
Journal of Computer Graphics Techniques Vol. 4, No. 2, 2015 http://jcgt.org

Interpreting Alpha

Andrew Glassner

The Imaginary Institute

Figure 1. These pixels all have the same value of alpha.

Abstract

Associating alpha values with pixel colors is an important technique in computer graphics,

allowing us to create complex composite images. However, the interpretation of the meaning

of alpha is often a fluid concept, switching between coverage (a measure of area) and opacity

(a measure of a color) based on convenience. It can appear very strange that a single number

could represent both of these qualitatively different values at the same time. By tracking cov-

erage and opacity separately through the compositing process, we find that alpha is actually

the product of coverage and opacity, so it is only one of these terms if we assume that the other

has the value 1. This leads to a simple and consistent understanding of the internal structure

of pixels that are described by color and alpha.

1. Introduction

The idea of “alpha” has been a part of computer graphics for over three decades, since

it was presented in the classic paper on image compositing [Porter and Duff 1984].

The alpha idea has been used to composite an enormous number of pixels (a rough

estimate suggests that alpha blending has been used upwards of 1021 times in the

entertainment industry alone). The concept of alpha as part of a pixel’s color is firmly

embedded in our psyches and our code.

30 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

Alpha is obviously incredibly useful for compositing images, but what does it

really represent? The graphics literature can be hard to nail down on this issue. In

their paper, Porter and Duff [1984] sometimes consider alpha to represent the opacity

of a completely covered pixel:

If αA and αB represent the opaqueness of a semi-transparent object which fully

covers the pixel, the computation is well known.

At other times, they consider it to be the area of a pixel that is covered by a colored

fragment within it (that area is called the coverage):

If αA and αB represent subpixel areas covered by opaque geometric objects, the

overlap of objects within the pixel is quite arbitrary.

The authors switch interpretations based on whatever is most useful at each mo-

ment in their discussion.

Porter and Duff are not alone in this. In a memo on the subject, Smith [1995]

states,

There are two ways to think of the alpha of a pixel. As is usual in computer

graphics, one interpretation comes from the geometry half of the world and the

other from the imaging half. Geometers think of “pixels” as geometrical areas

intersected by geometrical objects. For them, alpha is the percentage coverage

of a pixel by a geometrical object. Imagers think of pixels as point samples of

a continuum. For them, alpha is the opacity at each sample. In the end, it is the

imaging model that dominates, because a geometric picture must be reduced to

point samples to display—it must be rendered. Thus, during rendering, coverage

is always converted to opacity, and all geometry is lost.

The Porter-Duff matting algebra that underlies what we present here is based on

a model that is easiest to understand by alternating between the two conceptions.

So once again, alpha seems to be either coverage or opacity, depending on one’s

needs.

In one last example, Blinn [1994] says,

The α value . . . goes by various names: coverage amount, opacity, or simply

alpha . . . I’m going to call it opacity for now. If it’s 0, the new pixel is transparent

and does not affect the frame buffer. If it’s 1, the new pixel is opaque and

completely replaces the current frame buffer color.

Many more quotes like these can be found in the graphics literature, each of which

treats alpha as a fluid concept. Alpha sometimes refers to opacity and sometimes cov-

erage, based on whatever is most convenient at any given time. The mathematics and

algorithms of many papers on composition also freely move between these interpre-

tations.

31

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

A reader could be forgiven for finding this confusing. Coverage is a description of

area, and opacity is a property of a material, or a color that represents its appearance

in a specific context. It seems unlikely that a single number can mean either of these

things depending on someone’s momentary preference.

Smith asserts that during rendering all geometry is lost, and only opacity remains.

Must that be so? What if we don’t throw away the geometry, but instead preserve it

in the same way that we preserve opacity?

In this paper we will do just that, and retain both opacity and coverage indepen-

dently as we work through the compositing process. We’ll find that the traditional

equation for computing the new alpha after compositing emerges after the algebraic

terms cancel one another out. But along the way, we’ll develop a better appreciation

for what “alpha” is and why it apparently can be be interpreted with such flexibility.

The majority of compositing work uses the most general of the Porter-Duff com-

position operators, called over. This operation supposes that we’re building up a

pixel’s representation by placing some fragment of a new object over one or more

fragments already present in that pixel. Using over, we can build up a very complex

image by working from back to front, layering each new image over the results of

previous layering operations. We’ll derive our results by analyzing the mechanics of

over, though the results hold for any kind of compositing.

While our focus here will be on understanding alpha as a measure of pixel cover-

age or opacity, it’s worth noting that alpha has been used in other ways. For example,

alpha is frequently used to influence lighting calculations by making it part of a ma-

terial’s description. McGuire and Enderton [2011] demonstrate that when used this

way, an alpha value of .5 can equally well refer to a piece of red woven cloth which

has holes over half its area, or a transparent red gel which passes half of the light

striking it. These will have very different appearances and even different shadows:

the cloth will cast a mottled black shadow that might appear as a medium gray, while

the gel would cast a red shadow. It is important that programs that use alpha for light-

ing, rendering, filtering, and other effects carefully document just how they’re doing

so, or the results may be surprising [McGuire 2012].

Alpha can be used in this modeling sense for applications ranging from fabric to

hair to vegetation. In these applications, alpha is often explicitly intended to represent

either coverage or opacity.

2. Preliminaries

Closely involved in any discussion of compositing is the idea of pre-multiplication.

In pre-multiplication, we store a color’s components (typically red, green, and blue)

already multiplied by alpha. For example, suppose we have a fragment with RGBA =

(1, .5, .25, .5) (in this paper, all color values, opacity values, and coverage values will

32

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

be in the range [0,1]). We could save that in pre-multiplied form as (.5, .25, .125, .5).

Note that the alpha value is unchanged, while the R, G, and B values get multiplied

by alpha. Pre-multiplication is well known to be a valuable technique; Blinn [Blinn

1994] offers multiple situations where using pre-multiplied colors results in algo-

rithms that are faster or easier to program.

Pre-multiplication also allows us to create synthetic colors that cannot be the result

of any “natural” rendering or drawing process. So-called “transparent black,” with

RGBA values (0,0,0,0) is probably the most important of these. Using positive color

values along with an alpha of 0 allows us to produce glows and color washes that add

color to a pixel without introducing geometry.

In this paper, we write Ac for any color component of a fragment of object A

(typically red, green, or blue). Since all components get treated in the same way,

and independently of one another, we can focus on just one at a time. Alternatively,

Ac can be thought of as a grayscale value. We write Aα for the alpha value of the

fragment. So we could write the color and alpha together as (Ac,Aα). If the color

is pre-multiplied, we’ll write it with a lower-case italic letter, as (ac,Aα). Note that

because the alpha value itself is not pre-multiplied, it retains its capital letter.

Porter and Duff offer thirteen different compositing operators, each of which has

their use. By far the most popular is over, and that is the one we focus on here. The

blending equation describing over using non-premultiplied values (often called “raw”

or “straight” values) is

Cc =
AαAc +(1−Aα)BαBc

Aα +(1−Aα)Bα

.

The pre-multiplied version is much more efficient:

cc = ac +(1−Aα)bc. (1)

Note that the result is in lower-case since it’s in pre-multiplied form as well.

Suppose we want to use traditional alpha blending to stack up four images: A,

B, C, and D. Suppose further the most convenient way for us to compute these is to

first form F = A over B, then G =C over D, and then compose the two intermediates

to make H = F over G = (A over B) over (C over D). Then, while computing F , we

need to find not just the new color for each pixel, but a new alpha, so we can use it in

the next stage when finding H.

Porter and Duff [1984] don’t offer a formula for computing this new alpha. Both

Smith [1995] and Blinn [1994] provide the following expression for the alpha value

of the composite F = A over B (shown here in our notation):

Fα = Aα +(1−Aα)Bα. (2)

There’s a lot to like about this formula: it’s simple, it’s satisfyingly similar to

Equation (1), and, thinking it through, it makes intuitive sense. The formula is derived

33

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

by Blinn by working through the algebra of the over operator. In order to make that

operation associative (which is very desirable), this is the necessary expression. But

that doesn’t provide us with an intuitive interpretation of alpha. In other words, we

know how to compute it, but that doesn’t tell us how to interpret it.

In this paper we’ll re-derive this formula by independently tracking coverage and

opacity while compositing with over. Equation (2) indeed emerges at the end, and

along the way we’ll discover how to interpret the meaning of alpha.

3. Opacity and Coverage

In this section we set aside the idea of alpha for a moment, and instead focus inde-

pendently and specifically on opacity and coverage.

We will associate two numbers with each pixel in image A: the coverage, written

Ak, and opacity, written Ao. These numbers are each derived from the objects that

contribute to that pixel.

The pixel’s coverage, Ak, is nothing more than the fraction of the pixel that is

occupied by the fragment. The pixel’s opacity, Ao, is the opacity of that fragment.

Keep in mind that neither of these values is “alpha.” These are just values each

pixel receives from its geometry. For simplicity, we’ll start the discussion with a scene

containing only one object, so every pixel contains at most only one fragment.

Consider Figure 2, which shows a partly transparent orange ellipse with an opac-

ity 0.4, over a transparent background (represented by the classic white-and-gray

checkerboard). We will call this image A.

Figure 2. In image A, we draw an ellipse with opacity 0.4 over a transparent background.

Every fragment of this ellipse has the same opacity Ao at every pixel. In pixels where the

ellipse doesn’t contribute at all, its opacity (and color) are moot.

34

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

Figure 2 calls out three pixels: one fully inside the ellipse, one outside the ellipse,

and one straddling an edge. The ellipse has an opacity of .4. The pixel inside the

ellipse is fully covered, so Ak = 1, and its fragment has the opacity of the ellipse, so

Ao = .4. The pixel in the upper-left is about 60% covered by the ellipse, so Ak = .6,

and the opacity of the fragment inside that pixel is again the opacity of the ellipse, so

Ao = .4. The pixel in the lower-right that is outside the ellipse is not covered at all, so

Ak = 0. The opacity value Ao is moot, since there’s no fragment from which to derive

an opacity value. In Figure 2, this Ao is given a value of x to indicate “don’t know” or

“don’t care.”

Consider now the same three pixels in Figure 3, where the ellipse is fully opaque.

In each pixel, the coverage Ak is the same as in Figure 2. But the opacities of the two

covered pixels are now both Ak = 1. That is, the partially covered pixel is only partly

covered by its fragment, but that fragment is entirely opaque.

We pause here to make an observation about alpha. Modern renderers compute a

value of alpha at each pixel by multiplying that pixel’s Ak and Ao together (assuming,

as we are for the moment, that the pixel contains only one fragment). This satisfies

common sense when handling a single fragment. For example, if a pixel is one-

third-covered by an opaque fragment, then α = AkAo = (1/3)× 1. Similarly, if a

pixel is completely covered by a one-third opaque fragment, the result is the same:

α = AkAo = 1× 1/3. And if a pixel is one-fifth covered by a fragment that is one-

third opaque, then 20% of the pixel is blocking 33% of the color from beneath it,

so α = AkAo = .2 ∗ .33 = .066. This product of coverage and opacity will play an

important role in the following discussion.

Figure 3. An opaque ellipse on a transparent background, with opacity and coverage values

for three pixels.

35

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

4. Composition

We’ll now look at a composition F =A over B. Each pixel in the layer for object A has

three pieces of information: the color Ac (or the pre-multiplied color ac), the coverage

Ak, and the opacity Ao. Of course, the layers for B hold the same data for that image.

Before we begin composing pixels, we need to decide how to combine them. The

classic approach of Porter and Duff is to presume, in the absence of additional infor-

mation, that the pixels are uncorrelated in every way. We make the same assumption

here.

Using the common “little square” model of a pixel that is 1 unit on a side, Figure 4

shows a composition stack for F = A over B.

Using our assumption that fragments are uncorrelated, we again follow Porter

and Duff and draw the pixels as though they each contain a small shape. In this case,

the shapes are axis-aligned rectangular fragments. This makes it easy to place them

so that the upper fragment A overlaps both Ak percent of the area of the pixel and

Ak percent of the area of Bk under it. This is the uncorrelation assumption in action:

if A covers Ak of the pixel’s area, then it also covers Ak of fragment B’s area.

What is the final color of this pixel? There are four regions to consider:

• FA: The region where only A is present.

• FB: The region where only B is present.

• FAB: The region where both A and B are present.

• F0: The region where neither object is present.

Let’s take these in turn.

FA: This rectangle has area Ak(1−Bk). The color inside is AcAo. Thus the total

contribution to the final pixel color is (FA)c = Ak(1−Bk)AcAo.

FB: This area is just like the above, with A and B reversed. The area is Bk(1−Ak),

and the color is BcBo. Thus the total contribution to the final pixel color is (FB)c =

Bk(1−Ak)BcBo.

Figure 4. Pixel B is on the bottom, A is above it, and F = A over B is at top.

36

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

FAB: This region has area AkBk. The color contributed by A is AcAo and that from

B is BcBo. All of A’s color is preserved in F , but because A has an opacity of Ao, it

only allows (1−Ao) of the color from B to pass through it. So the total contribution

to the final pixel color is (FAB)c = AkBk(AcAo +(1−Ao)BcBo).

F0: Of course, because neither fragment contributes to F0, the contribution to the

final pixel from this area is 0.

To find the new pixel color we merely add these four terms together. We will not

normalize the result (that is, we won’t divide through by the areas) so the summation

returns a new pre-multiplied color fc:

fc = (FA)c +(FB)c +(FAB)c +(F0)c

= Ak(1−Bk)AcAo +Bk(1−Ak)BcBo +AkBk(AcAo +(1−Ao)BcBo)+0

= AcAkAo +(1−AkAo)BcBkBo.

This looks very familiar. We can make it even more familiar by implying mul-

tiplication of terms by multiplication of subscripts, e.g., Ako = AkAo. Then we can

write this as

fc = AkoAc +(1−Ako)BkoBc. (3)

If we assume for the moment that Aα = Ako and Bα = Bko (as practiced by most

modern renderers), then this looks like the standard version of over for pre-multiplied

pixels a and b, producing a pre-multiplied result f :

f = a+(1−Aα)b.

But before we make that leap, notice that we’ve only computed a new color, and

not a new opacity or coverage, both of which are necessary if we’re going to perform

another composition with image F (what Smith calls the second-composition problem

[Smith 1995]). So let’s find expressions for the composite coverage Fk, opacity Fo,

and composite alpha, Fα.

5. Finding Fk and Fo

To find a value for Fα, we will independently track the coverage and opacity informa-

tion through the over operation.

5.1. Coverage

The geometry term is easy: it’s merely the total amount of the pixel covered by A

and B. We can read that right off of Figure 4. In this calculation, it doesn’t matter if

37

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

A is over B or vice-versa:

Fk = Ak +(1−Ak)Bk

= Bk +(1−Bk)Ak

= Ak +Bk −AkBk.

(4)

5.2. Opacity

Now let’s look at opacity and find Fo. We can follow the same steps as before, again

by referencing Figure 4. The amount of opacity added in by the region A is given by

the area of that region, Ak(1−Bk) times the opacity in that region, Ao. Regions B and

0 follow the same pattern:

(FA)o = Ak(1−Bk)Ao,

(FB)o = Bk(1−Ak)Bo,

(F0)o = 0.

(FAB)o is not on the list, because it merits a closer look. Let’s analyze the opacity

of region AB by thinking about it in terms of transparency.

Consider two transparent sheets of plastic, A and B. Suppose Ao = .3, meaning it

lets through 70% of the color trying to pass through it, and Bo = .4, so it lets through

60% of the color. We’ll stack A over B and look at a swatch of color with value 1

placed beneath them, as in Figure 5.

Layer B has an opacity Bo, so it passes through 1−Bo of the color beneath it. The

same is true of A. For convenience, let’s write these as transparency values with the

subscript t, so that At = 1−Ao and Bt = 1−Bo. Thus the combined transparency is

the product of the two components, AtBt .

In other words, transparencies are commutative: looking at the world through a

20% filter in front of a 35% filter gives the same results as the other way around.

Figure 5. The bottom-most layer has color 1. It passes through layer B with opacity .4 so

the color has value (1-.4)=.6, then passes through layer A with opacity .3, so it now has value

(1-.3)(.6) = .42.

38

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

So the opacity in region AB is merely 1 minus the transparency, or 1− (AtBt) =

1− ((1−Ao)(1−Bo)). We can rearrange this to find:

1− ((1−Ao)(1−Bo)) = Ao +(1−Ao)Bo.

Multiplying this by the area of region AB, we get the opacity contributed by that

region:

(FAB)o = AkBk(Ao +(1−Ao)Bo).

Putting the four pieces together, we have

Fo = (FA)o +(FB)o +(FAB)o +(F0)o

= Ak(1−Bk)Ao +Bk(1−Ak)Bo +AkBk(Ao +(1−Ao)Bo)

= AkAo +BkBo −AkBkAoBo.

This last expression has a very nice geometric interpretation. It tells us that to

find the total opacity, add the opacity contributed by A, given by AkAo, to the total

opacity contributed by B, given by BkBo, but then notice that we’ve added the region

AB twice, so subtract that region’s contribution once by removing AkBkAoBo.

It’s tempting to stop here, but notice that our final expression above is being

weighted by area-based factors, and we’re not normalizing. We can divide by the

areas to produce a normalized result:

Fo =
AkAo +BkBo −AkBkAoBo

Ak +Bk −AkBk

.

We’ve seen that denominator before. Of course, it’s just the total area of the frag-

ments, which we found in the last section as Fk. So the final value for the composite’s

opacity is then

Fo =
AkAo +BkBo −AkBkAoBo

Fk

. (5)

5.3. Combining Opacity and Coverage

When we compose F over some other image, at each pixel F has coverage Fk and

opacity Fo. Inspired by our observation that renderers save the product of coverage

and opacity when drawing fragments, let’s now find the product Fko = FkFo.

The terms Fk and Fo. are given by Equations (4) and (5) gathered together here:

Fo =
AkAo +BkBo −AkBkAoBo

Fk

,

Fk = Ak +Bk −AkBk.

Notice that both of these expressions are symmetric in A and B. So the order of

composition matters when we compute colors, but the resulting opacity and coverage

are identical for A over B and B over A.

39

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

Let’s now find the product Fko:

Fko = Fk

AkAo +BkBo −AkBkAoBo

Fk

= Ako +Bko −AkoBko

= Ako +(1−Ako)Bko.

(6)

This looks very familiar. Compare Equations (2) and (6):

Fα = Aα +(1−Aα)Bα,

Fko = Ako +(1−Ako)Bko.

We know that, thanks to the renderer, Aα = Ako and Bα = Bko. So both expressions

evaluate to the same result, and thus the two left-hand terms are equal. We’ve reached

our goal: Fα = Fko.

6. Picturing Alpha

Recall that we earlier noted that when rendering, the alpha at each pixel is the product

of opacity and coverage. We’ve now seen that when images are composed, the result-

ing alpha at each pixel in that composite is the product of that pixel’s final coverage

and opacity.

So the quotes at the start are all correct, but they’re only a few of the ways we can

think of alpha. Suppose you have a pixel with an alpha value of α = 0.24. You know

that this is the product of the total coverage and total opacity, but you don’t know how

either of these values are distributed over the pixel.

A few pairs of values that multiply to 0.24 are shown in Figure 6, along with a

few of the infinite pixels they could be describing.

So if we have an alpha of, say, 0.24, we can indeed think of it as a single opaque

shape that occupies about a quarter of the pixel’s area, as in the left column of Fig-

ure 6, though we don’t know anything about the geometry of that shape – it could be

a rectangle, a circle, or a dozen little disconnected triangles. At the other extreme, we

can interpret alpha as the opacity value for a fully-covered pixel, as in the the upper-

right of Figure 6. This is why pictures like Figure 4 are valid: they’re just one of the

many ways to draw a pixel with a given value of α.

But we can interpret α in any of an infinite number of other ways. We can treat

the pixel as any distribution of coverage and opacity as long as the total product is

equal to alpha.

Thus we’re free to adopt the viewpoint in Smith [Smith 1995], that when render-

ing all geometry is lost and only opacity remains (right column of Figure 6). But

we’re just as free to think that all opacity is lost and only area remains (left column of

Figure 6). Or we can choose anything else in between.

40

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

Figure 6. Each column shows a few of the infinite pixels with an alpha of 0.24 that could

be associated with a particular choice of factors. The value of k is the total coverage, and the

value of o is the total opacity (the images were drawn by hand and are meant to be suggestive,

rather than numerically accurate).

To express this explicitly, consider a function k(p) that returns the coverage of

each point p in a pixel (this will be 0 or 1), and a function o(p) that returns the

opacity at each point p. Then we can write alpha as

α =
∫

P
k(p)o(p)d p/P

where P represents the area of the pixel.

Here, k(p) can be thought of as a “masking” function that tells us where the

opacity function’s values contribute, and where they don’t. This formulation suggests

interpreting Smith’s observation that “coverage is always converted to opacity” by

thinking of pre-multiplying o(p) by k(p). Then the coverage term disappears from

the integral, and we are indeed left with nothing but opacity.

We find that it can be useful to keep these ideas distinct, as we can then think of

alpha in terms of both the geometric and opacity information that go into it. We can

sometimes use this information to produce a more accurate composite than would be

possible with opacity or coverage alone. For example, suppose we have two pixels,

and we know that when they are composited, the fragments they contain will not over-

lap. Then we can model the pixels with non-overlapping constant-opacity geometries

(such as parallel rectangles), and use the Porter-Duff plus operator, rather than over.

Keeping coverage and opacity distinct, Figure 7 shows just a few more possible

pixels that have the same alpha as in Figure 6. As far as alpha is concerned, every one

of the pixels in Figures 6 and Figure 7 are equally likely to represent the “true” ap-

pearance of the pixel (one that might be produced, say, by very high supersampling, or

a very accurate fragment-based renderer). Of course, we may have additional knowl-

41

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

Figure 7. More pixels with an alpha of 0.24 (the images were drawn by hand and are meant

to be suggestive, rather than numerically accurate).

edge about our images that could lead us to prefer some possibilities over others, but

that requires us to have more information than is encoded simply in a color and an

alpha value.

So the coverage and opacity distribution over a pixel can be anything from a single

opaque shape to a partly transparent fractal dust, or any of countless other patterns.

As long as the total coverage and opacity multiply to a pixel’s alpha, we’re free to

distribute that opacity and coverage in any way we want.

Suppose you don’t know anything about how a pixel was generated, but you

wanted to choose a model of the pixel for use in other calculations. We believe that the

upper-right of Figure 6 is probably the most appropriate model when no other infor-

mation exists, because it makes the fewest possible assumptions about the distribution

of both coverage and opacity.

Figure 8. If an application requires a model of geometry inside the pixel, we favor a Poisson

distribution of small, opaque circles whose total area equals the pixel’s value of α. The pattern

is simple and isotropic (the image was drawn by hand and is meant to be suggestive, rather

than numerically accurate).

42

http://jcgt.org


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

The models in the leftmost column of Figure 6 are less appealing because these

all require inventing some kind of shape (or shapes) to represent the pixel’s coverage.

If such a choice is needed, we prefer a Poisson distribution of small circles (or even

Gaussian blobs), which minimizes preferences for any specific orientation or struc-

ture. Figure 8 illustrates the idea. Here the opacity is 1 (that is, Ao = 1) and the sum

of the areas is the coverage Ak = α.

7. Conclusion

We have found that when creating F = A over B, we can track each pixel’s coverage

Fk and opacity Fo independently. We also found that the value of Fα appropriate for

compositing is given by the product of the coverage and opacity, FkFo.

We have shown that the popular idea that alpha represents either coverage or opac-

ity, depending on convenience, is correct but incomplete. A pixel’s alpha actually

represents the product of the total coverage and the total opacity. In the absence of

additional information, we are free to distribute those qualities throughout the pixel

in any way we want.

Acknowledgements

Thank you to Steven Drucker, Eric Haines, Jeff Hultquist, Allan MacKinnon, and

Andrew Willmott for helpful comments and suggestions.

References

BLINN, J. F. 1994. Compositing, part 1: Theory. IEEE Computer Graphics & Appli-

cations 14 (September), 83–87. URL: ieeexplore.ieee.org/xpl/login.jsp?

tp=&arnumber=310740. 31, 33

MCGUIRE, M., AND ENDERTON, E. 2011. Colored stochastic shadow maps. In

Proceedings of the ACM Symposium on Interactive 3D Graphics and Games. ACM,

New York, February. URL: http://research.nvidia.com/publication/

colored-stochastic-shadow-maps. 32

MCGUIRE, M., 2012. Translucency in OBJ/MTL files. http://casual-effects.

blogspot.ca/2012/01/translucency-in-obj-mtl-files.html. Casual

Effects Blog. 32

PORTER, T., AND DUFF, T. 1984. Compositing digital images. SIGGRAPH Computer

Graphics 18, 3 (Aug.), 253–259. URL: http://dl.acm.org/citation.cfm?id=

808606. 30, 31, 33

SMITH, A. R. 1995. Image compositing fundamentals. Microsoft Technical Memo 4, August.

URL: http://alvyray.com/Memos/CG/Microsoft/4_comp.pdf. 31, 33, 37,

40

43

http://jcgt.org
ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=310740
ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=310740
http://research.nvidia.com/publication/colored-stochastic-shadow-maps
http://research.nvidia.com/publication/colored-stochastic-shadow-maps
 http://casual-effects.blogspot.ca/2012/01/translucency-in-obj-mtl-files.html
 http://casual-effects.blogspot.ca/2012/01/translucency-in-obj-mtl-files.html
http://dl.acm.org/citation.cfm?id=808606
http://dl.acm.org/citation.cfm?id=808606
http://alvyray.com/Memos/CG/Microsoft/4_comp.pdf


Journal of Computer Graphics Techniques

Interpreting Alpha

Vol. 4, No. 2, 2015

http://jcgt.org

Author Contact Information

Andrew Glassner

The Imaginary Institute

726 North 47th St.

Seattle, WA 98103

andrew@imaginary-institute.com

Andrew Glassner, Interpreting Alpha, Journal of Computer Graphics Techniques (JCGT), vol.

4, no. 2, 30–44, 2015

http://jcgt.org/published/0004/02/03/

Received: 2015-03-13

Recommended: 2015-05-11 Corresponding Editor: Andrew Willmott

Published: 2015-05-29 Editor-in-Chief: Morgan McGuire

c© 2015 Andrew Glassner (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-ND

3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors

further grant permission reuse of images and text from the first page of the Work, provided

that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly

venues and that any reuse is accompanied by a scientific citation to the Work.

44

http://jcgt.org
mailto:andrew@imaginary-institute.com
http://jcgt.org/published/0004/02/03/
http://creativecommons.org/licenses/by-nd/3.0/

