
Journal of Computer Graphics Techniques Vol. 4, No. 2, 2015 http://jcgt.org

Interpreting Alpha

Andrew Glassner
The Imaginary Institute

Figure 1. These pixels all have the same value of alpha.

Abstract

Associating alpha values with pixel colors is an important technique in computer graphics,
allowing us to create complex composite images. However, the interpretation of the meaning
of alpha is often a fluid concept, switching between coverage (a measure of area) and opacity
(a measure of a color) based on convenience. It can appear very strange that a single number
could represent both of these qualitatively different values at the same time. By tracking cov-
erage and opacity separately through the compositing process, we find that alpha is actually
the product of coverage and opacity, so it is only one of these terms if we assume that the other
has the value 1. This leads to a simple and consistent understanding of the internal structure
of pixels that are described by color and alpha.

1. Introduction

The idea of “alpha” has been a part of computer graphics for over three decades, since
it was presented in the classic paper on image compositing [Porter and Duff 1984].

The alpha idea has been used to composite an enormous number of pixels (a rough
estimate suggests that alpha blending has been used upwards of 1021 times in the
entertainment industry alone). The concept of alpha as part of a pixel’s color is firmly
embedded in our psyches and our code.

30 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

Alpha is obviously incredibly useful for compositing images, but what does it
really represent? The graphics literature can be hard to nail down on this issue. In
their paper, Porter and Duff [1984] sometimes consider alpha to represent the opacity
of a completely covered pixel:

If αA and αB represent the opaqueness of a semi-transparent object which fully
covers the pixel, the computation is well known.

At other times, they consider it to be the area of a pixel that is covered by a colored
fragment within it (that area is called the coverage):

If αA and αB represent subpixel areas covered by opaque geometric objects, the
overlap of objects within the pixel is quite arbitrary.

The authors switch interpretations based on whatever is most useful at each mo-
ment in their discussion.

Porter and Duff are not alone in this. In a memo on the subject, Smith [1995]
states,

There are two ways to think of the alpha of a pixel. As is usual in computer
graphics, one interpretation comes from the geometry half of the world and the
other from the imaging half. Geometers think of “pixels” as geometrical areas
intersected by geometrical objects. For them, alpha is the percentage coverage
of a pixel by a geometrical object. Imagers think of pixels as point samples of
a continuum. For them, alpha is the opacity at each sample. In the end, it is the
imaging model that dominates, because a geometric picture must be reduced to
point samples to display—it must be rendered. Thus, during rendering, coverage
is always converted to opacity, and all geometry is lost.

The Porter-Duff matting algebra that underlies what we present here is based on
a model that is easiest to understand by alternating between the two conceptions.

So once again, alpha seems to be either coverage or opacity, depending on one’s
needs.

In one last example, Blinn [1994] says,

The α value . . . goes by various names: coverage amount, opacity, or simply
alpha . . . I’m going to call it opacity for now. If it’s 0, the new pixel is transparent
and does not affect the frame buffer. If it’s 1, the new pixel is opaque and
completely replaces the current frame buffer color.

Many more quotes like these can be found in the graphics literature, each of which
treats alpha as a fluid concept. Alpha sometimes refers to opacity and sometimes cov-
erage, based on whatever is most convenient at any given time. The mathematics and
algorithms of many papers on composition also freely move between these interpre-
tations.

31

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

A reader could be forgiven for finding this confusing. Coverage is a description of
area, and opacity is a property of a material, or a color that represents its appearance
in a specific context. It seems unlikely that a single number can mean either of these
things depending on someone’s momentary preference.

Smith asserts that during rendering all geometry is lost, and only opacity remains.
Must that be so? What if we don’t throw away the geometry, but instead preserve it
in the same way that we preserve opacity?

In this paper we will do just that, and retain both opacity and coverage indepen-
dently as we work through the compositing process. We’ll find that the traditional
equation for computing the new alpha after compositing emerges after the algebraic
terms cancel one another out. But along the way, we’ll develop a better appreciation
for what “alpha” is and why it apparently can be be interpreted with such flexibility.

The majority of compositing work uses the most general of the Porter-Duff com-
position operators, called over. This operation supposes that we’re building up a
pixel’s representation by placing some fragment of a new object over one or more
fragments already present in that pixel. Using over, we can build up a very complex
image by working from back to front, layering each new image over the results of
previous layering operations. We’ll derive our results by analyzing the mechanics of
over, though the results hold for any kind of compositing.

While our focus here will be on understanding alpha as a measure of pixel cover-
age or opacity, it’s worth noting that alpha has been used in other ways. For example,
alpha is frequently used to influence lighting calculations by making it part of a ma-
terial’s description. McGuire and Enderton [2011] demonstrate that when used this
way, an alpha value of .5 can equally well refer to a piece of red woven cloth which
has holes over half its area, or a transparent red gel which passes half of the light
striking it. These will have very different appearances and even different shadows:
the cloth will cast a mottled black shadow that might appear as a medium gray, while
the gel would cast a red shadow. It is important that programs that use alpha for light-
ing, rendering, filtering, and other effects carefully document just how they’re doing
so, or the results may be surprising [McGuire 2012].

Alpha can be used in this modeling sense for applications ranging from fabric to
hair to vegetation. In these applications, alpha is often explicitly intended to represent
either coverage or opacity.

2. Preliminaries

Closely involved in any discussion of compositing is the idea of pre-multiplication.
In pre-multiplication, we store a color’s components (typically red, green, and blue)
already multiplied by alpha. For example, suppose we have a fragment with RGBA =
(1, .5, .25, .5) (in this paper, all color values, opacity values, and coverage values will

32

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

be in the range [0,1]). We could save that in pre-multiplied form as (.5, .25, .125, .5).
Note that the alpha value is unchanged, while the R, G, and B values get multiplied
by alpha. Pre-multiplication is well known to be a valuable technique; Blinn [Blinn
1994] offers multiple situations where using pre-multiplied colors results in algo-
rithms that are faster or easier to program.

Pre-multiplication also allows us to create synthetic colors that cannot be the result
of any “natural” rendering or drawing process. So-called “transparent black,” with
RGBA values (0,0,0,0) is probably the most important of these. Using positive color
values along with an alpha of 0 allows us to produce glows and color washes that add
color to a pixel without introducing geometry.

In this paper, we write Ac for any color component of a fragment of object A
(typically red, green, or blue). Since all components get treated in the same way,
and independently of one another, we can focus on just one at a time. Alternatively,
Ac can be thought of as a grayscale value. We write Aα for the alpha value of the
fragment. So we could write the color and alpha together as (Ac,Aα). If the color
is pre-multiplied, we’ll write it with a lower-case italic letter, as (ac,Aα). Note that
because the alpha value itself is not pre-multiplied, it retains its capital letter.

Porter and Duff offer thirteen different compositing operators, each of which has
their use. By far the most popular is over, and that is the one we focus on here. The
blending equation describing over using non-premultiplied values (often called “raw”
or “straight” values) is

Cc =
AαAc +(1−Aα)BαBc

Aα +(1−Aα)Bα

.

The pre-multiplied version is much more efficient:

cc = ac +(1−Aα)bc. (1)

Note that the result is in lower-case since it’s in pre-multiplied form as well.
Suppose we want to use traditional alpha blending to stack up four images: A,

B, C, and D. Suppose further the most convenient way for us to compute these is to
first form F = A over B, then G =C over D, and then compose the two intermediates
to make H = F over G = (A over B) over (C over D). Then, while computing F , we
need to find not just the new color for each pixel, but a new alpha, so we can use it in
the next stage when finding H.

Porter and Duff [1984] don’t offer a formula for computing this new alpha. Both
Smith [1995] and Blinn [1994] provide the following expression for the alpha value
of the composite F = A over B (shown here in our notation):

Fα = Aα +(1−Aα)Bα. (2)

There’s a lot to like about this formula: it’s simple, it’s satisfyingly similar to
Equation (1), and, thinking it through, it makes intuitive sense. The formula is derived

33

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

by Blinn by working through the algebra of the over operator. In order to make that
operation associative (which is very desirable), this is the necessary expression. But
that doesn’t provide us with an intuitive interpretation of alpha. In other words, we
know how to compute it, but that doesn’t tell us how to interpret it.

In this paper we’ll re-derive this formula by independently tracking coverage and
opacity while compositing with over. Equation (2) indeed emerges at the end, and
along the way we’ll discover how to interpret the meaning of alpha.

3. Opacity and Coverage

In this section we set aside the idea of alpha for a moment, and instead focus inde-
pendently and specifically on opacity and coverage.

We will associate two numbers with each pixel in image A: the coverage, written
Ak, and opacity, written Ao. These numbers are each derived from the objects that
contribute to that pixel.

The pixel’s coverage, Ak, is nothing more than the fraction of the pixel that is
occupied by the fragment. The pixel’s opacity, Ao, is the opacity of that fragment.

Keep in mind that neither of these values is “alpha.” These are just values each
pixel receives from its geometry. For simplicity, we’ll start the discussion with a scene
containing only one object, so every pixel contains at most only one fragment.

Consider Figure 2, which shows a partly transparent orange ellipse with an opac-
ity 0.4, over a transparent background (represented by the classic white-and-gray
checkerboard). We will call this image A.

Figure 2. In image A, we draw an ellipse with opacity 0.4 over a transparent background.
Every fragment of this ellipse has the same opacity Ao at every pixel. In pixels where the
ellipse doesn’t contribute at all, its opacity (and color) are moot.

34

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

Figure 2 calls out three pixels: one fully inside the ellipse, one outside the ellipse,
and one straddling an edge. The ellipse has an opacity of .4. The pixel inside the
ellipse is fully covered, so Ak = 1, and its fragment has the opacity of the ellipse, so
Ao = .4. The pixel in the upper-left is about 60% covered by the ellipse, so Ak = .6,
and the opacity of the fragment inside that pixel is again the opacity of the ellipse, so
Ao = .4. The pixel in the lower-right that is outside the ellipse is not covered at all, so
Ak = 0. The opacity value Ao is moot, since there’s no fragment from which to derive
an opacity value. In Figure 2, this Ao is given a value of x to indicate “don’t know” or
“don’t care.”

Consider now the same three pixels in Figure 3, where the ellipse is fully opaque.
In each pixel, the coverage Ak is the same as in Figure 2. But the opacities of the two
covered pixels are now both Ak = 1. That is, the partially covered pixel is only partly
covered by its fragment, but that fragment is entirely opaque.

We pause here to make an observation about alpha. Modern renderers compute a
value of alpha at each pixel by multiplying that pixel’s Ak and Ao together (assuming,
as we are for the moment, that the pixel contains only one fragment). This satisfies
common sense when handling a single fragment. For example, if a pixel is one-
third-covered by an opaque fragment, then α = AkAo = (1/3)× 1. Similarly, if a
pixel is completely covered by a one-third opaque fragment, the result is the same:
α = AkAo = 1× 1/3. And if a pixel is one-fifth covered by a fragment that is one-
third opaque, then 20% of the pixel is blocking 33% of the color from beneath it,
so α = AkAo = .2 ∗ .33 = .066. This product of coverage and opacity will play an
important role in the following discussion.

Figure 3. An opaque ellipse on a transparent background, with opacity and coverage values
for three pixels.

35

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

4. Composition

We’ll now look at a composition F =A over B. Each pixel in the layer for object A has
three pieces of information: the color Ac (or the pre-multiplied color ac), the coverage
Ak, and the opacity Ao. Of course, the layers for B hold the same data for that image.

Before we begin composing pixels, we need to decide how to combine them. The
classic approach of Porter and Duff is to presume, in the absence of additional infor-
mation, that the pixels are uncorrelated in every way. We make the same assumption
here.

Using the common “little square” model of a pixel that is 1 unit on a side, Figure 4
shows a composition stack for F = A over B.

Using our assumption that fragments are uncorrelated, we again follow Porter
and Duff and draw the pixels as though they each contain a small shape. In this case,
the shapes are axis-aligned rectangular fragments. This makes it easy to place them
so that the upper fragment A overlaps both Ak percent of the area of the pixel and
Ak percent of the area of Bk under it. This is the uncorrelation assumption in action:
if A covers Ak of the pixel’s area, then it also covers Ak of fragment B’s area.

What is the final color of this pixel? There are four regions to consider:

• FA: The region where only A is present.

• FB: The region where only B is present.

• FAB: The region where both A and B are present.

• F0: The region where neither object is present.

Let’s take these in turn.
FA: This rectangle has area Ak(1−Bk). The color inside is AcAo. Thus the total

contribution to the final pixel color is (FA)c = Ak(1−Bk)AcAo.
FB: This area is just like the above, with A and B reversed. The area is Bk(1−Ak),

and the color is BcBo. Thus the total contribution to the final pixel color is (FB)c =

Bk(1−Ak)BcBo.

Figure 4. Pixel B is on the bottom, A is above it, and F = A over B is at top.

36

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

FAB: This region has area AkBk. The color contributed by A is AcAo and that from
B is BcBo. All of A’s color is preserved in F , but because A has an opacity of Ao, it
only allows (1−Ao) of the color from B to pass through it. So the total contribution
to the final pixel color is (FAB)c = AkBk(AcAo +(1−Ao)BcBo).

F0: Of course, because neither fragment contributes to F0, the contribution to the
final pixel from this area is 0.

To find the new pixel color we merely add these four terms together. We will not
normalize the result (that is, we won’t divide through by the areas) so the summation
returns a new pre-multiplied color fc:

fc = (FA)c +(FB)c +(FAB)c +(F0)c

= Ak(1−Bk)AcAo +Bk(1−Ak)BcBo +AkBk(AcAo +(1−Ao)BcBo)+0

= AcAkAo +(1−AkAo)BcBkBo.

This looks very familiar. We can make it even more familiar by implying mul-
tiplication of terms by multiplication of subscripts, e.g., Ako = AkAo. Then we can
write this as

fc = AkoAc +(1−Ako)BkoBc. (3)

If we assume for the moment that Aα = Ako and Bα = Bko (as practiced by most
modern renderers), then this looks like the standard version of over for pre-multiplied
pixels a and b, producing a pre-multiplied result f :

f = a+(1−Aα)b.

But before we make that leap, notice that we’ve only computed a new color, and
not a new opacity or coverage, both of which are necessary if we’re going to perform
another composition with image F (what Smith calls the second-composition problem
[Smith 1995]). So let’s find expressions for the composite coverage Fk, opacity Fo,
and composite alpha, Fα.

5. Finding Fk and Fo

To find a value for Fα, we will independently track the coverage and opacity informa-
tion through the over operation.

5.1. Coverage

The geometry term is easy: it’s merely the total amount of the pixel covered by A
and B. We can read that right off of Figure 4. In this calculation, it doesn’t matter if

37

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

A is over B or vice-versa:

Fk = Ak +(1−Ak)Bk

= Bk +(1−Bk)Ak

= Ak +Bk −AkBk.

(4)

5.2. Opacity

Now let’s look at opacity and find Fo. We can follow the same steps as before, again
by referencing Figure 4. The amount of opacity added in by the region A is given by
the area of that region, Ak(1−Bk) times the opacity in that region, Ao. Regions B and
0 follow the same pattern:

(FA)o = Ak(1−Bk)Ao,

(FB)o = Bk(1−Ak)Bo,

(F0)o = 0.

(FAB)o is not on the list, because it merits a closer look. Let’s analyze the opacity
of region AB by thinking about it in terms of transparency.

Consider two transparent sheets of plastic, A and B. Suppose Ao = .3, meaning it
lets through 70% of the color trying to pass through it, and Bo = .4, so it lets through
60% of the color. We’ll stack A over B and look at a swatch of color with value 1
placed beneath them, as in Figure 5.

Layer B has an opacity Bo, so it passes through 1−Bo of the color beneath it. The
same is true of A. For convenience, let’s write these as transparency values with the
subscript t, so that At = 1−Ao and Bt = 1−Bo. Thus the combined transparency is
the product of the two components, AtBt .

In other words, transparencies are commutative: looking at the world through a
20% filter in front of a 35% filter gives the same results as the other way around.

Figure 5. The bottom-most layer has color 1. It passes through layer B with opacity .4 so
the color has value (1-.4)=.6, then passes through layer A with opacity .3, so it now has value
(1-.3)(.6) = .42.

38

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

So the opacity in region AB is merely 1 minus the transparency, or 1− (AtBt) =

1− ((1−Ao)(1−Bo)). We can rearrange this to find:

1− ((1−Ao)(1−Bo)) = Ao +(1−Ao)Bo.

Multiplying this by the area of region AB, we get the opacity contributed by that
region:

(FAB)o = AkBk(Ao +(1−Ao)Bo).

Putting the four pieces together, we have

Fo = (FA)o +(FB)o +(FAB)o +(F0)o

= Ak(1−Bk)Ao +Bk(1−Ak)Bo +AkBk(Ao +(1−Ao)Bo)

= AkAo +BkBo −AkBkAoBo.

This last expression has a very nice geometric interpretation. It tells us that to
find the total opacity, add the opacity contributed by A, given by AkAo, to the total
opacity contributed by B, given by BkBo, but then notice that we’ve added the region
AB twice, so subtract that region’s contribution once by removing AkBkAoBo.

It’s tempting to stop here, but notice that our final expression above is being
weighted by area-based factors, and we’re not normalizing. We can divide by the
areas to produce a normalized result:

Fo =
AkAo +BkBo −AkBkAoBo

Ak +Bk −AkBk
.

We’ve seen that denominator before. Of course, it’s just the total area of the frag-
ments, which we found in the last section as Fk. So the final value for the composite’s
opacity is then

Fo =
AkAo +BkBo −AkBkAoBo

Fk
. (5)

5.3. Combining Opacity and Coverage

When we compose F over some other image, at each pixel F has coverage Fk and
opacity Fo. Inspired by our observation that renderers save the product of coverage
and opacity when drawing fragments, let’s now find the product Fko = FkFo.

The terms Fk and Fo. are given by Equations (4) and (5) gathered together here:

Fo =
AkAo +BkBo −AkBkAoBo

Fk
,

Fk = Ak +Bk −AkBk.

Notice that both of these expressions are symmetric in A and B. So the order of
composition matters when we compute colors, but the resulting opacity and coverage
are identical for A over B and B over A.

39

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

Let’s now find the product Fko:

Fko = Fk
AkAo +BkBo −AkBkAoBo

Fk

= Ako +Bko −AkoBko

= Ako +(1−Ako)Bko.

(6)

This looks very familiar. Compare Equations (2) and (6):

Fα = Aα +(1−Aα)Bα,

Fko = Ako +(1−Ako)Bko.

We know that, thanks to the renderer, Aα =Ako and Bα =Bko. So both expressions
evaluate to the same result, and thus the two left-hand terms are equal. We’ve reached
our goal: Fα = Fko.

6. Picturing Alpha

Recall that we earlier noted that when rendering, the alpha at each pixel is the product
of opacity and coverage. We’ve now seen that when images are composed, the result-
ing alpha at each pixel in that composite is the product of that pixel’s final coverage
and opacity.

So the quotes at the start are all correct, but they’re only a few of the ways we can
think of alpha. Suppose you have a pixel with an alpha value of α = 0.24. You know
that this is the product of the total coverage and total opacity, but you don’t know how
either of these values are distributed over the pixel.

A few pairs of values that multiply to 0.24 are shown in Figure 6, along with a
few of the infinite pixels they could be describing.

So if we have an alpha of, say, 0.24, we can indeed think of it as a single opaque
shape that occupies about a quarter of the pixel’s area, as in the left column of Fig-
ure 6, though we don’t know anything about the geometry of that shape – it could be
a rectangle, a circle, or a dozen little disconnected triangles. At the other extreme, we
can interpret alpha as the opacity value for a fully-covered pixel, as in the the upper-
right of Figure 6. This is why pictures like Figure 4 are valid: they’re just one of the
many ways to draw a pixel with a given value of α.

But we can interpret α in any of an infinite number of other ways. We can treat
the pixel as any distribution of coverage and opacity as long as the total product is
equal to alpha.

Thus we’re free to adopt the viewpoint in Smith [Smith 1995], that when render-
ing all geometry is lost and only opacity remains (right column of Figure 6). But
we’re just as free to think that all opacity is lost and only area remains (left column of
Figure 6). Or we can choose anything else in between.

40

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

Figure 6. Each column shows a few of the infinite pixels with an alpha of 0.24 that could
be associated with a particular choice of factors. The value of k is the total coverage, and the
value of o is the total opacity (the images were drawn by hand and are meant to be suggestive,
rather than numerically accurate).

To express this explicitly, consider a function k(p) that returns the coverage of
each point p in a pixel (this will be 0 or 1), and a function o(p) that returns the
opacity at each point p. Then we can write alpha as

α =
∫

P
k(p)o(p)d p/P

where P represents the area of the pixel.
Here, k(p) can be thought of as a “masking” function that tells us where the

opacity function’s values contribute, and where they don’t. This formulation suggests
interpreting Smith’s observation that “coverage is always converted to opacity” by
thinking of pre-multiplying o(p) by k(p). Then the coverage term disappears from
the integral, and we are indeed left with nothing but opacity.

We find that it can be useful to keep these ideas distinct, as we can then think of
alpha in terms of both the geometric and opacity information that go into it. We can
sometimes use this information to produce a more accurate composite than would be
possible with opacity or coverage alone. For example, suppose we have two pixels,
and we know that when they are composited, the fragments they contain will not over-
lap. Then we can model the pixels with non-overlapping constant-opacity geometries
(such as parallel rectangles), and use the Porter-Duff plus operator, rather than over.

Keeping coverage and opacity distinct, Figure 7 shows just a few more possible
pixels that have the same alpha as in Figure 6. As far as alpha is concerned, every one
of the pixels in Figures 6 and Figure 7 are equally likely to represent the “true” ap-
pearance of the pixel (one that might be produced, say, by very high supersampling, or
a very accurate fragment-based renderer). Of course, we may have additional knowl-

41

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

Figure 7. More pixels with an alpha of 0.24 (the images were drawn by hand and are meant
to be suggestive, rather than numerically accurate).

edge about our images that could lead us to prefer some possibilities over others, but
that requires us to have more information than is encoded simply in a color and an
alpha value.

So the coverage and opacity distribution over a pixel can be anything from a single
opaque shape to a partly transparent fractal dust, or any of countless other patterns.
As long as the total coverage and opacity multiply to a pixel’s alpha, we’re free to
distribute that opacity and coverage in any way we want.

Suppose you don’t know anything about how a pixel was generated, but you
wanted to choose a model of the pixel for use in other calculations. We believe that the
upper-right of Figure 6 is probably the most appropriate model when no other infor-
mation exists, because it makes the fewest possible assumptions about the distribution
of both coverage and opacity.

Figure 8. If an application requires a model of geometry inside the pixel, we favor a Poisson
distribution of small, opaque circles whose total area equals the pixel’s value of α. The pattern
is simple and isotropic (the image was drawn by hand and is meant to be suggestive, rather
than numerically accurate).

42

http://jcgt.org


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

The models in the leftmost column of Figure 6 are less appealing because these
all require inventing some kind of shape (or shapes) to represent the pixel’s coverage.
If such a choice is needed, we prefer a Poisson distribution of small circles (or even
Gaussian blobs), which minimizes preferences for any specific orientation or struc-
ture. Figure 8 illustrates the idea. Here the opacity is 1 (that is, Ao = 1) and the sum
of the areas is the coverage Ak = α.

7. Conclusion

We have found that when creating F = A over B, we can track each pixel’s coverage
Fk and opacity Fo independently. We also found that the value of Fα appropriate for
compositing is given by the product of the coverage and opacity, FkFo.

We have shown that the popular idea that alpha represents either coverage or opac-
ity, depending on convenience, is correct but incomplete. A pixel’s alpha actually
represents the product of the total coverage and the total opacity. In the absence of
additional information, we are free to distribute those qualities throughout the pixel
in any way we want.

Acknowledgements

Thank you to Steven Drucker, Eric Haines, Jeff Hultquist, Allan MacKinnon, and
Andrew Willmott for helpful comments and suggestions.

References

BLINN, J. F. 1994. Compositing, part 1: Theory. IEEE Computer Graphics & Appli-
cations 14 (September), 83–87. URL: ieeexplore.ieee.org/xpl/login.jsp?
tp=&arnumber=310740. 31, 33

MCGUIRE, M., AND ENDERTON, E. 2011. Colored stochastic shadow maps. In
Proceedings of the ACM Symposium on Interactive 3D Graphics and Games. ACM,
New York, February. URL: http://research.nvidia.com/publication/
colored-stochastic-shadow-maps. 32

MCGUIRE, M., 2012. Translucency in OBJ/MTL files. http://casual-effects.

blogspot.ca/2012/01/translucency-in-obj-mtl-files.html. Casual
Effects Blog. 32

PORTER, T., AND DUFF, T. 1984. Compositing digital images. SIGGRAPH Computer
Graphics 18, 3 (Aug.), 253–259. URL: http://dl.acm.org/citation.cfm?id=
808606. 30, 31, 33

SMITH, A. R. 1995. Image compositing fundamentals. Microsoft Technical Memo 4, August.
URL: http://alvyray.com/Memos/CG/Microsoft/4_comp.pdf. 31, 33, 37,
40

43

http://jcgt.org
ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=310740
ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=310740
http://research.nvidia.com/publication/colored-stochastic-shadow-maps
http://research.nvidia.com/publication/colored-stochastic-shadow-maps
 http://casual-effects.blogspot.ca/2012/01/translucency-in-obj-mtl-files.html
 http://casual-effects.blogspot.ca/2012/01/translucency-in-obj-mtl-files.html
http://dl.acm.org/citation.cfm?id=808606
http://dl.acm.org/citation.cfm?id=808606
http://alvyray.com/Memos/CG/Microsoft/4_comp.pdf


Journal of Computer Graphics Techniques
Interpreting Alpha

Vol. 4, No. 2, 2015
http://jcgt.org

Author Contact Information
Andrew Glassner
The Imaginary Institute
726 North 47th St.
Seattle, WA 98103
andrew@imaginary-institute.com

Andrew Glassner, Interpreting Alpha, Journal of Computer Graphics Techniques (JCGT), vol.
4, no. 2, 30–44, 2015
http://jcgt.org/published/0004/02/03/

Received: 2015-03-13
Recommended: 2015-05-11 Corresponding Editor: Andrew Willmott
Published: 2015-05-29 Editor-in-Chief: Morgan McGuire

c© 2015 Andrew Glassner (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

44

http://jcgt.org
mailto:andrew@imaginary-institute.com
http://jcgt.org/published/0004/02/03/
http://creativecommons.org/licenses/by-nd/3.0/

