
Journal of Computer Graphics Techniques Vol. 6, No. 1, 2017 http://jcgt.org

Building an Orthonormal Basis, Revisited

Tom Duff, James Burgess, Per Christensen, Christophe Hery, Andrew Kensler,
Max Liani, and Ryusuke Villemin

Pixar

(a) Frisvad’s method (b) Revised method

1e-3

1e-5

1e-7

1e-9

1e-1

scale

Figure 1. RMS deviation from orthogonality, for Frisvad’s method and our revised method.
The two discs have x2 + y2 ≤ 1. At each point of each disc we calculate a unit vector
(x, y,−

√
1− x2 − y2), and construct an orthonormal frame, using Frisvad’s method [Frisvad

2012b] in (a) and our revised method in (b). Colors are proportional to the RMS deviation of
the frame from orthogonality, as in the scale on the right.

Abstract

Frisvad [2012b] describes a widely-used computational method for efficiently augmenting a
given single unit vector with two other vectors to produce an orthonormal frame in three di-
mensions, a useful operation for any physically based renderer. However, the implementation
has a precision problem: as the z component of the input vector approaches −1, floating point
cancellation causes the frame to lose all precision. This paper introduces a solution to the pre-
cision problem and shows how to implement the resulting function in C++ with performance
comparable to the original.

1 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Building an Orthonormal Basis, Revisited

Vol. 6, No. 1, 2017
http://jcgt.org

1. Introduction

When rendering using Monte Carlo integration, we typically generate orthonormal
coordinate frames billions of times per image, so even tiny performance gains can
produce significant savings. At the same time, we need to produce results with good
precision.

For example, we often need to choose a random sample from a distribution of
outgoing ray directions in response to an incoming ray arriving at some surface point.
The sampling is often easiest to do in a canonical coordinate frame where the normal
vector at the surface point is a fixed direction, for example (0, 0, 1). Transforming
the incoming and outgoing directions to and from the canonical coordinate frame
requires that we be able to extend a given unit vector n into an orthonormal basis with
that vector as one of its axes.

The most obvious way to do that is to select some vector perpendicular to n and
normalize it to get the second vector of the basis. Then the third vector is just the
cross-product of the first two. Hughes and Möller [1999] offer a particularly efficient
way of choosing a vector perpendicular to n. This was the state of the art until Fris-
vad’s method [Frisvad 2012b] appeared, improving on the efficiency of Hughes and
Möller by a factor of 2 or more, using a computation expressed in terms of quater-
nions that requires no normalization and so no expensive square roots. Frisvad’s code
is reproduced in Listing 1.

1 #include <Vec3f.h>

2
3 void frisvadONB(const Vec3f& n, Vec3f& b1, Vec3f& b2)

4 {

5 if(n.z < -0.9999999f) // Handle the singularity

6 {

7 b1 = Vec3f(0.0f, -1.0f, 0.0f);

8 b2 = Vec3f(-1.0f, 0.0f, 0.0f);

9 return;

10 }

11 const float a = 1.0f / (1.0f + n.z);

12 const float b = -n.x*n.y*a;

13 b1 = Vec3f(1.0f - n.x*n.x*a, b, -n.x);

14 b2 = Vec3f(b, 1.0f - n.y*n.y*a, -n.y);

15 }

Listing 1. Frisvad’s orthonormal basis code

2

http://jcgt.org

Journal of Computer Graphics Techniques
Building an Orthonormal Basis, Revisited

Vol. 6, No. 1, 2017
http://jcgt.org

2. The Problem

When we evaluated Frisvad’s code, we liked its speed, but we discovered that it occa-
sionally failed, producing coordinate frames that are not even remotely orthogonal.

Frisvad’s paper claims extreme accuracy – the RMS deviation from orthonormal
of its results is given as 4.8×10−10. But, if you run Frisvad’s code on the vector

(0.00038527316, 0.00038460016,−0.99999988079),

the resulting frame matrix is -0.24516642094 -1.24299144745 -0.00038527316
-1.24299144745 -0.24082016945 -0.00038460016
0.00038527316 0.00038460016 -0.99999988079

 (1)

The product of this and its transpose, which should be the identity, is not even close: 1.60513436794 0.60407733917 -0.00018723766
0.60407733917 1.60302221775 -0.00018691065

-0.00018723766 -0.00018691065 1.00000000000


The RMS deviation from orthogonality is 0.29.1

A possibly worse case can be seen by running Frisvad’s code on

(−0.00019813581,−0.00008946839,−0.99999988079)

In this case, the resulting frame is 0.67068171501 -0.14870394766 0.00019813581
-0.14870394766 0.93285262585 0.00008946839
-0.00019813581 -0.00008946839 -0.99999988079


Again, the RMS error is large (0.16), but the determinant of the frame matrix is neg-
ative – the coordinate frame has the wrong handedness, rendering it useless for many
purposes.

These large errors suggest two questions. First, how can the deviation be so large,
even occasionally, if the average error is less than 5×10−10? Even if only one in a

1 We calculate deviations from orthogonality the same way that Frisvad does. If n, u and v are the
three vectors of an orthonormal basis, |n|, |u| and |v| should all be 1, and n ·u, n · v and u · v should all
be zero, so the average squared error in a calculated basis is

(|n| − 1)2 + (|u| − 1)2 + (|v| − 1)2 + (n · u)2 + (n · v)2 + (u · v)2

6

and the RMS error is the square root of the average of this over a set of test of bases.

3

http://jcgt.org

Journal of Computer Graphics Techniques
Building an Orthonormal Basis, Revisited

Vol. 6, No. 1, 2017
http://jcgt.org

million deviations were as large as 0.29 and the other 999,999 were zero, the aver-
age error would be 2.9×10−7, nearly three orders of magnitude larger than Frisvad
reports. And second, what is causing these errors?

The first question is easily answered. Frisvad [2012a] is an archive containing the
program used to compute the error values reported in Frisvad [2012b], and it has a
bug.2

The total error over a sequence of test runs is divided by 6 at each step of the test
loop, but the division should just apply to the error of the test run being accumulated
or, equivalently, be moved outside the loop. That is, at step i of the loop, the code
computes sum = (sum + err[i])/6 instead of sum = sum + (err[i]/6).

After correction, the program calculates an average RMS error of 6.7×10−7,
which sounds much more plausible. Even with this correction, Frisvad’s numbers
differ substantially from what we report below in Table 1, mostly because our av-
erages include many more samples (one billion vs. ten thousand) and the averages
depend strongly on extremely poor performance in rare cases that Frisvad’s tests may
not sample well.

But how did we get a result as bad as that shown in Equation (1)? Look at line
11 of Listing 1. When n.z is close to -1, the subtraction in the denominator can
suffer catastrophic cancellation. Figure 2a shows 1/(1 + n.z) calculated in single
precision (the red line) and double precision (blue) for values of n.z varying from
−1+(3×10−8) to −1+(5×10−7). The stairsteps in the single precision plot mark
the points at which we move from one representable number to the next. Figure 2b
shows the relative error — the double-precision plot of Figure 2a divided by the
single-precision plot. You can see that at the left end, where n.z is closest to −1,
the single-precision value of 1/(1 + n.z) can be wrong by up to a factor of 2. That is
to say, even its most-significant bit can be wrong, rendering the rest of the calculation
meaningless.

Recent work by Nelson Max [2017], independent of ours, goes into a much more
detailed analysis of these errors.

3. The Solution

What are we to do about this? The code in Listing 1 is actually pretty well-behaved
when n.z is not near −1. This suggests rewriting it so that if n.z < 0 we compute a
frame for −n and negate the result, as in Listing 2. (In fact, we negate b2 but not b1
in the first branch of the if so that the handedness of the frames it produces matches
the second branch.) With this change, the RMS error is reduced to 2.13×10−8 and
the worst error we see, when testing a billion random inputs, is 1.04×10−7.

Figure 1 illustrates the error magnitude of Frisvad’s method and our revision. The
2 Since this was written, Frisvad’s online archive has been updated, fixing the error.

4

http://jcgt.org

Journal of Computer Graphics Techniques
Building an Orthonormal Basis, Revisited

Vol. 6, No. 1, 2017
http://jcgt.org

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

3.0e+07

3.5e+07

0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07 3.5e-07 4e-07 4.5e-07 5e-07

1
/(

1
+

n
.z

)

n.z+1

Single vs Double precision

single precision
double precision

(a) Quantization near n.z = −1

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07 3.5e-07 4e-07 4.5e-07 5e-07

ra
ti
o
 o

f
d
o
u
b
le

 p
re

c
is

io
n
 t
o
 s

in
g
le

 p
re

c
is

io
n
 1

/(
1
+

n
.z

)

n.z+1

Relative error

relative error

(b) Relative error near n.z = −1

Figure 2. Floating point error near n.z = −1. The red line in (a) is the single precision error
in the calculation of 1/(1 + n.z), the blue line is double precision. The stairsteps occur as
n.z moves from one representable single precision number to the next. (b) shows the ratio of
those two curves. The deviation can be as much as a factor of 2, indicating a single precision
result not accurate to even one bit of precision.

two discs represent n.x and n.y values with (n.x)2 + (n.y)2 ≤ 1, with n.z chosen
to be negative (that is n.z = −

√
1− (n.x)2 − (n.y)2). Colors in each plot are a

rainbow proportional to the log of the RMS error: blue when the error is 10−9 or less,
interpolating to green when the error is 10−7, yellow at 10−5, red at 10−3 and white
when the error is 10−1 or more.

The principal problem with the version in Listing 2 is that it runs about twice as
slow as Listing 1. That seems surprising, since the computations are very similar.

5

http://jcgt.org

Journal of Computer Graphics Techniques
Building an Orthonormal Basis, Revisited

Vol. 6, No. 1, 2017
http://jcgt.org

void revisedONB(const Vec3f &n, Vec3f &b1, Vec3f &b2)

{

if(n.z<0.){

const float a = 1.0f / (1.0f - n.z);

const float b = n.x * n.y * a;

b1 = Vec3f(1.0f - n.x * n.x * a, -b, n.x);

b2 = Vec3f(b, n.y * n.y*a - 1.0f, -n.y);

}

else{

const float a = 1.0f / (1.0f + n.z);

const float b = -n.x * n.y * a;

b1 = Vec3f(1.0f - n.x * n.x * a, b, -n.x);

b2 = Vec3f(b, 1.0f - n.y * n.y * a, -n.y);

}

}

Listing 2. The code of Listing 1, revised to avoid catastrophic cancellation.

void branchlessONB(const Vec3f &n, Vec3f &b1, Vec3f &b2)

{

float sign = copysignf(1.0f, n.z);

const float a = -1.0f / (sign + n.z);

const float b = n.x * n.y * a;

b1 = Vec3f(1.0f + sign * n.x * n.x * a, sign * b, -sign * n.x);

b2 = Vec3f(b, sign + n.y * n.y * a, -n.y);

}

Listing 3. A branchless version of Listing 2, using copysignf to eliminate the test.

The main difference is that while the test in Listing 1 almost always takes the false
branch, and so will usually be correctly predicted, the test in Listing 2 takes each
branch roughly 50% of the time at random, and so will often be mispredicted. We can
eliminate the test by first calculating sign = copysignf(1.0f, n.z), for which all
our compilers generate code that transfers the sign bit without branching, and using
multiplies by sign to merge the two branches of Listing 2, as shown in Listing 3.
This regains almost all of the time lost by the Listing 2 version, running between 5%

and 12% slower than Frisvad’s original, depending on which compiler we use. The
branchless version is also amenable to vectorization.

The C99 and C++11 standards include copysignf, but compiler support often
lags the standards by many years. Other alternatives, such as explicitly writing

sign = n.z>=0.0f ? 1:0f : -1.0f,
can work just as well – if the whole function is inlined, the compiler can move the
test up far enough to avoid pipeline stalls.

6

http://jcgt.org

Journal of Computer Graphics Techniques
Building an Orthonormal Basis, Revisited

Vol. 6, No. 1, 2017
http://jcgt.org

routine icc time clang time g++ time RMS error largest error
Hughes-Möller 18.59 ns 22.92 ns 22.87 ns 3.00×10−8 1.15×10−7

Frisvad 8.38 ns 8.28 ns 8.53 ns 3.91×10−5 2.91×10−1

Revised 15.67 ns 15.05 ns 15.31 ns 2.13×10−8 1.04×10−7

With copysign 9.35 ns 9.62 ns 10.02 ns 2.13×10−8 1.04×10−7

Table 1. Speed and accuracy

4. Performance

Table 1 summarizes our timing and accuracy data for the various routines discussed
in this paper. All statistics are based on runs using one billion random unit vectors.
All timings are for a single core on one of our desktop machines, a 17 core Intel
Xeon E5-2699 (2.30 GHz) virtual machine with 128 GiB of memory, running Red
Hat Enterprise Linux 7.2. We give times for the three compilers available to us (icc
15.0.3, clang++ 3.4.1, and g++ 4.8.5), all using the -O3 optimization level. Errors
were the same for all compilers, so we only report them once.

The RMS error of our revised method is three orders of magnitude better than
Frisvad’s, at a cost of 17% or less in speed. The maximum error, in our tests on a
large random sample of inputs, is almost six orders of magnitude better. Our accuracy
is even slightly better than the Hughes-Möller method, the standard algorithm before
the appearance of Frisvad’s paper.

Acknowledgements

Conversations with Marc Bannister and Philippe Leprince added important details to
our understanding.

References

FRISVAD, J. R., 2012. onb (code for building an orthonormal basis from a 3D unit vector
without normalization). URL: http://people.compute.dtu.dk/jerf/code/.
4

FRISVAD, J. R. 2012. Building an orthonormal basis from a 3D unit vector without normal-
ization. J. Graphics Tools 16, 3, 151–159. URL: http://orbit.dtu.dk/files/
126824972/onb_frisvad_jgt2012_v2.pdf. 1, 2, 4

HUGHES, J. F., AND MÖLLER, T. 1999. Building an orthonormal basis from a unit vector.
J. Graph. Tools 4, 4, 33–35. URL: http://dx.doi.org/10.1080/10867651.
1999.10487513. 2

MAX, N. 2017. Improved accuracy when building an orthonormal basis. Journal of Com-
puter Graphics Techniques (JCGT) 6, 1 (March), 60–66. URL: http://jcgt.org/
published/0006/01/02/. 4

7

http://jcgt.org
http://people.compute.dtu.dk/jerf/code/
http://orbit.dtu.dk/files/126824972/onb_frisvad_jgt2012_v2.pdf
http://orbit.dtu.dk/files/126824972/onb_frisvad_jgt2012_v2.pdf
http://dx.doi.org/10.1080/10867651.1999.10487513
http://dx.doi.org/10.1080/10867651.1999.10487513
http://jcgt.org/published/0006/01/02/
http://jcgt.org/published/0006/01/02/

Journal of Computer Graphics Techniques
Building an Orthonormal Basis, Revisited

Vol. 6, No. 1, 2017
http://jcgt.org

Author Contact Information
Tom Duff td@pixar.com James Burgess jrb@pixar.com
Per Christensen per@pixar.com Christophe Hery chery@pixar.com
Andrew Kensler aek@pixar.com Max Liani maxl@pixar.com
Ryusuke Villemin rvillemin@pixar.com

Pixar
1200 Park Avenue
Emeryville, CA 94608

Tom Duff, James Burgess, Per Christensen, Christophe Hery, Andrew Kensler, Max Liani, and
Ryusuke Villemin, Building an Orthonormal Basis, Revisited, Journal of Computer Graphics
Techniques (JCGT), vol. 6, no. 1, 1–8, 2017
http://jcgt.org/published/0006/01/01/

Received: 2016-11-01
Recommended: 2016-12-06 Corresponding Editor: Peter Shirley
Published: 2017-03-27 Editor-in-Chief: Marc Olano

c© 2017 Tom Duff, James Burgess, Per Christensen, Christophe Hery, Andrew Kensler, Max
Liani, and Ryusuke Villemin (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

8

http://jcgt.org
mailto:td@pixar.com
mailto:jrb@pixar.com
mailto:per@pixar.com
mailto:chery@pixar.com
mailto:aek@pixar.com
mailto:maxl@pixar.com
mailto:rvillemin@pixar.com
http://jcgt.org/published/0006/01/01/
http://creativecommons.org/licenses/by-nd/3.0/

