
Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

Modeling Real-World Terrain
with Exponentially Distributed Noise

Ian Parberry
University of North Texas

Figure 1. Terrain rendered from Perlin noise with an exponential gradient distribution.

Abstract

A statistical analysis of elevation data from a 160,000 square kilometer region at horizontal
intervals from 5 meters up to 164 kilometers finds that terrain gradients appear to be expo-
nentially distributed. Simple modifications to the Perlin noise algorithm and the amortized
noise algorithm change the gradient distribution in each octave to an exponential distribution,
resulting in varied and interesting procedurally generated terrain.

1. Introduction

Using techniques borrowed from the geosciences, we show how to synthesize varied
and interesting artificial terrain for the entertainment industry, which is not so much
interested in veracity as it is in triggering the casual viewer’s willing suspension of
disbelief. Geographers have long been aware of the fractal nature of terrain, for exam-
ple, Tobler’s First Law of Geography [Tobler 1970] states that “All things are related,
but nearby things are more related than distant things”, and Mark and Smith [2004]
notes the probable fractal nature of terrain when the horizontal resolution is varied.

The geoscience community has studied the frequency distribution of gradients
at a small number of resolutions over relatively small areas; for example, O’Neill
and Mark [1987] and Iwahashi et al. [2003] examined the frequency distribution of
gradient at a single resolution in areas chosen for their interesting geomorphology.

1

http://jcgt.org

Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

The latter noted that in an area of Japan noted for slump, slide, and creep type land-
slides, the gradients appeared to conform to a Weibull distribution. Pain [2005] noted
that gradient frequency distribution changes with resolution, and gives qualitative ev-
idence based on resolutions of 25 m, 50 m, and 100 m compared to the results of a
ground survey.

We investigate how terrain gradients are related in the large by measuring gradi-
ents at at 16 horizontal resolutions from 5 meters up to 164 kilometers within an area
of 160,000 square kilometers. The US state of Utah was chosen because it is generic
but varied in the sense that it has both mountainous and flat terrain, and because of
the availability of autocorrelated DEM files. We describe how the resulting gradient
distribution can be incorporated into implementations of Perlin noise [Perlin 1985]
and amortized noise [Parberry 2014].

2. Gradient Analysis

We performed a statistical analysis of gradients computed from autocorrelated ele-
vation data in the Digital Elevation Model (DEM) format at 5 m resolution from the
Utah Automated Geographic Reference Center1, which were created using stereo-
scopic imagery from a 2006 fly-over filtered using LiDAR processing techniques.
Although the 5-meter autocorrelated DEM provides higher resolution and horizon-
tal accuracy than the USGS NED dataset, there are acknowledged anomalies present
within the data. We have assumed for the purposes of this paper that these anomalies
are not statistically significant.

Our data set consisted of 400 text files each containing the elevation of points on
a 4000×4000 grid at 5 meter resolution, giving a total of 6.4 billion elevations over
the square of side 400 km within the southern part of the US state of Utah shown
in Fig. 4. Each elevation value is given to one decimal place in meters. These files
occupy a total of 51GB on disk.

The elevation data was analyzed in a series of octaves. Octave 1 is the original
data at 5 m resolution. Octave 2 is sampled at every alternate point (see Figure 2),
giving a 10 m resolution. For 1 ≤ i ≤ 16, octave i sampled every 2i−1th point, giv-
ing a resolution of δi = 5× 2i−1 meters. The gradient between two grid points with
elevation h1 and h2 meters in octave i is therefore |h1−h2|/δi.

To avoid loss of statistical significance with each successive octave, each grid size
was sampled four times, once as described, and once each offset by half the separation
distance horizontally, vertically, and diagonally. The number of sampled grids there-
fore increases exponentially with octave, offsetting the exponential decrease in the
number of points in each grid (see Figure 3). Suppose, for example, the first octave
has an n×n grid of n2 points, where n is odd (the case where n is even is similar and is

1Available from http://gis.utah.gov/data/

2

http://jcgt.org
http://gis.utah.gov/data/

Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

Figure 2. Example of sampling grids for three successive octaves, viewed from above looking
down.

Figure 3. To avoid loss of statistical significance with each successive octave, each grid is
sampled four times in total, offset by half the grid separation distance.

left as an exercise for the reader). The second octave has four grids, one of dimension
dn/2e×dn/2e (the blue grid in Figure 3), one of dimension bn/2c×bn/2c (the gray
grid in Figure 3, left), one of dimension dn/2e× bn/2c (the gray grid in Figure 3,
center), and one of dimension bn/2c×dn/2e (the gray grid in Figure 3, right), giving
a total of dn/2e2 +2dn/2ebn/2c+ bn/2c2 = n2−O(n) sample points for the second
octave, etc.

The analysis was performed by a program written by the author in C++. It took
41 minutes to read and parse the data into an array of floats occupying 25.6GB of
memory on an Intel R© CoreTM i7-3930K CPU @ 3.2GHz with 32GB of RAM and a
solid state hard drive. The subsequent analysis took approximately 16 minutes. Gra-
dient distributions for octaves 1–9 (which are sampled at horizontal resolutions from
5 m to 1.28 km respectively) are shown in Figure 5. All appear to be an exponential
distribution.

3

http://jcgt.org

Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

Figure 4. Left: The state of Utah. Right: The 160,000 km2 area chosen for the gradient study.
Each of the 400 squares is covered by a DEM file containing height data for a 2000× 2000
grid of points spaced 5 meters apart.

Figure 5. Gradient distribution for octaves 1–9 (distances 5 m–1.28 km).

4

http://jcgt.org

Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

Figure 6. Terrain generated from Perlin noise. Notice that there are large gradients almost
everywhere, resulting in a terrain lacking in landmarks.

3. The Terrain Generator

Ken Perlin’s [1985] continually varying smooth random noise function is frequently
used for terrain generation. Table 1 (left) gives pseudocode for generating a single oc-
tave of Perlin noise. Multiple octaves are generated with successively smaller granu-
larity and elevation and summed to give a final value. Figure 6 shows terrain from Per-
lin noise rendered by Terragen 3 (http://planetside.co.uk/products/
terragen3). Notice that since all gradient vectors have unit magnitude, the terrain
looks similar in all directions.

Examining Table 1 (left) in more detail, the input is a 2D vector ~p representing the
coordinates of a point on the horizontal plane and the output is a floating point value of
magnitude less than unity representing the elevation of the terrain at point ~p. Function
s_curve(x) = x2(3− 2x) computes a cubic spline of 0 ≤ x ≤ 1, and lerp(t,a,b) =
a+ t(b− a) linearly interpolates between a and b by fraction 0 ≤ t ≤ 1. h is a hash
function that maps from 2D vectors to unit length 2D vectors. Perlin’s algorithm
approximates a hash function by pre-computing a table of B = 256 randomly chosen
unit vectors, whereas modern versions of Perlin’s algorithm (for example, [Parberry
2014]) substitute a more robust hash function. The operation “·” is vector dot product.

Following typical noise function notation, the vertices ~p01, ~p10, and ~p11 are the
four integer grid points surrounding fractional location ~p [not four different values of
~p]. More precisely, for ~p = [x,y], let ~pi j = [bxc+ i,byc+ j].

5

http://jcgt.org
http://planetside.co.uk/products/terragen3
http://planetside.co.uk/products/terragen3

Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

Original Modified
0. Input ~p = [x,y] Input ~p = [x,y]
1. sx = s_curve(x) sx = s_curve(x)
2. sy = s_curve(y) sy = s_curve(y)
3. u = ~p ·h(~p00) u = h′(~p00)~p ·h(~p00)

4. v = ~p ·h(~p01) v = h′(~p01)~p ·h(~p01)

5. a = lerp(sx,u,v) a = lerp(sx,u,v)
6. u = ~p ·h(~p10) u = h′(~p10)~p ·h(~p10)

7. v = ~p ·h(~p11) v = h′(~p11)~p ·h(~p11)

8. b = lerp(sx,u,v) b = lerp(sx,u,v)
9. Output lerp(sy,a,b) Output lerp(sy,a,b)

Table 1. The original 2D Perlin noise algorithm (left) and the exponentially distributed version
(right). Note that the changes require an extra hash function evaluation and scalar multiplica-
tion on lines 3, 4, 6, and 7.

Table 1 (right) shows the modified version of Perlin noise. Let h′ be a hash func-
tion that maps onto floating point numbers between zero and unity with an exponential
distribution. This can be implemented using a magnitude table m initialized with with
exponentially decreasing values m[i] = µi for some 0 < µ≤ 1 (details can be found in
the code included in the Supplemental Materials). The smallest value in the gradient
magnitude table m, which is m[B-1]= µB−1, should be one that can actually be rep-
resented as a floating point number. The smallest normalized floating point value is
2−(2

f−2), where f is the number of bits in the exponent (f = 7 for a float, f = 10
for a double). We therefore want µB−1 ≤ 22 f−2, that is, µ ≤ 2(2

f−2)/(B−1). Using
the standard implementation of Perlin noise with floats and B= 256 means that we
should ensure that µ≤ 2126/256 < 1.1637.

Figures 1 and 7 show terrain from exponentially distributed Perlin noise (also
rendered by Terragen 3). Notice that since the gradient vectors have exponentially
distributed magnitudes, the terrain has mostly flat and gently sloping terrain, with
occasional areas of higher gradient that create interesting geographical artifacts such
as cliffs and escarpments. Contrast this to Figure 6.

Perlin noise repeats with period n ·B, where n is the number of interpolated points
between integer values. This means that any supposedly “infinite terrain” gener-
ated from Perlin noise will in fact repeat. Amortized noise [Parberry 2014] is a fast
method for generate potentially infinite non-repeating 2D noise. It uses unit gradients
~g([x,y]) = [cos(h(x,y)),sin(h(x,y))], where h is a 2D hash function. It is again rela-
tively easy to modify the code to draw the gradient magnitudes from an exponential
distribution using the inverse transform sampling method, which says that an expo-
nential distribution can be achieved by applying the inverse of the cumulative proba-

6

http://jcgt.org

Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

Figure 7. Terrain generated from exponentially distributed Perlin noise. Notice that it only
occasionally contains gradients as large as those of Figure 6, which create recognizable land-
marks in the form of cliffs and escarpments.

bility density function (that is, the logarithm) to values sampled uniformly at random.
Implementation details can again be found in the code included in the Supplemental
Materials.

4. Conclusion and Further Work

Some interesting open questions remain. We conjecture that gradients are exponen-
tially distributed over large enough areas in all parts of the world. Nonetheless, a
cursory examination of Figure 5 reveals some interesting irregularities at gradients
0.28–0.34. These may not be significant, but on the other hand they may be char-
acteristic of the area under study. It is interesting to ask whether local variations in
gradient distribution can be used to generate interesting terrain.

References

IWAHASHI, J., WATANABE, S., AND FURUYA, T. 2003. Mean slope-angle frequency dis-
tribution and size frequency distribution of landslide masses in Higashikubiki area, Japan.
Geomorphology 50, 4, 349–364. http://www.sciencedirect.com/science/

article/pii/S0169555X02002222. 1

7

http://jcgt.org
http://www.sciencedirect.com/science/article/pii/S0169555X02002222
http://www.sciencedirect.com/science/article/pii/S0169555X02002222

Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

MARK, D. M., AND SMITH, B. 2004. A science of topography: From qualitative ontology
to digital representations. In Geographic Information Science and Mountain Geomorphog-
raphy, M. P. Bishop and J. Shroder, Eds. Springer-Praxis, 75–100. 1

P. O’NEILL, M., AND MARK, D. M. 1987. On the frequency distribution of land slope.
Earth Surface Processes and Landforms 12, 127–136. http://onlinelibrary.

wiley.com/doi/10.1002/esp.3290120203/abstract. 1

PAIN, C. 2005. Size does matter: Relationships between image pixel size and landscape
process scales. In MODSIM 2005, International Congress of Modelling and Simulation,
Modelling and Simulation Society of Australia and New Zealand, 1430–1436. 2

PARBERRY, I. 2014. Amortized noise. Journal of Computer Graphics Techniques 3, 2,
31–47. http://jcgt.org/published/0003/02/02/. 2, 5, 6

PERLIN, K. 1985. An image synthesizer. In Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques, ACM SIGGRAPH, 287–296. http:
//doi.acm.org/10.1145/325334.325247. 2, 5

TOBLER, W. 1970. A computer movie simulating urban growth in the Detroit region. Eco-
nomic Geography 46, 2, 234–240. http://www.jstor.org/stable/143141?

seq=1#page_scan_tab_contents. 1

Index of Supplemental Materials

Further information (including a longer draft of this paper, terrain images, and fly-through
videos) can be found at http://larc.unt.edu/ian/research/tobler/. Source
code and data is available under the GNU All-Permissive License at https://github.
com/Ian-Parberry/Tobler. There you will find five folders, each of which contains a
program that will help reproduce the results of this paper. You will find full C++ source code
that compiles under both Visual Studio 2012 and gcc. Each folder contains a Microsoft Visual
Studio 2012 project and a Unix makefile.

Generate with Perlin Noise. To generate terrain using Perlin noise with an ex-
ponential gradient distribution, compile and run the program in this folder which will
generate random terrain in a DEM file output.asc. You will also find a Terragen
project file output.asc that can be used to render the terrain from output.asc.
A sub-folder called Terrain Images contains some supplementary images.

Generate with Amortized Noise. This folder contains a second version of the
Generate program using amortized noise. A sub-folder called Terrain Images

contains some supplementary images.

Exponential Distribution. To verify the code for generating exponentially dis-
tributed random numbers, compile and run the program in this folder. An Excel spread-
sheet called exponential.xlsx contains a copy of some data generated by this
program with the corresponding distribution graphs.

Pack. To verify the gradient analysis in Section 2, begin by downloading the DEM files
listed in filelist20x20.txt from the Utah Automated Geographic Reference

8

http://jcgt.org
http://onlinelibrary.wiley.com/doi/10.1002/esp.3290120203/abstract
http://onlinelibrary.wiley.com/doi/10.1002/esp.3290120203/abstract
http://jcgt.org/published/0003/02/02/
http://doi.acm.org/10.1145/325334.325247
http://doi.acm.org/10.1145/325334.325247
http://www.jstor.org/stable/143141?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/143141?seq=1#page_scan_tab_contents
http://larc.unt.edu/ian/research/tobler/
https://github.com/Ian-Parberry/Tobler
https://github.com/Ian-Parberry/Tobler

Journal of Computer Graphics Techniques
Modeling Real-World Terrain with Exponentially Distributed Noise

Vol. 4, No. 2, 2015
http://jcgt.org

Center at http://gis.utah.gov/data/. You will need approximately 51GB
of disk space to store these files. Compile and run the Pack program, which will read
the DEM data and pack it into a binary file UtahDEMData.bin for faster processing.
You will need an additional 11GB of disk space to store this file, but the 51GB of DEM
files that you downloaded may be deleted after this step.

Analyze. After running the Pack program, move the resulting packed binary data file
UtahDEMData.bin from the Pack folder to the Analyze folder, then compile
and run the Analyze program. The results will be placed in output.txt. An Excel
spreadsheet called utah20x20.xlsx contains our version of output.txt and the
resulting graph shown in Figure 5.

Links to Doxygen-generated documentation of the source code can be found at
http://larc.unt.edu/ian/research/tobler/.

Author Contact Information
Ian Parberry
Dept. of Computer Science and Engineering
University of North Texas
1155 Union Circle #311366
Denton, Texas 76203–5017

http://larc.unt.edu/ian

Ian Parberry, Modeling Real-World Terrain with Exponentially Distributed Noise, Journal of
Computer Graphics Techniques (JCGT), vol. 4, no. 2, 1–9, 2015
http://jcgt.org/published/0004/02/01/

Received: 2015-02-04
Recommended: 2015-03-31 Corresponding Editor: Oliver Wang
Published: 2015-05-05 Editor-in-Chief: Morgan McGuire

c© 2015 Ian Parberry (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

9

http://jcgt.org
http://gis.utah.gov/data/
http://larc.unt.edu/ian/research/tobler/
http://larc.unt.edu/ian
http://jcgt.org/published/0004/02/01/
http://creativecommons.org/licenses/by-nd/3.0/

