C);

70 }

71

72 //Compute the distance between a triangle edge and another

triangle’s edges

73 simdFloat closestEdgeToEdge(simdBool& oIsFinished, simdFloatVec&

oTriAPoint, simdFloatVec& oTriBPoint, const simdLine_type (&

iTriAEdges)[3], const simdLine_type& iTriBEdge, const

simdFloatVec& iTriBLastPt){

74 //Test the triangle edge against all three edges of the triangle

iTriA.

75 simdFloatVec A2p, A3p, B2p, B3p, separatingDir;

76

77 const simdFloat A = simdSegmentSegment2(oTriAPoint, oTriBPoint,

iTriAEdges[0], iTriBEdge);

78 //Test to see if the distances found so far were the closest:

79 separatingDir = oTriBPoint - oTriAPoint;

80 oIsFinished |= closestEdgePoints(iTriAEdges[1][0], oTriAPoint,

iTriBLastPt, oTriBPoint, separatingDir);

81 if(all(oIsFinished))

82 return A;

83

84 const simdFloat B = simdSegmentSegment2(A2p, B2p, iTriAEdges[1],

iTriBEdge);

85 separatingDir = B2p - A2p;

86 oIsFinished |= closestEdgePoints(iTriAEdges[2][0], A2p,

iTriBLastPt, B2p, separatingDir);

87

88 const simdBool AB = A < B;

89 const simdFloat ABdist = select(AB, A, B);

90 oTriAPoint = select(AB, oTriAPoint, A2p);

91 oTriBPoint = select(AB, oTriBPoint, B2p);

92

93 if(all(oIsFinished))

94 return ABdist;

95

96 const simdFloat C = simdSegmentSegment2(A3p, B3p, iTriAEdges[2],

iTriBEdge);

97 separatingDir = B3p - A3p;
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98 oIsFinished |= closestEdgePoints(iTriAEdges[0][0], A3p,

iTriBLastPt, B3p, separatingDir);

99

100 const simdBool ABC = ABdist < C;

101 oTriAPoint = select(ABC, oTriAPoint, A3p);

102 oTriBPoint = select(ABC, oTriBPoint, B3p);

103

104 return select(ABC, ABdist, C);

105 }

106 //Find a direction that demonstrates that the current side is

closest and separates the triangles.

107 simdBool closestEdgePoints(const simdFloatVec& iTri1Pt, const

simdFloatVec& iClosestPtToTri1, const simdFloatVec& iTri2Pt,

const simdFloatVec& iClosestPtToTri2, const simdFloatVec&

iSepDir){

108 simdFloatVec awayDirection = iTri1Pt - iClosestPtToTri1;

109 const simdFloat isDiffDirection = dot(awayDirection, iSepDir);

110

111 awayDirection = iTri2Pt - iClosestPtToTri2;

112 const simdFloat isSameDirection = dot(awayDirection, iSepDir);

113

114 return (isDiffDirection <= simdFloat(zero)) & (isSameDirection >=

simdFloat(zero));

115 }

Listing 13. Triangle-Triangle Distance
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