
Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014 http://jcgt.org

Fast PVRTC Texture Compression

using Intensity Dilation

Pavel Krajcevski Dinesh Manocha
University of North Carolina at Chapel Hill

Uncompressed Compressed Uncompressed
Detail

Compressed
Detail

Figure 1. Texture compression using intensity dilation applied to images used in GIS appli-
cations such as Google Maps.

Abstract

We present an algorithm for quickly compressing textures into PVRTC, the Imagi-
nation PowerVR Texture Compression format. Our formulation is based on intensity
dilation and exploits the notion that the most important features of an image are those
with high contrast ratios. We present an algorithm that uses morphological operations
to distribute the areas of high contrast into the compression parameters. We use our
algorithm to compress into PVRTC textures and compare our performance with prior
techniques in terms of speed and quality.

http://gamma.cs.unc.edu/FasTC

132 ISSN 2331-7418

http://jcgt.org
http://gamma.cs.unc.edu/FasTC

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

1 Introduction

Textures are frequently used in computer graphics applications to add realism and
detail to scenes. As more applications leverage the GPU and require high-fidelity
rendering, the cost for storing textures is rapidly increasing. Within the last decade,
texture representations that provide hardware-friendly access to compressed data have
become a standard feature of modern graphics processors. Texture compression, first
introduced by Beers et al. [1996], exhibits many key differences from standard image
compression techniques. Due to the random-access restrictions, compressed texture
formats provide lossy compression at a fixed ratio.

One of the main tenets of a good compression scheme, as introduced by Beers et
al. [1996], is the notion that compression can be offloaded to preprocessing stages and
real-time decompression is performed in hardware. Increasingly GPUs are being used
for applications other than desktop-based 3D games, but continue to make heavy use
of textures. These include geographic information systems and mapping tools (e.g.
Google Maps) that use textures rendered on-the-fly based on level of detail and other
factors, as shown in Figure 1. As a result, it is becoming increasingly important to
develop real-time high quality texture compression algorithms.

In this paper we focus on a widely used texture compression method known
as Low-Frequency Signal Modulated Texture Compression (LFSM) [Fenney 2003].
LFSM leverages the cache-coherent worst-case scenario of block-based texture com-
pression techniques such as DXT1 and BPTC [Iourcha et al. 1999] [OpenGL 2010].
It has been pointed out that LFSM texture compression formats, such as PVRTC,
provide better quality than formats with similar compression ratios (e.g. DXT) on
certain classes of textures [Fenney 2003]. However, due to the structure of LFSM
formats, fast or real-time compression algorithms are not as available compared to
other formats [Schneider 2013].

1.1 Low Frequency Signal Modulated Texture Compression

The most popular texture compression formats, such as DXTn, BPTC, and ASTC,
compress textures by operating on 4x4 blocks [Iourcha et al. 1999][OpenGL 2010][Nys-
tad et al. 2012]. For each block, the pixels are reduced to interpolation points along a
line segment. Each format saves the endpoints of the line segment at a lower precision
than the original image, and it uses predefined interpolation points which provide a
savings in bits.

Like other texture compression formats, PVRTC compressed textures are stored
in a grid of blocks, each containing information for a 4⇥4 or 4⇥8 grid of texels. As
shown in Figure 2, each block contains two colors along with per-texel modulation
data. Each of these colors, referred to as the high color and low color, is used in con-
junction with neighboring blocks to create two low resolution images: the high image
and low image, respectively. In order to lookup the value for a texel, the high image

133

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

���������	

�������	

��
������������

�������

������
�

�� ��

�� ��

������

�� ��
�� �� ��

��
��
��

��������

�� ��
�� ��

��
��
��

��������

��

�������	
 ��!���

�
��
��
��

� ������

������

�
��
��
��

�������

������

��

"���������	

Color4 Modulate(Color4 low, Color4 high, int modulation) {

assert(modulation < 4);

const float lerpVals[4] = {0, 3.0f/8.0f, 5.0f/8.0f, 1};

return lerp(low, high, lerpVals[modulation]);

}

Figure 2. Representation of low-frequency signal modulated texture data. The compressed
data is stored in blocks that contain two colors, high and low, along with modulation data
for each texel within the block. To decompress a texel at location (x,y), the high and low
colors of the surrounding blocks are used to create two upscaled patches. The final color
is determined by using the interpolation value of the pixel within the block to interpolate
between the corresponding pixels in the generated patches.

and low image are upscaled to the original image size using bilinear interpolation.
Once upscaled, modulation data from the block that contains the texel in question is
used to compute a final color. This bilinear interpolation avoids the worst-case sce-
nario with respect to memory lookups. By filtering textures across block boundaries,
information from four blocks is required to decode any texel value.

The biggest impediment to computing an efficient encoding is the fact that the
optimal encoding must be stored within the PVRTC data format. This limitation
necessitates discretizing our values, and quantization of the solution from the real
numbers to integers does not provide an optimal encoding in general. This means
that the aforementioned problem becomes an integer programming problem, which
is known to be NP-Complete [von zur Gathen and Sieveking 1978]. As a result,
computing the optimal encoding is impractical.

1.2 State of the Art

The only known hardware implementation that uses LFSM texture compression is
Imagination’s PowerVR architecture, giving the format the name PVRTC (PowerVR
Texture Compression) [Imagination 2013]. Currently, PVRTC compressors use a two
stage process. In the first stage, they provide an initial approximation of low and high
images and modulation data. In the second stage, they continually refine their initial
approximation of the low and high images and modulation data until they reach a

134

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

Original
Image

Compute
Intensity

Compute
Maximal

Compute
Minimal

Dilate

Dilate
Low
Image

High
Image

Compute
Modulation

Compressed
Texture

Figure 3. Overview of the compression algorithm: The minimum and maximum of the in-
tensity values are dilated to produce the high and low images. These images are then used to
compute the optimal modulation values, and the results are stored in the compressed PVRTC
format.

fixed point with respect to improving compression quality against the original image.
The initial approximation of per-block color values is determined by first applying

a low-pass filter to the image. Next, the difference between the filtered image and the
original is analyzed using principal component analysis. The principal component of
the difference vectors, treated as three dimensional vectors in RGB space, are used to
generate the high and low block color values for the image. While this scheme pro-
vides a good approximation, computing the principal components can be expensive
and the low pass filter may remove image details that tend to preserve fidelity.

Once the initial approximation is computed, the values can be used to iteratively
refine the solution. First, the modulation values are fixed, and the endpoint values
are optimized. Then the endpoint values become fixed, and the modulation values
are optimized. The former is done by computing an SVD that solves the problem of
finding the optimal endpoints in a 2x2 block window. The latter is done by a brute
force search over the four possible interpolation values for each pixel. In this paper we
highlight a new way to compute the initial approximation and assume that, if desired,
this optimization procedure can be applied.

2 PVRTC compression using Intensity Dilation

The basis for our texture compression approach resides in the well studied foundations
of the human visual system’s sensitivity to contrast [Aydin 2010]. In particular, our
algorithm takes advantage of localized areas of an image that have high contrast ratios.
For most textures, these areas are those that contain edges between high intensity and
low intensity regions [Krajcevski and Manocha 2014a]. This section describes an
overview of the algorithm.

Due to the way that PVRTC compressed textures store the compressed data, as
in Figure 2, there is an inherent filtering procedure that takes place during decom-
pression. This filtering procedure blurs sharp edges in textures. By storing nearby

135

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

extremal values in the high and low colors, we can recreate sharp edges by using the
modulation values. More often than not, the two colors on either side of a visible edge
have different intensity values. In order to avoid the filtering during decompression,
we store the higher intensity value in the high color of all nearby blocks, and we store
the lower intensity value in the lower color of all nearby blocks. During decompres-
sion, the per-pixel modulation value can be chosen to be either the high or low color
of each block in order to accurately recreate the edge. In many cases, the preservation
of these edges is more important than the small gradation in color leading up to them.

2.1 Intensity Labeling

In order to preserve the contrast within textures, the first step in our compression
scheme is to determine the high and low intensity values that produce the contrast.
We start by using the definition for luminosity derived from the Y value of the CIE
XYZ color space due to its speed and simplicity of calculation [on Illumination 2004]:

float to_intensity(uint32_t rgba) {

const float a = (float)((pixel >> 24) & 0xFF) / 255.0f;

const float r = a * (float)(pixel & 0xFF) / 255.0f;

const float g = a * (float)((pixel >> 8) & 0xFF) / 255.0f;

const float b = a * (float)((pixel >> 16) & 0xFF) / 255.0f;

return r * 0.2126f + g * 0.7152f + b * 0.0722f;

}

Other luminance values, such as the L channel of CIE L*a*b are also viable alterna-
tives for computing the luminance. For textures with alpha, we premultiply the alpha
channel across each color channel before performing the luminance calculation.

There are many ways to determine the local minima and maxima of intensity,
including searching for a near-zero magnitude gradient or evaluating the eigenvalues
of the Hessian. A simple alternative is to simply look at the intensity value of each of
the neighboring pixels. If all of the neighbors have higher intensity values or all of the
neighbors have lower intensity values, then the pixel in question is a local minimum or
local maximum, respectively. Once we have determined these local minima and local
maxima, we can separate them into two images, one representing all local minima,
and the other representing all local maxima.

3 Intensity Dilation

The local minima and maxima of an image give a sparse respresentation of the pixels
that represent the contrast of an image in those neighborhoods. We treat the local
minima and maxima as two separate images that will eventually be used to calculate
the high and low colors of the image. In order to expand the influence of the extremal
values, for each image we use a technique from mathematical morphology known

136

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

as dilation [Serra 1983]. Usually applied to binary images, dilation is the use of a
small kernel shape, such as a 3⇥ 3 pixel box, to expand a region of pixels. Dilation
considers this kernel centered on each pixel in the image, and if the pixel is to be
dilated, it is copied into each pixel in the kernel. For PVRTC, the input textures have
at least three 8-bit channels that must be dilated. We can consider pixels that have
not yet been dilated into ’empty’, such that prior to dilation, all of the minimal and
maximal pixels are non-empty while every other pixel is empty. When an empty
pixel is adjacent to two or more non-empty pixels there must be a strategy for how
to perform the dilation. In our method, we have chosen to average adjacent pixel
values in order to preserve the color range that corresponds to a block. This reduces
the amount that noise affects our choice of block colors. One alternative is to take
the texel with the higher or lower intensity based on the image being dilated, but this
causes problems with noisy images.

In order to capture the important features of a texture, the extremal pixels of the
image (Section 2.1) must be dilated until they influence neighboring block values. In
PVRTC, blocks cover 4⇥ 4 pixel regions. This implies that any pixel p at location
(px, py) affected by a block b centered at (bx,by) is at most 3 units away, where the
distance d is defined as

d = sup
px,py

{||b�p||1 : |bx � px|< 4 and |by � py|< 4} .

In order to properly influence the colors of a block that covers a given labeled pixel,
we must dilate each of the extrema 3 times.

Once dilated, each block will represent the major local influences of either low or
high intensity depending on the image. The resulting block color will be the average
of the intensities within the block boundaries. Certain areas, such as color gradients,
contain very few local minima or maxima and may not have any dilated texels. In or-
der to prevent these areas from being influenced by texels relatively far from the block
center, we fill empty texel values with the enclosing block’s corresponding extrema
color. Once we have the high and low colors corresponding to a given block, we are
free to compute optimal modulation values to match our original pixel colors. We
compute the modulation values by locally decompressing the blocks into full resolu-
tion high and low images, and then selecting the optimal modulation value via brute
force search.

3.1 Parallelization

The dilation steps are inherently parallelizable since they operate locally on pixels.
Once the extrema values are extracted from the original image, each image can be
dilated in parallel. Since each extremum value needs to be dilated three times, we can
compute the value of each pixel in the high and low images by running a 7x7 kernel
over each pixel, and choosing the value that is closest spatially to this pixel. Since

137

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

PSNR: 1 PSNR: 26.547 PSNR: 26.550 PSNR: 26.609
SSIM: 1.0 SSIM: 0.9884 SSIM: 0.6940 SSIM: 0.6640

Figure 4. Problems with using PSNR as the only metric. Each image above has a similar
PSNR to the original image on the far left. Images courtesy of Zhou Wang [2004].

each pixel is independent, this operation can be performed very efficiently using a
GPU.

Similarly, to save on GPU compute cycles, each pixel can be dilated by a 3x3
kernel. However, since this only expands the original image by one pixel in every
direction, the 3x3 dilation step would need to be run three times to achieve the same
results as the 7x7 dilation mentioned above. The results are identical but can be
tailored to your particular architecture. For example, dilating a 3x3 kernel can be
separated into two passes: one pass to expand the pixels along the horizontal axis,
and one to expand the pixels along the vertical axis. However, all of the results in
Section 4 report benchmarks on single-core implementations.

4 Results

The only PVRTC texture compressor known to the authors is Imagination’s PVR-
TexTool [2013], which we use to compare the speed and quality of our algorithm. It
incorporates the two stage compression technique described by Fenney et al. [2003]
and reviewed in Section 1.2. The following comparisons all use the fastest setting for
the compressor and are not focused on quality compression. They do not represent
the best possible quality achievable by PVRTC. Also, our results focus on the 4bpp
version of PVRTC, but similar methods should be useful for both 2bpp and future
iterations of PVRTC. Although the compressor is closed source, the decompressor
provided with the SDK was used to verify the results [Imagination 2013].

4.1 PSNR vs SSIM

Classically, the quality of texture compression techniques have always been mea-
sured with Peak Signal to Noise Ratio (PSNR) [Fenney 2003][Ström and Pettersson
2007][Nystad et al. 2012][Krajcevski et al. 2013]. This metric originates from signal
processing and corresponds to the amount of absolute difference between pixel val-
ues. When compressing textures, such a metric can be useful, such as when we need

138

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

to encode a 2D function as a texture. However, in LFSM compressed textures, de-
compression focuses on a filtered representation of the compressed data and is mostly
designed for textures that will be consumed visually. As shown in Figure 4, PSNR
does not correlate with visual fidelity.

For this reason, we also include the Structural Similarity Image Metric (SSIM),
a metric developed by Wang et al. [2004] that captures differences of two images as
perceived by the human visual system. The metric is defined as

SSIM(Ix, Iy) =
(2µxµy +C1)(2sxy +C2)

(µ2
x +µ2

y +C1)(s2
x +s2

y +C2)
,

where µ is the mean intensity and s is the standard deviation, and sxy is defined as

sxy =
1
N

N

Â
i=1

(xi �µx)(yi �µy).

C1 and C2 are application-defined constants to avoid numerical instability. One lim-
itation of SSIM is that it only measures a single channel. In the subsequent compar-
isons, we measure SSIM by first converting both the original and compressed image
to grayscale.

4.2 Compression Speed

The main benefits of using intensity dilation over previous techniques is in compres-
sion speed. Looking at Table 1, we observe a 3.1x speedup over the previous fastest
implementations. Similar to other texture compression algorithms, we optimize away
areas of homogeneous pixels with precomputed lookup tables [Waveren 2006][Kra-
jcevski et al. 2013]. Furthermore, textures that contain a lot of homogeneity such as
the ’streets’ texture in Table 1 gain a small benefit from the instruction cache since
intensity calculations will reuse texel values. However, as we will see in Section 4.3,
we suffer from aggressive averaging artifacts in these areas. Most images do not have
large homogeneous areas, and consequently compression speed grows linearly with
the number of pixels in the texture.

4.3 Compression Quality

Compressing textures using intensity dilation, we observe an increase in the SSIM
index for a majority of textures and maintain similar results in PSNR. Most notably,
we can see that certain low frequency features are retained in the compressed versions
of many textures with high entropy. Due to intensity dilation, the averaging during
dilation around the edges of the roof prevents compression artifacts from arising due
to local extrema. This is noticeable across all images that have low frequency features,
such as photographs or common billboard textures.

Although our technique is useful for this class of textures, we also observe a class
of textures that perform poorly with intensity dilation. These textures correspond to

139

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

streets gradient satellite mountains bricks gametex lorikeet
256⇥256 256⇥256 256⇥256 256⇥256 256⇥256 512⇥512 512⇥512

����������	
����
���
����������	
����
���

�����

����	
����

�
�		
��
�		
� �����	�
�����	�
 ��
	���
	��
	���
	 ����
��������
���� ������������ ���	
	
���	
	
 �����		
�����		

��

����

������

������

������

��������	
��
����������������������������������	
��
��������������������������

�����

����	
����

�
�		
��
�		
� �����	�
�����	�
 ��
	���
	��
	���
	 ����
��������
���� ������������ ���	
	
���	
	
 �����		
�����		

����

����

����

����

����

����������

�
��

��
	

�

��
��

��
�
�

��
��

�

�

�
��

��
	

�

��
��

��
�
�

��
��

�

�

��������	
��
����������������������������������	
��
��������������������������

�����

����	
����

�
�		
��
�		
� �����	�
�����	�
 ��
	���
	��
	���
	 ����
��������
���� ������������ ���	
	
���	
	
 �����		
�����		

������

����������

��������

����������

��

����������

�
��	

�
	�

��
��

�

��

�
�
��

��
��

�
�
��	

�
	�

��
��

�

��

�
�
��

��
��

�

Table 1. Various metrics of comparison for LFSM compressed textures using intensity dila-
tion versus the existing state of the art tools. All comparisons were performed using the fastest
quality settings of the February 21st 2013 release of the PVRTexTool [Imagination 2013]. For
both metrics, higher numbers indicate better quality. The above results were generated on a
single 3.40GHz Intel® Core™ i7-4770 CPU running Ubuntu Linux 12.04. Images courtesy
of Google Maps, Simon Fenney, and http://www.spiralgraphics.biz/

140

http://jcgt.org
http://www.spiralgraphics.biz/

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

Context Original PVRTexTool Our Method

Figure 5. Detailed investigation of areas with high pixel homogeneity. We notice that the
texture compressed using intensity dilation suffers from artifacts arising from aggressive av-
eraging of nearby intensity values, while the PCA based approach has relatively good quality
compression results. Original image retreived from Google Maps.

the relatively low entropy texture ’mountains’ (Table 1) generated from vector graph-
ics and used in some modern day geomapping applications. We measure entropy
using the common formula from 8-bit intensity values [Shannon 1948]:

E =�Â pi log pi,

where pi is the number of pixels with intensity i divided by the total number of texels.
This is not a steadfast metric of when our algorithm performs poorly due to the met-
ric’s lack of spatial coherence, but it does provide a good intuition for when intensity
dilation may not produce favorable results. Many spatially correlated areas of moder-
ate homogeneity result in overaggressive extrema labeling. The problem arises from
the fact that in homogeneous regions of pixels, there is no maximum or minimum. In
these instances, either no maximum or minimum exist, and the high and low images
will take the maximum and minimum intensity pixel, which is the same value, or ev-
ery pixel is a maximum and a minimum, so the dilation aggressively eliminates small
scale image features. In the worst case, this problem occurs when there are very few
colors in a block’s region: on the order of two or three. Then every pixel becomes la-
beled as both a maximum and a minimum, and blurring occurs which removes image
detail, as shown in Figure 5.

5 Limitations and Future Work

Limitations: Although intensity dilation provides good results at 3.1 times the speed
of conventional LFSM compression techniques, there are still some problems to con-
tend with. Recently, trends in mobile devices are supporting multiple compression
formats, such as DXT1 and ETC, where much faster, higher quality texture compres-
sion techniques may be available, as shown in Table 2.

Using intensity dilation for LFSM formats should be used to focus on devices
that exclusively support LFSM texture compression, such as Apple’s iPhone and iPad.

141

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

Image
Speed (ms) Quality (PSNR)

DXT1 PVRTC ETC1 DXT1 PVRTC ETC1
satellite 0.5 20.9 21.7 32.1 30.4 33.9

mountains 0.5 21.8 18.3 33.3 30.0 36.6
gametex 2.1 97.3 90.3 31.2 30.2 33.2

Table 2. Fastest available compression speeds (including our intensity dilation for PVRTC)
for a variety of formats with similar compression ratios.

However, we have bridged the gap between fast texture compression techniques for
certain formats, such as PVRTC and ETC1 [Geldreich 2013]. These times do not
reflect any multi-threaded or GPU based techniques. Devoting an entire GPU to com-
press a texture will likely have certain benefits, but will also likely consume more
power on mobile devices, which is ultimately undesirable.

Future Work: Although intensity dilation is a good technique for fast PVRTC com-
pression, it does not try to optimize the amount of compression quality afforded by
LFSM formats. For example, additional investigation is required to determine the ef-
fects of gamma-corrected images versus raw RGB. Furthermore, in most compression
techniques, an initial approximation is refined to gain better quality, as described in
Section 1.2. We believe that intensity dilation serves as a better initial approximation
to these refinement techniques than the previous state of the art and that developing
fast techniques for refinement is a ripe area of research. Additionally, we can use the
multi-pass formulation of intensity dilation, as introduced in Sections 2.1 and 3, to
come up with a parallelizable algorithm that exploit both SIMD and multiple cores,
such as consumer GPUs.

Additional compression can be applied to already compressed PVRTC images.
Due to the high amount of spatial correlation in the high and low images, they can
easily be further compressed using something similar to JPEG compression, similar
to the work done by Ström and Wennersten [Strom and Wennersten 2011]. Tech-
niques that combine the compression parameters of PVRTC and other compression
formats can potentially be used in conjunction with image segmentation to increase
the compression even further [Krajcevski and Manocha 2014b].

In this paper, we have presented a new technique, intensity dilation for compress-
ing textures into LFSM formats. This allows real-time graphics applications that re-
quire fast access to on-the-fly generated textures to benefit from texture compression
on devices that support LFSM. We believe that, with the rise of distributed graphics
applications, compressing textures on the fly will help decrease server side storage
costs, and provide overall greater flexibility for developers.

Acknowledgements: This work was supported in part by ARO Contracts W911NF-
10-1-0506, W911NF-12-1-0430, and NSF awards 100057 and Intel.

142

http://jcgt.org

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

References

AYDIN, T. O. 2010. Human visual system models in computer graphics. Doctoral
dissertation, Universität des Saarlandes, Saarbrücken. 135

BEERS, A. C., AGRAWALA, M., AND CHADDHA, N. 1996. Render-
ing from compressed textures. In Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques, ACM, SIGGRAPH
’96, 373–378. URL: http://doi.acm.org/10.1145/237170.237276,
doi:10.1145/237170.237276. 133

FENNEY, S. 2003. Texture compression using low-frequency signal modulation. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, Eurographics Association, HWWS ’03, 84–91. URL: http://dl.
acm.org/citation.cfm?id=844174.844187. 133, 138

GELDREICH, R., 2013. Fast, high quality ETC1 (ericsson texture compression) block
packer/unpacker. http://code.google.com/p/rg-etc1/. 142

IMAGINATION, 2013. PowerVR Insider SDK and Utilities. http://www.

imgtec.com/powervr/insider. 134, 138, 140

IOURCHA, K. I., NAYAK, K. S., AND HONG, Z., 1999. System and method for
fixed-rate block-based image compression with inferred pixel values. U. S. Patent
5956431. 133

KRAJCEVSKI, P., AND MANOCHA, D. 2014. Real-time low-frequency signal modu-
lated texture compression using intensity dilation. In Proceedings of the 18th Meet-
ing of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, I3D ’14, 127–134. URL: http://doi.acm.org/
10.1145/2556700.2556719, doi:10.1145/2556700.2556719. 135

KRAJCEVSKI, P., AND MANOCHA, D. 2014. SegTC: Fast Texture Compression
using Image Segmentation. Eurographics Association, Lyon, France, I. Wald and
J. Ragan-Kelley, Eds., 71–77. URL: http://diglib.eg.org/EG/DL/WS/
EGGH/HPG14/071-077.pdf, doi:10.2312/hpg.20141095. 142

KRAJCEVSKI, P., LAKE, A., AND MANOCHA, D. 2013. FasTC: ac-
celerated fixed-rate texture encoding. In Proceedings of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games, ACM, I3D ’13,
137–144. URL: http://doi.acm.org/10.1145/2448196.2448218,
doi:10.1145/2448196.2448218. 138, 139

NYSTAD, J., LASSEN, A., POMIANOWSKI, A., ELLIS, S., AND OLSON, T.
2012. Adaptive scalable texture compression. In Proceedings of the ACM

143

http://jcgt.org
http://doi.acm.org/10.1145/237170.237276
http://dl.acm.org/citation.cfm?id=844174.844187
http://dl.acm.org/citation.cfm?id=844174.844187
http://code.google.com/p/rg-etc1/
http://www.imgtec.com/powervr/insider
http://www.imgtec.com/powervr/insider
http://doi.acm.org/10.1145/2556700.2556719
http://doi.acm.org/10.1145/2556700.2556719
http://diglib.eg.org/EG/DL/WS/EGGH/HPG14/071-077.pdf
http://diglib.eg.org/EG/DL/WS/EGGH/HPG14/071-077.pdf
http://doi.acm.org/10.1145/2448196.2448218

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

SIGGRAPH/EUROGRAPHICS conference on High Performance Graphics, Euro-
graphics Association, HPG ’12, 105–114. 133, 138

ON ILLUMINATION, I. C. 2004. Colorimetry. CIE technical report. Commis-
sion internationale de l’Eclairage, CIE Central Bureau. URL: http://books.
google.com/books?id=P1NkAAAACAAJ. 136

OPENGL, A. R. B., 2010. ARB_texture_compression_bptc. http://www.

opengl.org/registry/specs/ARB/texture_compression_

bptc.txt. 133

SCHNEIDER, J. 2013. GPU-friendly data compression. Presentation at GPU Tech-
nology Conference. 133

SERRA, J. 1983. Image Analysis and Mathematical Morphology. Academic Press,
Inc. 137

SHANNON, C. E. 1948. A mathematical theory of communication. The Bell System
Technical Journal 27 (July, October), 379–423, 623–656. URL: http://cm.
bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf. 141

STRÖM, J., AND PETTERSSON, M. 2007. ETC2: texture compression using
invalid combinations. In Proceedings of the 22nd ACM SIGGRAPH/EURO-
GRAPHICS symposium on Graphics hardware, Eurographics Association, GH
’07, 49–54. URL: http://dl.acm.org/citation.cfm?id=1280094.
1280102. 138

STROM, J., AND WENNERSTEN, P. 2011. Lossless compression of already com-
pressed textures. In Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, ACM, HPG ’11, 177–182. URL: http://doi.acm.
org/10.1145/2018323.2018351, doi:10.1145/2018323.2018351. 142

VON ZUR GATHEN, J., AND SIEVEKING, M. 1978. A bound on solutions of linear in-
teger equalities and inequalities. Proceedings of the American Mathematical Soci-
ety 72, 1, pp. 155–158. URL: http://www.jstor.org/stable/2042554.
134

WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E. 2004. Image quality
assessment: from error visibility to structural similarity. Image Processing, IEEE
Transactions on 13, 4 (april), 600–612. doi:10.1109/TIP.2003.819861. 138, 139

WAVEREN, J. M. P. V. 2006. Real-time DXT Compression. Intel Software Network.
139

144

http://jcgt.org
http://books.google.com/books?id=P1NkAAAACAAJ
http://books.google.com/books?id=P1NkAAAACAAJ
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://dl.acm.org/citation.cfm?id=1280094.1280102
http://dl.acm.org/citation.cfm?id=1280094.1280102
http://doi.acm.org/10.1145/2018323.2018351
http://doi.acm.org/10.1145/2018323.2018351
http://www.jstor.org/stable/2042554

Journal of Computer Graphics Techniques
Fast PVRTC Compression using Intensity Dilation

Vol. 3, No. 4, 2014
http://jcgt.org

Author Contact Information

Pavel Krajcevski and Dinesh Manocha
Department of Computer Science
201 South Columbia Street, Sitterson Hall
UNC-Chapel Hill
Chapel Hill, NC 27599-3175
pavel@cs.unc.edu dm@cs.unc.edu
http://www.cs.unc.edu/ dm

Pavel Krajcevski and Dinesh Manocha, Fast PVRTC Compression using Intensity
Dilation, Journal of Computer Graphics Techniques (JCGT), vol. 3, no. 4, 132–145,
2014
http://jcgt.org/published/0003/04/07/

Received: 2013-10-22
Recommended: 2013-12-09 Corresponding Editor: Padraic Hennessy
Published: 2014-12-19 Editor-in-Chief: Morgan McGuire

© 2014 Pavel Krajcevski and Dinesh Manocha (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-
ND 3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/.
The Authors further grant permission reuse of images and text from the first page
of the Work, provided that the reuse is for the purpose of promoting and/or summa-
rizing the Work in scholarly venues and that any reuse is accompanied by a scientific
citation to the Work.

145

http://jcgt.org
mailto:pavel@cs.unc.edu
mailto:dm@cs.unc.edu
http://www.cs.unc.edu/~pavel
http://jcgt.org/published/0003/04/07/
http://creativecommons.org/licenses/by-nd/3.0/

