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Figure 1. A complex scene ray traced using precomputed global-to-barycentric coordinate
transformations. Scene description from http://www.pbrt.org/scenes.php.

Abstract

Ray-triangle intersection is a crucial calculation in ray tracing. We present a new algorithm for
finding these intersections, occupying a different place in the spectrum of time-space trade-
offs than existing algorithms do. Our algorithm provides faster ray-triangle intersection cal-
culations at the expense of precomputing and storing a small amount of extra information for
each triangle. Running under ideal experimental conditions, our algorithm is always faster
than the standard Möller and Trumbore algorithm, and faster than a highly tuned modern
version of it except at very high ray-triangle hit rates. Replacing the Möller and Trumbore
algorithm with ours in a complete ray tracer speeds up image generation by between 1 and
6%, depending on the image. We have coded our method in C++, and provide two implemen-
tations as supplements to this article.

1. Introduction

Triangles are a crucial primitive in geometric models, which in turn means that ray-
triangle intersection is a crucial calculation for ray tracing. We present a new algo-
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rithm for finding these intersections, occupying a different place in the spectrum of
time-space trade-offs than existing algorithms do. In particular, our algorithm pro-
vides faster ray-triangle intersection calculations at the expense of storing a small
amount of additional information about each triangle.

The standard algorithm for computing ray-triangle intersections in ray tracing is
due to Möller and Trumbore [1997]. Given a ray and a triangle, this algorithm trans-
forms the ray from the global coordinate system to a triangle-specific barycentric one
and then tests for intersection in that coordinate system. The algorithm is fast because
it requires only a modest number of calculations and supports early detection of many
cases in which the ray cannot intersect the triangle. No information is precomputed,
and thus there is no memory overhead. Our algorithm also transforms rays from
global to barycentric coordinate systems, but precomputes the coordinate transfor-
mation. Precomputing the transformation allows each intersection calculation to be
faster than in Möller and Trumbore’s algorithm. Furthermore, we construct the trans-
formation in a way that ensures that many of the coefficients in its matrix form have
known values that do not need to be stored, thus minimizing the memory overhead of
the precomputation.

Our algorithm was originally developed in a university course, where it was suc-
cessfully used in student and faculty projects. Subsequently, we coded it as the core
of an experimental program from which we could take careful timing measurements,
and we built a version of the PBRT ray tracer [Pharr and Humphreys 2010] that used
it in place of a version of Möller and Trumbore’s algorithm. In the isolated experi-
mental setting our algorithm ran faster than the Möller and Trumbore algorithm, and
also ran faster than the tuned Möller and Trumbore algorithm in the Embree frame-
work [Wald et al. 2014]. In the more realistic pbrt setting it slightly out-performed
Möller and Trumbore while producing visually equivalent images.

2. Mathematical Foundations

Our precomputed transformation method originates in the idea that any triangle in-
stance can be constructed by transforming a canonical triangle. In particular, a triangle
with vertices −→v1 = (−→v1x,−→v1y,−→v1z), −→v2 = (−→v2x,−→v2y,−→v2z), and −→v3 = (−→v3x,−→v3y,−→v3z)1

can be constructed from a canonical right triangle in the xy plane with sides of unit
length via a transformation given by the matrix

1We use subscripts “x,” “y,” and “z” to identify the x, y, and z components of a point or vector;
e.g., −→v1x denotes the x component of vertex −→v1 . Arrows over variables (e.g., −→v ) indicate vectors or
points—the distinction between the two types is not significant to our discussion.
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T =


−→v2x −−→v1x −→v3x −−→v1x a −→v1x
−→v2y −−→v1y −→v3y −−→v1y b −→v1y
−→v2z −−→v1z −→v3z −−→v1z c −→v1z

0 0 0 1

 .

Here, a, b, and c form a “free vector” ~f = (a, b, c), and their values have no
influence on the canonical-to-global transformation. They do however, influence the
inverse transformation, and the main contribution of this work is to describe how to
select them in a manner that makes that inverse efficient to store and apply.

Our main interest in this transformation is that its inverse transforms points and
vectors to the canonical triangle’s coordinate system, i.e., to a barycentric coordinate
system for the instance triangle. In order to simplify discussion of finding the inverse,
we define the triangle’s edge vectors to be

−→
E1 = −→v2 −−→v1 and

−→
E2 = −→v3 −−→v1 , writing

the transformation as

T =


−→
E1x

−→
E2x a −→v1x−→

E1y
−→
E2y b −→v1y−→

E1z
−→
E2z c −→v1z

0 0 0 1

 .

We can now make T invertible by ensuring that it has a non-zero determinant.
The determinant of T is (

−→
E1 ×

−→
E2) • ~f , i.e., we need

|T | = (
−→
E1 ×

−→
E2) • ~f 6= 0.

We further note that
−→
E1×

−→
E2 is a normal to the triangle, and so use ~n =

−→
E1×

−→
E2 in the

following. As long as ~n 6= ~0, we can find values for a, b, and c that make ~n • ~f 6= 0.
Furthermore, ~n = ~0 if and only if all three vertices of the triangle are collinear, so we
can always construct an invertible transformation for any non-degenerate triangle.

Making the free vector a unit-length vector in one of the principle directions en-
sures that |T | 6= 0 and that the inverse transformation can be applied quickly to points
and vectors. We use the largest magnitude component of the normal to determine
which direction2. Specifically, if the x component of the normal has a larger absolute
value than any other component, the free vector points in the x direction, i.e., a = 1

and b = c = 0. Similarly, if the normal’s y component has the largest magnitude then
we let the free vector be (0, 1, 0), and we let the free vector be (0, 0, 1) if the normal’s
z component has the largest magnitude. The inverse transformation exists in each of
these cases, although each case leads to a different inverse transformation matrix. For
the case where a = 1 and b = c = 0 the inverse matrix is

2Thanks to an anonymous referee of an early version of this paper for suggesting this tactic as
numerically more stable than our original approach of using any non-zero component.
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0

−→
E2z
~nx

−
−→
E2y

~nx

(−→v3×−→v1)x
~nx

0 −
−→
E1z
~nx

−→
E1y

~nx
− (−→v2×−→v1)x

~nx

1
~ny

~nx

~nz
~nx

−~n•−→v1
~nx

0 0 0 1

 .

Similarly, the inverse transformations for the cases where b = 1 or c = 1 are
−
−→
E2z
~ny

0
−→
E2x
~ny

(−→v3×−→v1)y
~ny−→

E1z
~ny

0 −
−→
E1x
~ny

− (−→v2×−→v1)y
~ny

~nx
~ny

1 ~nz
~ny

−~n•−→v1
~ny

0 0 0 1




−→
E2y

~nz
−
−→
E2x
~nz

0 (−→v3×−→v1)z
~nz

−
−→
E1y

~nz

−→
E1x
~nz

0 − (−→v2×−→v1)z
~nz

~nx
~nz

~ny

~nz
1 −~n•−→v1

~nz

0 0 0 1


respectively.

3. Implementation

Our ray-triangle intersection method has a straightforward implementation: during
triangle initialization, compute a global-to-barycentric coordinate transformation ma-
trix as given in section 2, and store that matrix as part of the triangle. More pre-
cisely, only the top three rows of the matrices shown in section 2 need to be stored,
since the fourth row is only computationally relevant if points and vectors are repre-
sented in homogeneous coordinates, which isn’t necessary, and any coefficient from
the fourth row that ever is wanted can easily be deduced knowing that the row is
always (0, 0, 0, 1).

Once the global-to-barycentric transformation matrix is available, determining
whether a ray intersects the triangle, and if so where, consists of four steps:

1. Multiply the ray by the transformation matrix to put the ray into the triangle’s
coordinate frame

2. Calculate a t value for the intersection as

t = −~oz
~dz

where ~o is the transformed ray’s origin point, and ~d is its direction vector
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3. Calculate barycentric coordinates for the intersection as

b1 = ~ox + t~dx, b2 = ~oy + t~dy

4. If 0 ≤ b1 ≤ 1 and 0 ≤ b2 ≤ 1 and b1 + b2 ≤ 1 the ray intersects the triangle,
otherwise it does not.

This series of calculations can terminate early if t is too small or large to represent a
valid intersection, or if b1 is out of the range that permits an intersection.

Our method also has a more space-efficient implementation. The only things
not known a priori about the global-to-barycentric coordinate transformation are the
values of 9 of its coefficients and which column contains the (0, 0, 1, 0) pattern. Thus,
it is only necessary to store 9 coefficients and a 3-valued column selector rather than
12 coefficients. Doing this also allows the global-to-barycentric transformation to be
performed with slightly less arithmetic, because it is not necessary to multiply by the
coefficient that is known to be 1, or to multiply and add with coefficients known to
be 0. This paper’s supplemental materials include C++ versions of both this efficient
implementation and the straightforward one.

4. Results

We characterized the performance of our precomputed transformation algorithm in
two ways: through a series of execution time measurements on stand-alone imple-
mentations of our algorithm and two others, and by embedding our algorithm in a
complete ray tracer. In both cases, our algorithm proved to be faster than the alterna-
tives we compared it to.

4.1. Stand-Alone Timing Experiments

We compared the raw execution time of our algorithm to that of the original Möller
and Trumbore algorithm, from which many deployed ray-triangle intersection func-
tions are descended, and to the adaptation of Möller and Trumbore in the Embree
framework [Wald et al. 2014], which is highly tuned for fast execution on modern
CPUs. We took execution time measurements from a C++ program that contained the
12-coefficient version of our algorithm, the 9-coefficient version, the original Möller
and Trumbore algorithm, and Embree’s algorithm. Following recommendations from
Löfstedt and Akenine-Möller [2004], the program generated sets of rays and trian-
gles, each ray paired with one triangle, and then ran each intersection algorithm on all
the pairs in each set. We varied both data set size and ray-triangle hit rate. Complete
code for this program is available in this article’s supplemental materials.

We ran this experiment on a 2.6 GHz MacBook Pro with 8 GB of RAM, 3 MB
level 3 cache, and 512 GB of SSD “disk,” running MacOS X 10.9.5. We compiled
the program in XCode 6.1.1, optimizing for fastest speed (-O3).
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We used Möller and Trumbore’s algorithm as described in their paper [Möller and
Trumbore 1997], and took Embree’s intersection algorithm from Embree v. 2.9.0 as
distributed at https://embree.github.io/. Both had to be modified slightly
to work in our experimental system, but we made as few modifications as possible
and stayed as close as possible to the intent of the original algorithms. Most impor-
tantly, Embree exploits SIMD parallelism by (among other things) processing each
ray against multiple triangles at once, but this feature is nullified in our experiment
which intersects each ray with only one triangle. Furthermore, no effort has yet been
made to exploit such parallelism in our algorithm. We therefore did not use SIMD
features or streaming instructions (beyond any the compiler might have generated on
its own) in our implementation of Embree’s algorithm, although we did preserve other
features that make it very fast even when testing single rays against single triangles.
Comparing our algorithm to a full implementation of Embree’s, including studying
ways in which our algorithm might also exploit SIMD parallelism, is a natural direc-
tion for future research.

Table 1 summarizes the results of this experiment. For complete raw data and
analysis, see the supplements to this article. For each combination of data set size
(i.e., number of ray-triangle pairs) and hit rate, the table shows the running times
of both versions of the precomputed transformation algorithm as percentages of the
running times of the Möller and Trumbore algorithm and Embree’s algorithm. The
columns labeled “Pre(12)” contain data for our algorithm using the straightforward
12-coefficient representation of transformation matrices, while the columns labeled
“Pre(9)” contain data from the space-efficient 9-coefficient representation. Under the
conditions in this experiment, Pre(12) is consistently faster than Pre(9). Over all data
set sizes and hit rates, Pre(12) ran between 2 and 3 times faster than the original
Möller and Trumbore algorithm, and outperformed Embree’s algorithm for hit rates
of 0.1 and 0.5. At the highest hit rate, 0.9, Pre(12) was comparable to or slightly faster
than Embree’s algorithm. For the 500,000 and 1,000,000 pair data sets the standard
errors in the raw data are about the same as the difference between the Pre(12) and
Embree times, i.e., the difference may be solely due to variability in the measure-
ments; however this is not the case for the larger data sets. Based on the changes
in relative times as hit rates increase, it seems likely that Embree’s algorithm would
outperform ours for hit rates above 0.9. The slower Pre(9) version of our algorithm
outperformed Möller and Trumbore in all cases, taking between 1

2 and 3
4 of the time

Möller and Trumbore did, and outperformed Embree’s algorithm for the lowest hit
rate. For the 0.5 hit rate Pre(9) was comparable to Embree’s algorithm on small data
sets, and slightly faster on large. At the highest hit rate, Pre(9) was uniformly about
40% slower than Embree. It is, however, worth noting that the Embree algorithm re-
quires one vertex, two edges, and the triangle’s normal to be precomputed, for a total
of 48 bytes of precomputed data (assuming single-precision floating point numbers),
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Pre(12) Time as % Of... Pre(9) Time as % Of...
Pairs Hit Rate M&T Embree M&T Embree

500,000 0.1 46% 57% 67% 82%
0.5 46% 74% 59% 96%
0.9 49% 92% 72% 136%

1,000,000 0.1 46% 56% 68% 83%
0.5 48% 79% 62% 102%
0.9 42% 94% 62% 138%

5,000,000 0.1 38% 48% 56% 71%
0.5 35% 58% 51% 84%
0.9 42% 95% 62% 140%

10,000,000 0.1 38% 48% 56% 71%
0.5 35% 57% 51% 84%
0.9 42% 95% 62% 139%

Table 1. Execution time comparisons between two versions of the precomputed transforma-
tion ray-triangle intersection algorithm, Möller and Trumbore’s algorithm, and Embree’s

while Pre(9) only requires 37 bytes of precomputed data.

4.2. A Complete Ray Tracer

In order to test the precomputed transformation method with complex scenes in a
complete ray tracer, we inserted it into the PBRT ray tracer [Pharr and Humphreys
2010] (version 2.0.0), replacing ray-triangle intersection code based on the Möller
and Trumbore algorithm. We tested both the 9- and 12-coefficient versions of our al-
gorithm. We modified PBRT’s Triangle class to store the transformation coefficients
(and column selector for the 9-coefficient version), and modified its Intersect and
IntersectP methods to use the stored transformation as outlined in Section 3. Using
single-precision floating point values for the coefficients (consistent with how PBRT
represents other real numbers) and one byte for the column selector, the overhead
of precomputing the transformation was 48 bytes per triangle for the straightforward
implementation and 37 for the efficient one. We tested eight scenes provided by the
PBRT developers [Pharr and Humphreys 2014] in both the original and modified pro-
grams, comparing execution times and image quality. All versions of PBRT were
compiled using the Makefile in the PBRT distribution. We used the same computer
as in the stand-alone timing experiments; PBRT found and used four cores.

Table 2 describes the scenes we used and gives the timing results. For each scene,
the table gives the name of the scene, the number of triangles created to represent
it, the time an unmodified PBRT needs to render it, and the improvements in ren-
dering time when using each version of the precomputed transformation method, as
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Unmodified Pre(9) Time Pre(12) Time
Scene Triangles Time (Secs) (% of Unmod.) (% of Unmod.)

Teapots 6,804 632.8 94.2% 94.3%
Mesh Buddha 29,892 8078 95.9% 95.7%
San Miguel 2,503,052 47670 96.0% 96.1%
Plants 1,171,562 5025 96.9% 96.6%
Buddha 1,087,720 339.4 97.3% 98.0%
Villa 2,624,966 21950 98.4% 98.4%
Killeroo 66,532 661.1 98.5% 98.9%
Bunny 69,453 962.9 98.5% 98.8%

Table 2. Timing comparisons between an unmodified PBRT and versions of PBRT using the
precomputed transformation ray-triangle intersection method

percentages of the unmodified time. Times are total CPU times across all four cores
in seconds, averaged over six runs. Complete raw data and analysis is available in the
supplements to this article.

The precomputed transformation method consistently ran faster than the original,
with the improvement ranging from 1 to 6%. There was no clear distinction between
the two forms of the method, although the version that only stores 9 coefficients seems
slightly better in most cases. This is an interesting contrast to the stand-alone experi-
ments, in which the 12-coefficient version was clearly superior.

Figures 1 and 2 show some examples of the images we rendered. To the naked
eye, the images produced by the precomputed transformation methods were indistin-
guishable from those produced by the unmodified PBRT. To detect subtler differences,
we used an image viewer program to alternate rapidly between images of the same
scene from each method; differences between the images then stood out as move-
ments or color jumps as the images alternated. This technique showed that there were
still no differences in four of the test cases (“Buddha,” “Mesh Buddha,” “Bunny,” and
“Killeroo”), slight changes in apparent texture in two (“Plants” and “San Miguel”),
and changes in the position of noise speckles in two more (“Teapots” and “Villa”).
We believe that these differences reflect the fact that while mathematically all three
methods compute the same intersections, they perform different sequences of compu-
tations and so may experience different round-off errors.

The scenes that we tested exercise a number of different ray tracing situations and
effects, demonstrating that our precomputed transformations do not interfere with
other aspects of ray tracing. Of particular note, the “Mesh Buddha” scene uses ob-
ject instancing to generate a basic shape from multiple tiny copies of itself. Our
method’s ability to render it shows that our global-to-barycentric transformation com-
poses smoothly with non-trivial modeling transformations.

46

http://jcgt.org


Journal of Computer Graphics Techniques
Fast Ray-Triangle Intersections by Coordinate Transformation

Vol. 5, No. 3, 2016
http://jcgt.org

Figure 2. Examples of images rendered by the precomputed transformation algorithm. Scene
descriptions from http://www.pbrt.org/scenes.php.

5. Conclusion

We have developed, tested, and characterized a method for computing ray-triangle
intersections that uses a small amount of precomputed transformation information to
support fast intersection tests. The memory occupied by transformation coefficients
does not prevent our approach from working well, even on large scenes. Run in isola-
tion, our method substantially outperforms the basic Möller and Trumbore algorithm,
and somewhat outperforms a highly tuned version of it. In a complete ray tracer our
method delivers modestly but measurably better execution times than that ray tracer’s
implementation of Möller and Trumbore, with visually equivalent results.

More detailed comparisons between the precomputed transformation algorithm
and other ray-triangle intersection methods are still possible. As already mentioned,
its ability to exploit SIMD parallelism should be further explored, and it should be
compared to a more complete implementation of Embree’s algorithm. Further work
is also needed to understand exactly when the 9-coefficient version is superior to the
12-coefficient one and vice versa. Yet even as it stands today, our method is a valuable
addition to the algorithm kits of ray tracing developers willing to invest memory to
improve execution time.
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Index of Supplemental Materials

The supplements to this article consist of the code, raw data, and data analysis for the
comparisons reported above (see http://www.jcgt.org/published/0005/
03/04/Supplements.zip), organized as follows:

• Folder “ExperimentCode”. The complete C++ code for the stand-alone com-
parisons described in Section 4.1. Files include the main program (“main.cpp”),
header and implementation files for five triangle classes whose intersect meth-
ods we timed (including a control class with only a dummy intersect method),
header and implementation files for a superclass that those triangle classes
share, and a handful of files of supporting definitions. File names and initial
comments identify exactly what each file provides.

• Folder “PBRTCode”. The “trianglemesh” files from PBRT modified to use
our precomputed transformation method, as described in Section 4.2. Files
“trianglemesh12.h” and “trianglemesh12.cpp” implement the straightforward
version of our algorithm that stores all 12 coefficients of the transformation
matrix. Files “trianglemesh9.h” and “trianglemesh9.cpp” implement the more
space-efficient 9-coefficient version.
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• File “ExperimentAnalysis.xlsx”. A spreadsheet containing the raw data and
calculations from the stand-alone comparisons. This is the analysis underlying
Table 1.

• File “PBRTAnalysis.xlsx”. A spreadsheet containing the raw data and calcu-
lations for comparing our algorithms to PBRT’s original Möller and Trumbore
algorithm. This is the analysis behind Table 2.
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