
Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014 http://jcgt.org

Adaptive Depth Bias for Shadow Maps

Hang Dou1 Yajie Yan1 Ethan Kerzner2 Zeng Dai3 Chris Wyman4

1Washington University in St. Louis 2SCI Institute 3University of Iowa 4NVIDIA

Figure 1. The overview (left) of an interior scene illuminated by traditional shadow mapping

and details (right). Both constant depth bias (column 1) and slope-scale depth bias (column

2) suffer from shadow acne and shadow detachment. Our method (column 3) has no acne and

preserves more shadow details. Dual-depth-layers depth bias (column 4) shown for reference.

Abstract

Unexpected shadow acne and shadow detachment due to limited storage are pervasive un-

der traditional shadow mapping. In this paper, we present a method to eliminate false self-

shadowing through adaptive depth bias. By estimating the potential shadow caster for each

fragment, we compute the minimal depth bias needed to avoid false self-shadowing. Our

method is simple to implement and compatible with other extensions to the shadow mapping

algorithm, such as cascaded shadow map and adaptive shadow map. Moreover, our method

works for both 2D shadow maps and 3D binary shadow volumes.

1. Introduction

Shadow mapping is still the most widely used technique to generate surface shadows

in interactive applications, such as games and preview of off-line rendering. However,

directly using traditional shadow mapping can easily generate images with intense

shadow acne or false self-shadowing because of under sampled geometry in light

space. There are two common ways to remove shadow acne. One is to avoid false

146 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

self-shadowing by storing extra geometry information and the other is to add a depth

bias before shadow testing. Recording extra geometry information usually introduces

extra storage, construction and look up cost. Adding a constant depth bias does not

work for every part of the geometry. Our method computes an adaptive depth bias for

every pixel based on local geometry features.

Woo et al. [1992] records the average depth of the closest and second closest

surface in the shadow map. However, false self-shadowing remains an problem at

silhouettes. Weiskopf and Ertl [Weiskopf and Ertl 2003] reduce the artifacts at sil-

houettes by adding a constant bound to the midpoint depth bias. Dual depth layers

based methods produce much less artifacts or acne than existing bias based methods

but they introduce extra storage, construction and look up cost, which makes those

methods less scalable. Our method results in comparable quality to dual layer depth

map but better performance.

Williams [1978] used a constant depth bias before shadow testing for each pixel.

A constant bias can remove incorrect self-shadowing but also evokes false unshad-

owing or shadow detachment. Later, non-constant depth bias were proposed to re-

lieve shadow detachment by restricting the bias amount based on surface slope scale.

King [2004] introduces a slope-scale depth bias which is computed based on the frag-

ment’s depth slope relative to light view. Gautron et al. [2013] weight the depth bias

by the angle between the fragment’s surface normal and the incident light ray. These

two methods do not provide minimal bias for every fragment and thus still produce

false unshadowing to some extent. Also, the bias is still constant for fragments with

the same surface slope. Compared to our approach, they have more false positive and

true negative errors.

We propose a novel approach to remove false self-shadowing by generating adap-

tive depth bias based on local geometry features for each fragment. A minimal depth

bias for each fragment is computed by estimating the fragment’s potential occluder.

We also introduce an adaptive epsilon to make sure that the false shadowed fragment

is shifted just above its estimated occluder. Our adaptive depth bias is easy to com-

pute, comes with small overhead and works for both 2D shadow maps and 3D binary

shadow volumes in fully dynamic scenes. To test our method, we apply the algorithm

to traditional shadow map [Williams 1978], paraboloid shadow map [Brabec et al.

2002] and voxelized shadow volumes (VSVs) [Wyman 2011].

2. Adaptive Depth Bias

As a start point, we address the problem with traditional shadow map. Extension

of our method to other shadow mapping algorithms is straight-forward and will be

discussed in detail in the following sections.

Shadow acne in traditional shadow map is mainly due to shading samples from

camera view mismatching samples in shadow map. The amount of depth bias needed

147

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

to eliminate false self-shadowing differs among fragments. As shown in Figure 2

(left), suppose F1 and F2 lie on the same planar surface. F1 is shadowed by F2 which

is sampled in the shadow map. We refer to F2 as the occluder of F1 or occluder of

the corresponding texel. The minimum depth bias or optimal depth bias needed to

N

F1

F2Bias

Eye

Light

C

Texel

R

P
F1

F2

P

Shadow Map

Texel Center

Light

L

Figure 2. (left) 2D illustration of false self-shadowing. F1 and F2 are two fragments on planar

surface P. L represents the optimal bias for F1. (right) 3D Illustration of optimal depth bias

computation for a traditional shadow map.

remove false shadowing for F1 is L. Besides optimal depth bias, a small epsilon value

is needed to move F1 just above its occluder F2. The formula to compute adaptive

depth bias is simply:

adaptiveDepthBias = optimalDepthBias+adaptiveE psilon. (1)

2.1. Optimal Depth Bias

To compute the optimal depth bias for a given fragment, we first locate its potential

occluder. As depicted in Figure 2 (right), under the assumption of planar occluders,

given a fragment F1, its potential occluder F2 can be computed as the intersection of

~R and P, where ~R is the ray traced from the light source through the texel center C,

and P is the tangent plane defined by F1 and normal N. The optimal bias is then the

depth difference between F1 and F2. In practice, rather than explicitly computing op-

timalDepthBias, we use the depth of the intersection point of the light ray through the

shadow map texel center with the tangent plane of the fragment to do visibility check-

ing. Assuming fragments lying on planar surfaces provides a good approximation to

the common situation in many real scenes.

2.2. Adaptive Epsilon

To shift a fragment just above its potential occluder, a proper epsilon value is needed

besides the optimal depth bias. However, a constant epsilon does not work since

the depth value is often compressed non-linearly. Therefore, instead of using a con-

stant epsilon directly, we transform the constant epsilon adaptively based on the depth

compression function.

148

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

The adaptive epsilon is computed based on a constant epsilon and the depth com-

pression function:

ε = f ′(x)∆x, (2)

∆x = sceneScale×K, (3)

where ε denotes the adaptive epsilon we use for biasing, x represents the unnormalized

depth value of the shaded fragment, ∆x represents the unnormalized epsilon value

measured in world space coordinate, f (x) represents an arbitrary depth compression

function which maps depth values from near and far clip plane to [0,1], sceneScale

denotes the length of scene’s bounding box diagonal, and K is a constant. In practice,

we use standard OpenGL depth compression function.

a =−
l f + ln

l f − ln
, (4)

b =−
2× l f × ln

l f − ln
, (5)

f (x) =
−a× x+b

2× x
+

1

2
, (6)

where ln and l f represents the light near and far plane distance, x denotes the real

depth value (x ∈ [−l f ,−ln]) and f (x) denotes the compressed depth value (f (x) ∈

[0,1]). From equation 6 , we obtain:

f (x)′ =
−b

2× x2
, (7)

x =
b

2 f (x)+a−1
, (8)

Combining equation 2, 7 and 8, we obtain the formula for adaptive epsilon:

ε =
(2 f (x)+a−1)2

−2×b
×∆x. (9)

Replacing a and b with equation 4 and 5, we present adaptive epsilon as follow:

ε =
(l f −depth× (l f − ln))2

l f × ln× (l f − ln)
× sceneScale×K, (10)

where depth represents normalized depth value for the given fragment. We set K =

0.0001 in all our experiments.

3. Implementation

We now describe and implement our method in GLSL for a traditional shadow map,

paraboloid shadow map, and voxelized shadow volume.

149

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

3.1. Adaptive Depth Bias for Traditional Shadow Map

For each fragment in traditional shadow map, we locate its potential occluder, com-

pute the adaptive epsilon and shift the fragment just above its potential occluder before

visibility checking. The pseudocode in algorithm 1 and concrete GLSL implemen-

tation in listing 1 show the details. The input parameters are the fragment normal in

light space, fragment position in world space, and shadow map resolution.

Algorithm 1 Pseudocode for shadow map sampling.

SM← generateShadowMap(LightPosition)

for each fragment F with normal N do

P← defineTangentPlane(F, N)

C← locateTexelCenter(SM, F)

R← defineLightRay(LightPosition, C)

F′← planeRayIntersect(R, P)

ε← calcAdaptiveEpsilon(F′)

isLit← checkVisibility(SM, F′, ε)

outputColor← isLit × shadeFrag(F)

end for

uniform mat4 lightView,lightProj; // Light view and projection matrix

uniform float epsilon; // Constant epsilon based on scene scale

// Left bound and near plane of light view frustum

uniform float lightLeft,lightNear;

uniform sampler2D shadowMap;

bool VisibilityCheckInTSM(vec3 lsFragNormal, vec3 wsFragPos, float smRes) {

// defineTangentPlane: Light space fragment normal

vec3 n = normalize(lsFragNormal.xyz);

// LocateTexelCenter: Obtain the light space shadow map grid center

vec2 lsGridCenter = GetLightSpaceCenter(wsFragPos,lightView,

lightProj,lightLeft);

// defineLightRay: Light ray direction in light space coordinate

vec3 lsGridLineDir = normalize(vec3(lsGridCenter, -lightNear));

// FindPotentialOccluderByPlaneRayIntersection: Compute the

// depth of potential occluder for given fragment

float actualDepth = GetOccluderDepth(wsFragPos,lightView,

lightProj,lsGridLineDir);

// Look up depth in shadow map

float SMDepth = GetFragDepth(wsFragPos,lightView,lightProj,shadowMap);

// Compute adaptive depth bias

float adaptiveEpsilon = GetAdaptiveE(lightProj,SMDepth,epsilon);

// checkVisibility

bool isLit = CheckVisibility(SMDepth,actualDepth,adaptiveEpsilon);

return isLit;

}

Listing 1. Bias for sampling a traditional shadow map

150

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

3.2. Adaptive Depth Bias for Paraboloid Shadow Map

For hemispherical and omni-directional light sources, the whole field of view of the

light needs to be mapped; cube and paraboloid are two common mappings. When

using cube map for hemispherical or omni-directional illumination, adaptive depth

bias described in section 3.1 can be used directly. When a paraboloid mapping is cho-

sen, only small change is needed. The pseudocode of visibility checking for adaptive

depth bias with paraboloid shadow map is the same as the pseudocode for traditional

shadow map. The only difference lies in how we locate the potential occluder.

As shown in Figure 3 (left), F1 is incorrectly shadowed by F2 in a paraboloid

shadow map. For F1, L is the optimal depth bias. Similar to the case of tradi-

tional shadow map, for each fragment, we first locate its corresponding texel in the

paraboloid shadow map. Second, we obtain the potential occluder inside that texel

by intersecting the fragment’s local tangent plane with the shadow sample ray of that

texel. Finally, we move the fragment just above the shadow caster with an adaptive

epsilon.

As shown in Figure 3 (right), given a fragment F1, we project it into the paraboloid

shadow map and locate the corresponding texel center C(xc,yc,0). H(xh,yh,zh) rep-

resents the hit point of shadow sample ray on paraboloid.
−→
N represents the surface

F1

Texel

F2
P

C

L

d0

Texel

x

y

z

N

R

o

F1
F2

C

H
P

Figure 3. (left) 2D illustration of incorrect self-shadowing for paraboloid shadow map. Frag-

ment F1 and F2 lie on the planar surface P. C denotes the corresponding shadow map texel

center. F1 is incorrectly shadowed by F2. L represents the optimal depth bias. (right) 3D

illustration of adaptive bias computation for paraboloid shadow map.

151

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

normal at H. We can obtain the sample shadow ray
−→
R as follow:

−→
R = 2× (

−→
d0 ·
−→
N)×

−→
d0−

−→
d0

−→
d0 = [0,0,1]T

−→
N = [

xc

zh

,
yc

zh

,
1

zh

]T

zh =
1

2
−

1

2
× (x2

c + y2
c).

The potential occluder of F1 inside texel T is F2, the intersection of
−→
R and F1’s local

tangent plane P. To remove the false self-shadowing, we move F1 just above F2 with

an adaptive epsilon described in section 2.2. Below shows the shader code. The input

parameters are fragment position, light position and shadow map texture resolution.

The same as traditional shadow map, light rays across texel centers in paraboloid

shadow map can also be precomputed.

// Near and far plane light view frustum

uniform float lightNear,lightFar;

uniform sampler2D shadowMap;

bool VisibilityCheckInPSM(vec3 wsFragPos,vec3 wsLightPos,float smRes) {

/**** LocateTexelCenter ****/

// Obtain the world space shadow map grid center for given fragment

vec3 wsGridCenter = GetWorldSpaceCenter(wsFragPos,wsLightPos,smRes);

/**** defineLightRay ****/

// Light ray direction in world space coordinate

vec3 wsGridLineDir = GetLightRayDir(nlsGridCenterN);

/**** FindPotentialOccluderByPlaneRayIntersection ****/

// Compute the depth of potential occluder for given fragment

float actualDepth = GetOccluderDepth(wsGridLineDir,wsFragPos,

wsLightPos);

// Look up depth in shadow map

float SMDepth = GetFragDepth(wsFragPos,wsLightPos,shadowMap);

// Compute adaptive depth bias

float adaptiveEpsilon = GetAdaptiveE(wsFragPos,wsLightPos,

lightNear,lightFar,SMDepth,epsilon);

/**** checkVisibility ****/

bool isLit = CheckVisibility(SMDepth,actualDepth,adaptiveEpsilon);

return isLit;

}

Listing 2. Bias for Paraboloid Shadow Map

3.3. Adaptive Depth Bias for Voxelized Shadow Volume

Voxelized Shadow Volumes [Wyman 2011] enable computation of both volume shad-

ows in participating media and surface shadows. Similar to traditional shadow algo-

152

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

฀θ

Φ
α

/LJKW (\H

F1
P

F2

R

Figure 4. Incorrect shadowing in the epipolar coordinate system for VSVs. Gray voxels mean

occluded. The voxel containing fragment F1 is incorrectly shadowed by the voxel containing

fragment F2.

rithms, computing surface shadows with VSVs suffers from visual artifacts caused by

discretization of geometry. Unlike traditional shadow maps VSVs represent shadows

with binary information. A voxel is occluded only if it contains a occluding fragment

or it lies in the shadow of another occluding object.

VSVs represent shadows with a binary epipolar voxel-grid. As shown in Fig-

ure 4, epipolar space is defined relative to an epipole, a line connecting the eye

and light. Three angles define an epipolar point. Thus a point in epipolar space

is: (α,φ,θ) ∈ ([0,π] , [0,2π) , [0,π]). The angle θ defines an epipolar plane relative to

some vector (by convention, the camera’s up vector). Points on an epipolar plane are

defined relative to the eye and light point. The angle α determines an axis parallel

to view rays and the angle φ defines an axis parallel to light rays. As shown in Fig-

ure 4, given a fragment F1, we project the given fragment into the corresponding voxel

V1(α,φ,θ) and obtain V1’s voxel center CV1
(αc,φc,θc) as described in [Wyman 2011].

Instead of converting CV1
to Cartesian coordinate to generate the shadow sample ray,

we transform the vector light to eye in the plane defined by θc to generate shadow

sample ray:
−→
V = Eye−Light

−→
R = Rotate(

−→
V ,φc)

Then we intersect
−→
R with F1’s local tangent plane P to obtain F1’s potential occluder

F2. To remove false self-shadowing, we need to shift F1 just above the voxel which

potentially cast the shadow. However, directly using F2’s corresponding voxel V2 as

the potential shadow caster will cause false positive error as shown in Figure 5.

The pseudocode and GLSL shader follow. The input parameters are fragment po-

sition, fragment normal, light position, and the resolution of the texture which holds

VSVs. All parameters are in camera space.

Assume V2’s adjacent voxel which is closer to light source is V3. If F2 is behind or

153

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

Light Light

V3 V3V2 V2

C

CF2

F2

F1F1

P
P

Figure 5. V3 and V2 are two adjacent voxels. C is V2’s voxel center. F1 and F2 lie on the

planar surface P. (left) V2 is occluded. Use V2 for visibility checking will result in false

self-shadowing of F1. (right) V2 is lit. Use V2 for visibility checking won’t cause false self-

shadowing.

on the voxel center, we use V2 for visibility checking. If F2 is above the voxel center,

we useV3 for visibility checking. Below shows the pseudocode for clarity.

Algorithm 2 Pseudocode for sampling a voxelized shadow volume.

VSVs← GenerateVSVs(LightPosition, eyePosition)

for each fragment F with normal N do

P← defineTangentPlane(F, N)

CV ← locateVoxelCenter(VSVs, F)

R← defineLightRay(LightPosition, CV)

F′← planeRayIntersect(R, P)

C′

V ← locateVoxelCenter(VSVs, F′)

C′′

V ← adjacentCloserToLightVoxel(C′

V)

if F ′ is behind or on C′

V then

isLit← checkVisibility(VSVs, C′

V)

else

isLit← checkVisibility(VSVs, C′′

V)

end if

outputColor← isLit × shadeFrag(F)

end for

154

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

uniform float epsilon; // constant epsilon based on scene scale

bool VisibilityCheckInVSV(esFragPos, esFragNormal, esLightPos, textureRes) {

/**** Define tangent plane ****/

vec3 n = normalize(esFragNormal);

/**** Locate the voxel center in VSVs ****/

vec3 voxelCenter = GetVoxelCenter(esFragPos, esLightPos, textureRes);

/**** Compute the light ray passing through the voxel center ****/

vec3 lightRay = VoxelCenterLineDir(voxelCenter, esLightPos);

/**** Plane ray intersection to obtain potential occluder****/

float t_hit = dot(n, esFragPos.xyz - esLightPos.xyz) / dot(n, lightRay);

vec3 potentialOccluder = esLightPos.xyz + t_hit*lightRay;

/**** Compute alpha ****/

float alpha = ComputeAlpha(potentialOccluder, esLightPos);

// Compute the corresponding voxel center of the potentialOccluder

float centerAlpha = GetCenterAlpha(alpha, textureResolution);

// Adjacent voxel’s alpha

float adjCenterAlpha = GetAdjacentCenterAlpha(centerAlpha, textureRes);

/**** Choose the voxel to do visibility checking ****/

float alphaOut = alpha > centerAlpha ? centerAlpha : adjCenterAlpha;

/**** Check visibility with constant epsilon ****/

// epsilon is based on scene scale

bool isLit = VisibilityCheck(alphaOut, epsilon);

return isLit;

}

Listing 3. Sampling a voxelized shadow volume

4. Results and Discussion

We implement our method with OpenGL/GLSL and C++. All the test scenes are

rendered on a machine with Intel(R) Cores(TM) i7 CPU @2.93GHz and a NVIDIA

graphics card GTX580. All the output images have the resolution of 1024×1024. In

our test scenes, VSVs are generated by applying shadow map resampling and prefix

scan as in Wyman et al.’s work [2011].

Figure 6 and Figure 7 compare our method with constant depth bias and slope

scale depth bias [King 2004] for traditional shadow map and paraboloid shadow map

in a complex scene. We use dual depth layers method [Weiskopf and Ertl 2003] to

generate reference images. With constant and slope scale depth bias, objects close to

the light have shadow acne while objects far from the light suffer from heavy shadow

detachment. In the test scenes, our method gives results equivalent to dual depth

shadow mapping but with significant improved performance.

As illustrated in Figure 9 (right), our adaptive bias suffers from over bias when the

shaded fragment’s local tangent plane is almost parallel to the light ray, which results

155

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

Figure 6. Sponza illuminated by a traditional light source with a shadow map resolution of

1024× 1024. (left) Constant depth bias and slope scale depth bias (center left) suffer from

shadow acne and shadow detachment to some extent. Our method (center right) has no visible

false shadows. Dual depth layers depth bias (right) serves as a reference image.

Method Shadow Map Final Shading Overall

Constant 2.095ms 4.232ms 6.327ms

Slope Scale 2.112ms 4.535ms 6.647ms

Ours 2.108ms 5.211ms 7.319ms

Dual Layer 4.716ms 5.174ms 9.890ms

Table 1. Performance measure of Sponza scene (20K polygons). The scene is lit through

traditional shadow mapping with a shadow map resolution of 1024×1024.

in unexpected noise. However, this only happens to the fragments whose local tangent

plane is almost parallel to light rays, which transports almost no radiance to the viewer

with common materials like Lambertian and Phong. Therefore, this problem will be

gone after shading is applied.

Table 1 shows the corresponding performance of the scene depicted in Figure 6.

Both constant depth bias and slope scale depth bias add small overhead. Dual lay-

ers depth bias has two rendering passes and thus doubles the time for shadow map

creation. Besides, an extra texture look-up costs close to 0.6ms, consuming 18%

more rendering time compared with constant depth bias. In the shading stage, cost

for computing adaptive depth bias in our method is close to the cost for an extra

texture look-up in dual layers based method. However, with an extra render pass in

shadow map creation, dual layer based method costs close to 50% more rendering

time compared with our method. Figure 10 shows the performance chart of the scene

in Figure 7 (19M polygons). As the shadow map resolution increases, slope scale

depth costs around 5% more rendering time compared with constant depth bias. Our

method costs around 20% more rendering time compared with constant bias with sig-

nificantly less false shadowing. Compare to our method, dual layer depth map gives

156

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

Figure 7. The scene is lit by an omni-directional light source through dual paraboloid shadow

mapping with a shadow map resolution of 2048× 2048. We move the camera to different

parts of the scene. (left) Constant depth bias and slope scale depth bias (center left) both leave

shadow acne on the cube and suffer from false unshadowing on the wall to some extent. Our

method (center right) eliminates all the shadow acne on the cube without shadow detachment

on the wall. Dual depth layers depth bias (right) serves as a reference image.

Figure 8. The scene is lit by a omni-directional light source through VSVs with a volume

resolution of 1024× 1024× 512. (left) Surface shadows are cast through VSVs with a con-

stant bias. (center) Surface shadows are cast through VSVs with our adaptive bias. (right)

Reference image. Surface shadows are cast with a 2D 8192×8192 shadow map.

157

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

F1

Blocker

P

Shadow Map

Texel Center

N

Light

F2

Figure 9. (left) Our adaptive bias introduces noise because of overly shifting. (center) Noise

is invisible under Lambertian shading. (right) Illustration of over shifting.

Figure 10. Performance comparison of different depth bias algorithms under different shadow

map resolution. The rendering time is measured in milliseconds.

a nearly equivalent image quality but it costs 50% more rendering time when shadow

map resolution is under 4096× 4096 and costs more than 50% when shadow map

resolution keeps increasing.

Figure 8 shows the result of applying our adaptive bias to VSVs. Since VSVs

only contain binary value in each voxel, extending other depth bias algorithms, such

as slope scale depth bias and dual depth layers, does not work for VSVs in a straight

forward way. So we only compare the rendering result of adaptive bias with constant

bias. VSVs’ nature of non-uniform epipolar voxel grid and view-dependence make

constant bias hard to work well. With constant bias, there remains some false self-

shadowing on the arch while the distant blue curtain already suffers some shadow

detachment. The adaptive depth bias reduces the false self-shadowing and in the

mean time preserving more shadow details than fixed constant depth bias.

The main limitation of this technique comes from the assumption that each frag-

158

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

Figure 11. Illustration of the limitation of adaptive depth bias. F1 and its potential occluder

F2 do not lie on the same planar surface.

Figure 12. (left) A 1024×1024 shadow map can guarantee the planar occluder assumption.

(right) A 512×512 shadow map fail to guarantee the planar occluder assumption.

ment lies on the same planar surface with its potential occluder. Figure 11 depicts a

simple corner case. In the left image, although the fragment is over shifted, the false

self-shadowing can still be removed. However, in the right image, the adaptive depth

bias fail to remove the false shadowing.

The planar occluder assumption can break due to low shadow map resolution or

large scene scale where the objects are very far from the light source. In Figure 12,

the light source is far from the object. With a 1024× 1024 shadow map, adaptive

depth bias can eliminate most false self-shadow. With a 512×512 shadow map, false

self-shadow appears in the corner of the wall and concave areas of the model and

shadow detachment is visible on the dragon.

For VSVs, the nature of epipolar sampling makes the planar occluder assumption

hard to keep when the light is behind the viewer. As shown in Figure 13, with a

1024×1024×512 binary volume, adaptive depth bias can eliminate most false self-

shadow. When the volume resolution reduces to 512×512×512, shadow acne begins

to appear.

159

http://jcgt.org

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

Figure 13. Illustration of the case when light source is behind the viewer. (left) 1024×1024×

512 VSVs. (right) 512×512×512 VSVs.

5. Conclusion

We present a method to eliminate false self-shadowing for surface shadowing al-

gorithms by producing adaptive depth bias. We compute the potential occluder for

each fragment and shift the fragment just above its potential occluder before visibility

checking. Our method works for 3D shadow maps as well as 3D voxelized shadow

volumes. Compared to constant depth bias and slope scale depth bias, our adaptive

depth bias removes more false self-shadowing and causes less false shadow detach-

ment. Our method gives an equivalent result as dual depth layers based method but

with less cost.

References

BRABEC, S., ANNEN, T., AND SEIDEL, H.-P. 2002. Shadow mapping for hemispherical

and omnidirectional light sources. In Advances in Modelling, Animation and Rendering.

Springer, 397–407. 147

GAUTRON, P., MARVIE, J., AND BRIAND, G., 2013. Method for generating shadows in an

image, Jan. 23. EP Patent 2,411,967. URL: http://www.google.com/patents/

EP2411967B1?cl=en. 147

KING, G. 2004. Shadow mapping algorithms. GPU Jackpot presentation, 354–355. 147,

155

WEISKOPF, D., AND ERTL, T. 2003. Shadow mapping based on dual depth layers. In

Proceedings of Eurographics, vol. 3, 53–60. 147, 155

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces. In ACM SIGGRAPH

Computer Graphics, vol. 12, ACM, 270–274. 147

160

http://jcgt.org
http://www.google.com/patents/EP2411967B1?cl=en
http://www.google.com/patents/EP2411967B1?cl=en

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

WOO, A. 1992. The shadow depth map revisited. In Graphics Gems III, Academic Press

Professional, Inc., 338–342. 147

WYMAN, C. 2011. Voxelized shadow volumes. In Proceedings of the ACM SIGGRAPH

Symposium on High Performance Graphics, ACM, 33–40. 147, 152, 153, 155

Index of Supplemental Materials

In the demo package, there are two folders, "exe" and "models". Folder "models" holds all

the obj models used in the demo. Folder "exe" holds the executable file and all the shaders.

Shaders for traditional shadow map are in the folder "perspectiveSM". Shaders for omni-

directional shadow map are in the folder "paraboloidSM".

The adaptive depth bias algorithm for traditional shadow map is implemented in the

shader file "shade_perspective.frag.glsl". The adaptive depth bias algorithm for omni-directional

shadow map is implemented in the shader file "shade_paraboloid.frag.glsl". Other shaders are

for shadow map construction and visualization.

Author Contact Information

Hang Dou

Washington University in St. Louis

St Louis, MO 63130

hangdou@gmail.com

Yajie Yan

Washington University in St. Louis

St Louis, MO 63130

danielyan86129@gmail.com

Chris Wyman

NVIDIA

Redmond, Washington

chris.wyman@acm.org

Ethan Kerzner

SCI Institute

Salt Lake City, UT 84112

kerzner@sci.utah.edu

Zeng Dai

University of Iowa

Iowa City, IA 52246

zeng-dai@uiowa.edu

Hang Dou, Yajie Yan, Ethan Kerzner, Zeng Dai, and Chris Wyman, Adaptive Depth Bias for

Shadow Maps, Journal of Computer Graphics Techniques (JCGT), vol. 3, no. 4, 146–162,

2014

http://jcgt.org/published/0003/04/08/

Received: 2013-10-22

Recommended: 2013-12-09 Corresponding Editor: Michael Schwarz

Published: 2014-12-19 Editor-in-Chief: Morgan McGuire

c© 2014 Hang Dou, Yajie Yan, Ethan Kerzner, Zeng Dai, and Chris Wyman (the Authors).

161

http://jcgt.org
Dou:hangdou@gmail.com
Yan:danielyan86129@gmail.com
Wyman:chris.wyman@acm.org
Kerzner:kerzner@sci.utah.edu
Dai:zeng-dai@uiowa.edu
http://jcgt.org/published/0003/04/08/

Journal of Computer Graphics Techniques

Adaptive Depth Bias for Shadow Maps

Vol. 3, No. 4, 2014

http://jcgt.org

The Authors provide this document (the Work) under the Creative Commons CC BY-ND

3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors

further grant permission reuse of images and text from the first page of the Work, provided

that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly

venues and that any reuse is accompanied by a scientific citation to the Work.

162

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

