
Journal of Computer Graphics Techniques Vol. 4, No. 2, 2015 http://jcgt.org

Practical Layered Reconstruction for Defocus and
Motion Blur

Jon Hasselgren Jacob Munkberg Karthik Vaidyanathan

Input (8 spp) Reference (1024 spp)

Our filter, 20 ms LRDM, 80 ms

Figure 1. We accelerate layered reconstruction for defocus and motion blur [Munkberg et al.
2014] (denoted LRDM) by over 4⇥ with very little impact on image quality.

Abstract

We present several practical improvements to a recent layered reconstruction algorithm for
defocus and motion blur. We leverage hardware texture filters, layer merging and sparse
statistics to reduce computational complexity. Furthermore, we restructure the algorithm for
better load-balancing on graphics processors, albeit at increased memory usage. We show run
time reductions by 1/2 to 1/5 with minimal change in image quality vs. previous techniques,
bringing this reconstruction technique to the real-time domain.

1. Introduction

Monte-Carlo sampling is a popular technique for simulating realistic camera effects,
such as depth of field and motion blur. However, it requires a large number of samples
to converge to a result with acceptable noise levels.

Several recent papers [Lehtinen et al. 2011; Vaidyanathan et al. 2015; Munkberg
et al. 2014] focus on reconstruction algorithms for defocus and/or motion blur, with-
out requiring a second adaptive sampling pass. They generate a higher quality image
from a sparsely sampled light field with accompanying per-sample motion vectors
and depth. These algorithms are biased, but produce images close to ground truth at

45 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

Layer 0

Layer 1

Layer 2

Input tile with guard Layer and filter setup Reprojection 2D Filter Composite

Figure 2. Algorithmic flow for LRDM [Munkberg et al. 2014].

low sample rates, and are temporally robust.
This paper presents practical improvements and optimizations to the layered de-

focus and motion blur reconstruction algorithm by Munkberg et al. [2014], herein
denoted as LRDM. LRDM is about two orders of magnitude faster compared to of-
fline reconstruction, e.g., Lehtinen et al. [2011; 2012], but it is still not fast enough
for real time applications. In this paper, we improve the performance of LRDM by a
factor 2�5⇥, bringing reconstruction filters into the real-time domain.

2. Summary of the LRDM algorithm

Layered reconstruction for defocus and motion blur (LRDM) [Munkberg et al. 2014],
forms the basis for our work. LRDM divides the samples into screen space tiles, and
each tile into depth layers. Each such combination of tile and depth layer is called a
partition, and a sheared filter in (x,y,u,v, t)-space is derived from frequency analysis
of the light field [Egan et al. 2009; Egan et al. 2011; Belcour et al. 2013] of all
samples falling in that partition. Here, (x,y) denote screen space coordinates, (u,v)
lens coordinates and t time.

To make the filter derivation tractable, a sample’s motion is approximated to be
linear within the shutter interval, and a common filter is derived per partition, based
on the samples’ motion vectors and depths. The LRDM algorithm can be split into
three main passes, shown in Figure 2:

Filter Setup All samples in a small screen-space region, say 32⇥32 pixels, are par-
titioned into depth layers, where the depth layers are typically fixed and con-
figured to have an even spacing by circle of confusion. For each partition, pa-
rameters for a sheared 5D filter are computed, based on the motion vectors and
depth ranges of the partition. Out-of-focus partitions get larger filter kernels,
sheared in xu and yv, and motion blurred partitions have anisotropic kernels in
xyt.

Reprojection To evaluate the sheared filter, the samples are weighted by the filter in
uvt space and are reprojected to (u,v, t) = (0,0,0.5) for each partition. Both
a color and opacity value is accumulated per pixel. A reprojected sample will

46

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

reduce the opacity of all partitions in front of it at the reprojected position, but
will only contribute to the color of the partition it belongs to.

Screen-Space Filtering and Compositing Finally, a rotated Gaussian screen-space
filter is applied to the color and opacity functions, which concludes the eval-
uation of the 5D filter. The filtered layers are then composited front-to-back
using alpha blending based on the filtered colors and opacity values. More for-
mally, for a set of N layers with filtered layer irradiance ei(x,y) and filtered
layer opacity ai(x,y), the final irradiance e(x,y) is approximated as:

e(x,y)⇡ e0(x,y)+
N�1

Â
j=1

e j(x,y)
j�1

’
k=0

(1�ak(x,y)).

The key to performance is the separation of the sheared 5D filter into a repro-
jection step followed by a 2D screen-space filter, instead of an expensive gather in
5D space. This separation is possible because LRDM uses a common filter for each
partition, rather than a filter that potentially varies for every pixel.

3. Algorithm Load Balancing

The original LRDM implementation focused on reducing memory bandwidth by keep-
ing data in shared local memory. However, this limits the opportunities for optimiza-
tions, as most of the algorithm was implemented in a single kernel. For this workload,
the memory bandwidth is far from saturated, and we have noted that it is far more im-
portant to efficiently load-balance the computational steps. By storing intermediary
results in GPU memory we can divide the implementation into smaller kernels, and
exploit hardware texture filtering.

In practice, we found that it is most efficient to use one kernel for each step (filter
setup, reprojection and screen-space filter). Additionally, the screen-space filter is
divided into two separable kernels. Each kernel can be parallelized independently,
which improves load-balancing. We note that optimal thread and group sizes for the
kernels vary somewhat by graphics vendor. Therefore, we run a setup script that
evaluates performance for a set of work group sizes for each pass of the algorithm.

4. Filter Setup Optimizations

LDRM computes filter parameters for each partition (a depth layer in a tile), based on
the mean and variance of the depth and motion vector of all samples in a partition,
typically about 32⇥ 32 samples. This filter setup step can be significantly reduced
through a few optimizations.

Sparse statistics An efficient way to optimize filter setup, is to approximate the
statistics (sample mean and variance) of each partition based on a subset of the sam-

47

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

ples. LRDM requires that a reasonable number of samples fall into each partition to
achieve good quality, and this is also commonly the case. Thus, when computing the
mean and standard deviations, we process every n:th sample, where n can be tuned to
trade quality for performance. We use a stratified random sampling strategy to select a
representative subset of samples, where we address the samples of a tile in pixel Mor-
ton order and randomly pick an address from every bucket of n samples. The address
can be generated with a simple random number generator such as xor-shift [Marsaglia
2003]. In practice, we use n = 3⇥ spp, e.g., n = 12 for scenes with four samples per
pixel, without noticeable image quality impact.

Layer merging LRDM uses a static layering strategy where camera space is divided
into depth buckets. Each bucket spans a predetermined range in depth, which is based
on the circle of confusion near the focus plane, and is uniform for the remainder of
the depth range. This is motivated by equal spacing relative to circle of confusion
being a good approximation of the partition’s filter size with respect to depth of field.
The uniform depth layers outside this region ensure partitions cover a small enough
depth range not to introduce artifacts in the presence of motion blur. In both regions,
a sample can be assigned to a layer in constant time.

However, since the layers are static in camera space, many unnecessary partitions
can be created. For example, if a tile contains samples that fall in two depth buckets,
we will create two partitions even if the samples have a narrow depth range. We im-
prove on the original layering algorithm by sweeping through all populated buckets
(in sorted depth order) and merge them, if possible. As merge heuristic, we com-
pute screen-space filter extents for both candidates, as well as the merged result. We
merge two partitions if the screen-space filter size do not shrink by more than a given
threshold of 10%, which did not introduce any noticeable artifacts in any of our test
scenes.

We found that several partitions could be merged, without significantly impact-
ing image quality. For our test scenes, the average number of partitions per tile is
reduced from 2.7 with the original implementation to 1.9 after merging. Note that the
layers are derived from visible samples only, and are not related to the scene’s depth
complexity. Rather, the figures should be interpreted as depth layers in a tile that has
significantly different filtering characteristics (circle of confusion or motion vector).
Put together, these two approximations more than double the performance of the filter
setup step compared to the LRDM implementation. Furthermore, due to the reduced
number of partitions, the subsequent steps are significantly faster.

5. Reprojection

In this kernel, all samples are reprojected to (u,v, t) = (0,0,0.5), along partition-
specific slopes derived in the filter setup step. The reprojected screen-space position

48

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

of a sample (x,y,u,v, t) is given by


x0

y0

�
=


x
y

�
+A


u
v

�
+b t, (1)

where A is a 2⇥2 diagonal matrix based upon the lens configuration, and the vector b

is derived from the motion vector. Both A and b are unique per partition. The details of
how these parameters are computed are outside the scope of this paper, and we refer to
the work of Munkberg et al. [2014] for the full derivation. All samples are reprojected
by the filter parameters of all (non-empty) partitions. If the sample lies in the depth
range of the partition, both color and opacity is updated at the reprojected position.
For partitions closer to the observer than the sample, the opacity is decreased, as the
sample can be seen through that layer.

Apart from the separation into a separate kernel, and the reduced number of layers,
our implementation for this step follows LRDM very closely.

6. Accelerated Anisotropic Gaussian Filtering

After sample reprojection, each partition is filtered using an anisotropic Gaussian filter
kernel, w(x,y,su,sv,q), where su and sv are the standard deviations in the filter’s
local coordinate frame, and q is the angle of rotation. The angle of rotation is chosen
such that the u-axis of the filter is aligned with the motion direction, and therefore
su � sv. For a detailed filter derivation, we refer to the LRDM paper [Munkberg et al.
2014].

In LRDM, the filtering step is implemented in two rotated separable passes along
the u- and v-axes. Since the filter axes do not align with the pixel grid, bilinear interpo-
lation is used for each filtering operation to improve quality. The interpolation could
not leverage hardware texture filtering, as temporary results were stored in shared lo-
cal memory. Furthermore, the rotated coordinate frame makes it impractical to use
efficient approximations to Gaussian filters, e.g., recursive filters [Deriche 1992].

We outline two approximate anisotropic Gaussian filters below. The first method
exploits anisotropic hardware texture filters, which have good performance but re-
duced quality, since the filtering hardware does not closely approximate a Gaussian
filter, as seen in Figure 3.

The second alternative transforms the rotated xy-filter into a sheared filter and
use a recursive filter along one axis, and a 1D Gaussian along the other sheared axis.
This approach, shown to the right in Figure 3, has similar quality to LRDM, and
performance almost on par with hardware texture filtering.

6.1. Hardware Texture Filtering

The exact implementation details of hardware anisotropic filtering may differ between
GPU vendors, and the specifications are not publicly available. However, it is a

49

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

Reference (1024 spp) Aniso one tap Aniso four taps Sheared filter

Figure 3. Quality of our two proposed filtering approaches. Anisotropic texture filtering
works well in regions with motion (upper row), but suffers from artifacts in regions with only
depth of field (lower row). We improve aniso quality by performing multiple texture lookups.

reasonable assumption that most approaches try to mimic EWA filtering [Heckbert
1989], which is based on Gaussian filter kernels.

Accelerating our Gaussian filtering step using hardware texture filtering is straight-
forward, with the main caveat being that we need to construct MIP map hierarchies
on the fly for each partition. The filtering pass is implemented with SampleGrad
texture lookups. The derivatives, ddx and ddy, indicate the full size of the filter foot-
print, as opposed to our su and sv parameters, which represent the standard deviation
of the Gaussian distribution. In our implementation, we determine ddx and ddy such
that the filter footprint captures 95% of the Gaussian energy.

The integral of a Gaussian distribution with standard deviations su, sv is:

1
2psusv

Z b

�b

Z a

�a
e
� 1

2

✓
u2

s2
u
+ v2

s2
v

◆

dudv = erf
✓

ap
2su

◆
erf

✓
bp
2sv

◆
. (2)

We determine integration bounds to retain 95% of the energy. Furthermore, we want
to discard energy equally along both axes, which is achieved when a/su = b/sv. We
let a = asu and b = asv, and solve for a, given our 95% energy constraint:

erf
✓

ap
2

◆2

= 0.95 , a =
p

2erf�1
⇣p

0.95
⌘
⇡ 2.24, (3)

This is the scaling coefficient used in our implementation. Taking the rotation of
the filter into account, we get:

ddx = a(su cosq,�su sinq), ddy = a(sv sinq,sv cosq). (4)

This filtering method is very fast, but it has poor quality when the texture footprint
is nearly isotropic. Typically, anisotropic texture filtering is implemented using multi-
ple isotropic lookups along the major axis of the ellipsoid. If the footprint is isotropic
we get a single trilinear lookup. Therefore, static or slowly moving regions with depth

50

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

d 1-d

A

} }

B
Figure 4. We improve quality with hardware texture filtering and near-isotropic kernels by
sampling additional taps. A: We constrain each tap so that it is offset a distance d from the
filter center, with a footprint such that it touches the original edge. B: We place four samples
in the filter kernel, which gives us a coverage as illustrated by the transparent circles.

xθ

y (cos ,-sin)uσ θ θ

(si
n

 , c
os

)

vσ

θ

θ

x

y

(1,0)us

(,1)vs β

A B
Figure 5. Any rotated 2D Gaussian filter can be decomposed into a sheared Gaussian filter,
where one of the axes of the sheared filter is aligned with the x-axis. A: A rotated and scaled
Gaussian filter. B: An identical Gaussian filter expressed by a sheared coordinate frame.

of field tend to look blocky, as seen in Figure 3. We alleviate this problem by using
multiple texture lookups for larger filter kernels, as shown in Figure 4. In practice,
four filter taps are sufficient to eliminate visual artifacts in our test scenes. Finding
the optimal sample placement is non-trivial, as we wish to approximate a Gaussian,
and the nature of the anisotropic filter may be hardware dependent. We chose an em-
pirical approach, and put constraints on tap distance d, as shown in Figure 4A. Given
this constraint, we found that d ⇡ 0.33 (applied to a unit Gaussian before scaling)
minimized error as compared to a reference image, while avoiding most of the MIP
map related artifacts.

6.2. Sheared Screen-Space Filtering

Our sheared screen space filter is based on recursive filters, which are most efficient
when the filter axis is aligned with the pixel grid. We follow Geusebroek et al. [2003],
who show that any rotated anisotropic Gaussian kernel can be decomposed into a
sheared Gaussian kernel that is separable in x, and a sheared axis. For completeness,
we derive the filter transformation below.

51

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

A rotated anisotropic Gaussian in matrix form is given by [Heckbert 1989]:

f (x) =
1

2p|A|e
� 1

2 x

>(AA

>)�1
x, (5)

where x = [x,y]> is the position to be evaluated, and

A =

"
cosq �sinq
sinq cosq

#"
su 0
0 sv

#
(6)

is the matrix of the rotated filter, which first performs scaling by the filter’s standard
deviations, followed by rotation. Similarly, referring to Figure 5, we can express a
sheared Gaussian filter, with one axis aligned with the x-axis, e0 = (1,0) and the
sheared axis given by e1 = (b,1), as:

f (x) =
1

2p|B|e
� 1

2 x

>(BB

>)�1
x, (7)

where we have used different scale factors, su and sv, and

B =

"
1 b
0 1

#"
su 0
0 sv

#
. (8)

Thus, we need to solve BB

> = AA

>. The matrices, representing coefficients for
quadratic forms, are both diagonally symmetric, and have three degrees of freedom.
After simplification, we arrive at the following coefficients for the sheared Gaussian:

su =
susv

r
, sv = r, b =

cosqsinq(s2
u �s2

v)

r2 , r =
q

s2
v cos2 q+s2

u sin2 q (9)

The sheared Gaussian can be expressed as a separable filter where one filter lies along
the x axis and another along the sheared axis e1 = (b,1).

We evaluated both a standard convolution filter and a recursive filter approxi-
mation, and observed that the latter provides a worthwhile performance improve-
ment in most cases. Our recursive Gaussian approximation comes from Gastal and
Oliveira [2011]:

out[i] = (1� g) in[i]+ g out[i�1], (10)

where g = e(�
p

2/s). We perform recursive filtering on each tile independently. Al-
though recursive filters have infinite support, we are still approximating a Gaussian
filter, and it is reasonable to assume that we can use the same guard band as would
have been used in a convolution filter.

For the filter along the sheared axis, we use a standard separable Gaussian kernel.
Geusebroek et al. [2003] outline an implementation that uses recursive filters for the
sheared axis as well. However, their approach requires using an additional compute-
grid aligned with the sheared axis, and would unfortunately be very complicated to
efficiently parallelize with our data layout.

52

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

ARENA 4 spp CITADEL 4 spp

SANMIGUEL2 8 spp WALL 4 spp

Figure 6. We use the same five test scenes as in the original paper by Munkberg et al. [2014] in
order to make direct comparison easier. Refer to Figure 1 for an image of the SANMIGUEL1
scene. The scenes are rendered at 1280⇥720 and use between 4 and 8 samples per pixel.

7. Results

We have extended the original implementation of Munkberg et al. [2014], denoted
LRDM, with the optimizations presented in this paper, and made the source code
readily available online 1. The test scenes, shown in Figure 1 and Figure 6 are us-
ing the same input data as in the original LRDM paper. All scenes are rendered at
1280⇥ 720 pixels. In Table 1, we show execution times of our algorithm on three
different GPUs from major vendors. As can be seen from the results, we get up
to 5⇥ performance improvement for the implementation using hardware anisotropic
filters, with worthwhile performance improvements for all measured configurations.
We have optimized the original LRDM implementation and therefore our scores differ
slightly from the results presented by Munkberg et al. [2014]. In addition, we present
a timing breakdown for the different algorithm passes in Table 2.

In Table 3, we present peak signal to noise ratio (PSNR) scores for all variants
of the algorithm, compared to reference images generated using 1024 samples per
pixel. As expected, further approximations introduced in this paper reduce quality
when compared to the original algorithm. However, the quality reduction is typically
small, with the largest reduction being 2.6 dB for the SANMIGUEL1 scene. We believe
this is a reasonable tradeoff for real time applications. All images are included in the
supplemental material.

1https://software.intel.com/en-us/articles/layered-reconstruction-for-defocus-and-motion-blur

53

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

Reconstruction times on Radeon R9 290

0

5

10

15

20

25

30

35

40

45

50

Arena Citadel SanMiguel1 SanMiguel2 Wall

)
s

m
(

e
mit

n
oit

c
u

rt
s

n
o

c
e

R
HW filter

Sheared

LRDM

Radeon R9 290, 275 W GTX980, 165 W Iris Pro 5200, 47 W
New LRDM New LRDM New LRDM

ARENA 3.3 5.2 15.3 4.4 5.6 13.2 34.9 50.1 155
CITADEL 4.1 6.1 20.7 5.1 6.7 19.1 36.8 50.8 204
SM1 8 spp 9.7 12.9 50.2 10.8 13.0 54.1 97.2 123 449
SM2 8 spp 6.1 8.3 32.8 7.4 9.3 31.1 62.9 80.9 298
WALL 3.8 5.9 19.5 4.8 6.3 17.2 34.2 49.0 195

Table 1. Performance compared to LRDM. The two numbers given for our new implementa-
tion represent hardware texture filter (left) and sheared filter (right) performance in millisec-
onds. Our implementation using sheared filters is 2-4⇥ faster than previous work, and the
version using hardware texture filters is 3-5⇥ faster. Note that unlike the discrete cards, the
47W TDP for the Iris Pro includes both CPU and GPU.

LRDM HW filter Sheared filter
Stats 7.08 ms Stats 1.96 ms Stats 1.97 ms
Reproj & filter 12.00 ms Reproj 2.17 ms Reproj 2.30 ms

MIP map 0.59 ms X filter 1.75 ms
HWFilter 0.34 ms Y filter 0.70 ms

Table 2. Performance breakdown, in milliseconds, for the different passes of all implemen-
tations on the CITADEL scene and Geforce GTX 980 hardware. Note that unlike LRDM we
have decoupled the reprojection and filter passes.

We also integrated our improved reconstruction algorithm into a software stochas-
tic rasterization framework [McGuire et al. 2010; Clarberg and Munkberg 2014]. In
Figure 7, we present total render time for interleaved rasterization [Fatahalian et al.
2009] and reconstruction, for an animation with the camera flying through the ARENA

scene. Performance of both rendering and reconstruction is consistent for this anima-
tion with frame rate varies between 30 and 40 frames per second at a resolution of
1920⇥1080 pixels. The reconstructed video is included as supplemental material.

54

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

Scene HW filter Sheared filter LRDM
ARENA 43.0 dB 43.2 dB 44.3 dB
CITADEL 41.1 dB 41.6 dB 42.2 dB
SANMIGUEL1 34.2 dB 35.0 dB 36.1 dB
SANMIGUEL2 35.0 dB 35.0 dB 36.6 dB
WALL 35.4 dB 36.5 dB 36.1 dB

Table 3. Peak-Signal to Noise scores for our algorithms and LRDM.

0
5
10
15
20
25
30
35

R
en

de
r T

im
e

(m
s)

Time (Frame No.)

Total Render Time Reconstruction

Figure 7. A camera animation through the ARENA scene, rendered at real-time frame rates us-
ing a software stochastic rasterizer with reconstruction, at 1920⇥1080 resolution on Radeon
R9 290 hardware.

In Figure 8, we compare LRDM to our optimized implementation on a simple, yet
challenging scene with high contrast materials. The quality is very similar, albeit at
2.5⇥ faster reconstruction. The most notable artifact in this scene (for LRDM and our
version) is the streaking pattern on the moving checkerboard, due to the sparse input
samples. This effect can be reduced by increasing the spatial filter, sx, at the cost of
lost sharpness. This is illustrated in Figure 9.

Defocus Blur Only LRDM is an extension of previous work on layered depth of field
reconstruction [Vaidyanathan et al. 2015]. Therefore, our improvements apply to
depth of field reconstruction (i.e., 4D reconstruction) as well. As a proof-of-concept,
we stripped the code from the motion vector and shutter filter, which gave an ad-
ditional 10� 30% performance boost compared to the full 5D filter. Compared to
the performance reported in Vaidyanathan et al.’s paper, our optimized defocus blur
implementation is 3�4⇥ faster with very similar image quality.

8. Conclusions and Future Work

With our method for reconstructing sparsely sampled motion blur and depth of field,
we demonstrate up to a 5⇥ improvement in performance over previous work, poten-
tially bringing high quality camera effects into the real-time graphics domain.

It should be noted however, that our implementation trades performance for a

55

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

Input 8 spp LRDM 8.1 ms Our 3.2 ms Reference

Figure 8. A simple scene with high contrast materials, an out-of-focus fence in front of a
diagonally moving checkerboard and a static slanted checkerboard. The scenes is rendered at
512⇥512 and use eight samples per pixel.

Input 8 spp sx = 0.33 sx = 0.66 sx = 1.0 Reference

Figure 9. By varying the spatial filter, sx, we can reduce streaking artifacts at the cost of lost
sharpness (look at the edge along the motion direction). We use a spatial filter of sx = 0.33 in
all other images.

larger memory footprint than LRDM. We store intermediate results in textures, and
we therefore need enough storage to hold tiles, including guard bands, for all layers
in the scene. For 1920⇥1080 pixel resolution with an average of three layers per tile,
we estimate that hardware texture filtering approach requires about 240 MB of video
memory while sheared filtering requires 760 MB due to additional ping-pong buffers.

As future work, to limit memory consumption, we propose to split the frame
buffer into a set of large tiles and running the entire algorithm on a per-tile basis,
thereby limiting the memory footprint with a potential trade off in parallelism.

56

http://jcgt.org

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

Acknowledgements

We thank Intel’s Advanced Rendering Technology (ART) team. We also thank David
Blythe and Chuck Lingle for supporting this research. The CITADEL test scene is cour-
tesy of Epic Games, Inc., SANMIGUEL was modeled by Guillermo M. Leal Llaguno,
www.evvisual.com.

References

BELCOUR, L., SOLER, C., SUBR, K., HOLZSCHUCH, N., AND DURAND, F. 2013. 5D Co-
variance Tracing for Efficient Defocus and Motion Blur. ACM Transactions on Graphics,
32, 3, 31:1–31:18. 46

CLARBERG, P., AND MUNKBERG, J. 2014. Deep Shading Buffers on Commodity GPUs.
ACM Transactions on Graphics, 33, 6, 227:1–227:12. 54

DERICHE, R. 1992. Recursively Implementing the Gaussian and its Derivatives. In Proceed-
ings of the 2nd Conference on Image Processing, 263–267. 49

EGAN, K., TSENG, Y.-T., HOLZSCHUCH, N., DURAND, F., AND RAMAMOORTHI, R.
2009. Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur. ACM
Transactions on Graphics, 28, 3, 93:1–93:13. 46

EGAN, K., HECHT, F., DURAND, F., AND RAMAMOORTHI, R. 2011. Frequency Analysis
and Sheared Filtering for Shadow Light Fields of Complex Occluders. ACM Transactions
on Graphics, 30, 2, 9:1–9:13. 46

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K., MARK, W. R., AND HANRA-
HAN, P. 2009. Data-Parallel Rasterization of Micropolygons with Defocus and Motion
Blur. In High Performance Graphics, 59–68. 54

GASTAL, E. S. L., AND OLIVEIRA, M. M. 2011. Domain Transform for Edge-Aware Image
and Video Processing. ACM Transactions on Graphics 30, 4, 69:1–69:12. 52

GEUSEBROEK, J.-M., SMEULDERS, A., AND VAN DE WEIJER, J. 2003. Fast Anisotropic
Gauss Filtering. IEEE Transactions on Image Processing 12, 8, 938–943. 51, 52

HECKBERT, P. S. 1989. Fundamentals of Texture Mapping and Image Warping. Master’s
thesis, University of California, Berkeley. 50, 52

LEHTINEN, J., AILA, T., CHEN, J., LAINE, S., AND DURAND, F. 2011. Temporal Light
Field Reconstruction for Rendering Distribution Effects. ACM Transactions on Graphics,
30, 4, 55:1–55:12. 45, 46

LEHTINEN, J., AILA, T., LAINE, S., AND DURAND, F. 2012. Reconstructing the Indirect
Light Field for Global Illumination. ACM Transactions on Graphics, 31, 4, 51:1–51:10.
46

MARSAGLIA, G. 2003. Xorshift RNGs. Journal of Statistical Software 8, 1–6. 48

MCGUIRE, M., ENDERTON, E., SHIRLEY, P., AND LUEBKE, D. 2010. Real-Time Stochas-
tic Rasterization on Conventional GPU Architectures. In High Performance Graphics,
173–182. 54

57

http://jcgt.org
www.evvisual.com

Journal of Computer Graphics Techniques
Practical Layered Reconstruction for Defocus and Motion Blur

Vol. 4, No. 2, 2015
http://jcgt.org

MUNKBERG, J., VAIDYANATHAN, K., HASSELGREN, J., CLARBERG, P., AND AKENINE-
MÖLLER, T. 2014. Layered Light Field Reconstruction for Defocus and Motion Blur.
Computer Graphics Forum, 33, 4, 81–92. 45, 46, 49, 53

VAIDYANATHAN, K., MUNKBERG, J., CLARBERG, P., AND SALVI, M. 2015. Layered
Light Field Reconstruction for Defocus Blur. ACM Transactions on Graphics 34, 2, 23:1–
23:12. 45, 55

Author Contact Information
Jon Hasselgren
Intel Corporation
jon.n.hasselgren@intel.com

Jacob Munkberg
Intel Corporation
jacob.munkberg@intel.com

Karthik Vaidyanathan
Intel Corporation
karthik.vaidyanathan@intel.com

https://software.intel.com/en-us/intel-rendering-technologies

Hasselgren, Munkberg and Vaidyanathan, Practical Layered Reconstruction for Defocus and
Motion Blur, Journal of Computer Graphics Techniques (JCGT), vol. 4, no. 2, 45–58, 2015
http://jcgt.org/published/0004/02/04/

Received: 2014-12-04
Recommended: 2015-04-10 Corresponding Editor: Elmar Eisemann
Published: 2015-06-10 Editor-in-Chief: Morgan McGuire

c� 2015 Hasselgren, Munkberg and Vaidyanathan (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

58

http://jcgt.org
mailto:jon.n.hasselgren@intel.com
mailto:jacob.munkberg@intel.com
mailto:karthik.vaidyanathan@intel.com
https://software.intel.com/en-us/intel-rendering-technologies
http://jcgt.org/published/0004/02/04/
http://creativecommons.org/licenses/by-nd/3.0/

