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(a) Translucent occluders, 4.1 ms (b) Soft shadows, 3.5 ms (c) Single scattering, 4 ms

Figure 1. We use moment shadow maps to render shadows for translucent occluders, for area

lights and in participating media. The timings shown are full frame times for rendering at

3840× 2160. (a) and (b) use 4× multisample antialiasing.

Abstract

Like variance shadow maps, the recently proposed moment shadow maps can be fil-
tered directly but they provide a substantially higher quality. We combine them with
earlier approaches to enable three new applications. Shadows for translucent occlud-
ers are obtained by simply rendering to a moment shadow map with alpha blending.
Soft shadows in the spirit of percentage-closer soft shadows are rendered using two
queries to a summed-area table of a moment shadow map. Single scattering is ren-
dered through one lookup per pixel in a prefiltered moment shadow map with six
channels. As a foundation we also propose improvements to moment shadow map-
ping itself. All these techniques scale particularly well to high output resolutions and
enable proper antialiasing of shadows through extensive filtering.

1. Introduction

Moment shadow maps [Peters and Klein 2015] are a recently proposed kind of filter-
able shadow maps. Like variance shadow maps [Donnelly and Lauritzen 2006] and
other filterable shadow maps, they can be filtered directly. Thus, they enable the ren-
dering of antialiased shadows at a low cost per shaded fragment. Compared to other
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filterable shadow maps, there are less artifacts and the technique only uses 64 bits per
texel for the four channels of the moment shadow map.

Filtered hard shadows are the most immediate application [Peters and Klein 2015]
but applications of earlier filterable shadow maps are far more diverse. Translucent
occluders may be rendered to filterable shadow maps directly to get plausible shadows
[Delalandre et al. 2011; McGuire and Mara 2016]. Percentage-closer soft shadowing
[Fernando 2005] filters hard shadows with varying filter size to approximate soft shad-
ows. Using filterable shadow maps and summed-area tables [Crow 1984] this may be
done at a fixed cost [Lauritzen 2007; Annen et al. 2008a; Yang et al. 2010; Shen
et al. 2013]. Even the accumulation of single scattering along a view ray has been
precomputed into filterable shadow maps [Klehm et al. 2014].

In the present paper we demonstrate that all these approaches are compatible with
moment shadow mapping. As part of the derivation, we develop novel building blocks
such as a moment-based blocker search and moment shadow mapping with six mo-
ments. The resulting techniques provide very attractive tradeoffs between quality and
run time. They scale particularly well to high output resolutions because they impose
a low, fixed overhead per shaded fragment.

As prerequisite of this work, we review moment shadow mapping in Section 2,
where we also present improved quantization and biasing schemes that further im-
prove robustness and speed of the technique. In Section 3 we demonstrate that shad-
ows for translucent occluders can be rendered by simply rendering to a moment
shadow map with alpha blending. Section 4 covers moment soft shadow mapping,
which renders approximate soft shadows using only two queries to a summed-area
table per fragment. Finally, we present prefiltered single scattering with four or six
moments in Section 5. Sections 3, 4 and 5 may be read independently but all of them
rely on notions introduced in Section 2.

The present paper is an invited extension of our earlier work [Peters et al. 2016]
with various novel contributions. In particular, we improve upon core aspects of
moment shadow mapping (Sections 2.3 to 2.5), increase robustness of the blocker
search for moment soft shadow mapping (Section 4.3), describe a simple method to
diminish leaking artifacts in prefiltered single scattering (Section 5.3.1) and optimize
six moment shadow mapping for greater robustness and speed (Section 5.4). We also
discuss the implementation in greater detail and provide more comparisons.

2. Improved Moment Shadow Maps

In the following we introduce some notions that are used throughout the paper and use
them to review moment shadow mapping and its related work. We also demonstrate
improvements to moment shadow mapping that reduce light leaking when using 128
bits per texel and make the technique faster and more robust.
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2.1. Depth Distributions

Depth distributions offer a useful way to formally model shadow map filtering [Don-
nelly and Lauritzen 2006; Peters and Klein 2015]. Suppose we are given a shadow
map and want to apply a specific filter (e.g., a Gaussian) to compute a filtered shadow
intensity for a fragment at depth zf ∈ R. The filter kernel used has n ∈ N weights
w0, . . . , wn−1 > 0. The corresponding depths sampled within the filter region are
z0, . . . , zn−1 ∈ R. These quantities define a depth distribution that we write using
Dirac-δ distributions:

Z :=

n−1∑

l=0

wl · δzl .

This notation suggests a probabilistic interpretation. The filter region is sampled
at random such that the probability to draw depth zl is given by the filter weight wl.
Now we map each depth z to some vectorial quantity b(z) ∈ R

m+1 where m ∈ N.
Using the random depth as input, the expectation of the output is given by

b := EZ (b) :=
n−1∑

l=0

wl · b(zl) ∈ R
m+1.

Filterable shadow maps are constructed exactly in this manner. Rather than stor-
ing z, each texel stores b(z) for some function b : R → R

m+1. Filtering the filterable
shadow map with the above filter kernel then yields b = EZ (b). The function b is
chosen such that knowledge of b enables an approximate reconstruction of Z.

2.2. Related Work

Percentage-closer filtering [Reeves et al. 1987] reconstructs the depth distribution
through brute force by taking n ∈ N samples from the shadow map. The shadow
intensity at depth zf is given by the weighted fraction of samples which are closer to
the light than the fragment:

Z(z < zf ) :=
n−1∑

l=0

wl ·
{

1 if zl < zf ,

0 otherwise,
where z(z):=z.

Variance shadow maps [Donnelly and Lauritzen 2006] are filterable shadow maps
using b(z) := (1, z, z2)T. The channel EZ (b0) = 1 does not need to be stored. The
other two channels store two moments which provide mean and variance of Z and
enable a reconstruction through Cantelli’s inequality:

µ := b1, σ2 := b2 − b21, Z(z < zf ) ≥ 1− σ2

σ2 + (zf − µ)2
if zf ≥ µ.
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Similarly, exponential shadow maps [Salvi 2008; Annen et al. 2008b] use b(z) =

(1, exp(cesm · z))T where cesm ≫ 1 and reconstruct through Markov’s inequality:

Z(z < zf ) ≥ 1− b1
exp(cesm · zf )

.

Convolution shadow maps [Annen et al. 2007] set the component functions of b

to Fourier basis functions and use a truncated Fourier series. Exponential variance
shadow maps [Lauritzen and McCool 2008] fix parameters c+evsm, c

−
evsm > 0 and apply

variance shadow mapping to two exponentially warped depths, i.e.,

b(z) = (1, exp(c+evsm · z), exp(c+evsm · z)2,− exp(−c−evsm · z), exp(−c−evsm · z)2)T.

2.2.1. Moment Shadow Mapping

Moment shadow mapping [Peters and Klein 2015] uses

b(z) = (zj)mj=0 = (1, z, z2, z3, z4)T.

The number of moments m ∈ N can be any even number but the original technique
only uses m = 4. In Section 5.4 we demonstrate the use of m = 6. As above
b0 = EZ (1) = 1 does not need to be stored.

When shading a fragment at depth zf ∈ R, we need to estimate the shadow
intensity Z(z < zf ), but we are only given a filtered sample from the moment shadow
map b = EZ (b). In general, there are many possible depth distributions S on R

that are compatible with these moments, i.e., b = ES (b). To diminish wrong self-
shadowing (also known as surface acne), we use the reconstruction that yields the
smallest shadow intensity, i.e., the estimated shadow intensity is

inf{S(z < zf ) | S depth distribution on R with ES (b) = b}. (1)

This minimization problem is non-trivial but has been solved [Kreı̆n and Nudel’-
man 1977]. The optimal depth distribution S always uses only the depth value zf and
m
2 = 2 other depth values as shown in Figure 2. Such depth distributions are unique

and Algorithm 1 computes them efficiently. In this algorithm, Steps 1 to 3 compute
the m

2 unknown depth values [Peters and Klein 2015, Proposition 10, supplementary,
p. 2]. Step 4 and 5 determine the weights that produce the correct moments. Finally,
Step 6 constructs and returns the optimal depth distribution S.

Algorithm 1 cannot work correctly if the matrix B(b) is not positive definite.
However, the matrix is known to be positive semi-definite for all meaningful inputs
b = EZ (b). Invalid inputs may arise due to rounding errors. These rounding errors
are counteracted by means of linear interpolation towards a fixed constant vector using
a small interpolation weight 0 < αb ≪ 1. This biasing should be kept to a minimum
because it makes the approximation less accurate and thus increases light leaking.
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Figure 2. Examples of optimal solutions to Equation (1) for a single ground truth. The ground

truth and the four representations share the same moments b0, b1, . . . , b4. The upper and lower

bounds touch the representations at the respective zf . Note that all representations use exactly

three depth values zf , z1, z2.

Algorithm 1 Moment shadow mapping, i.e., the solution to Equation (1).
Input: Moments b ∈ R

m+1 for even m ∈ N and the fragment depth zf ∈ R.
Output: A depth distribution S minimizing the expression in Equation (1).

1. Set B(b) := (bj+k)
m
2

j,k=0 =










b0 b1 · · · bm
2

b1 b2 . .
.

bm
2
+1

... . .
.

. .
. ...

bm
2

bm
2
+1 · · · bm










∈ R
(m
2
+1)×(m

2
+1).

2. Solve B(b) · q = (1, z1f , . . . , z
m
2

f )T for q ∈ R
m
2
+1.

3. Solve the polynomial equation
∑m

2

j=0 qj · zj = 0 for z and denote the distinct
solutions by z1, . . . , zm

2
∈ R.

4. Set z0 := zf and A := (zjl )
m
2

j,l=0 =








z00 · · · z0m
2

...
. . .

...

z
m
2

0 · · · z
m
2
m
2








∈ R
(m
2
+1)×(m

2
+1).

5. Solve A · w = (b0, b1, . . . , bm
2
)T for w ∈ R

m
2
+1.

6. Return
∑m

2

l=0wl · δzl .

When using only 16 bits for each of the four moments, the rounding errors are
too strong. To overcome this problem, an affine transform is applied to the vector
(b1, b2, b3, b4)

T before its entries are stored in 16-bit fixed-point numbers. The trans-
form is the result of a numerical optimization that maximizes its determinant without
violating the representable range of the output data type. The entropy of the stored
data grows with the base-2 logarithm of this determinant and therefore loss of infor-
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mation is minimized.

2.3. Signed Depth

Using the quantization transform does not help when moments are stored in single-
precision floats because the moments have to be transformed back before providing
them to Algorithm 1 in single precision. Still, we want to minimize the increased light
leaking that arises from the stronger biasing needed to compensate for the rounding
errors.

To this end, we can remap the range of depth values using a simple linear trans-
form. Originally, it was proposed to define depth in the interval [0, 1] [Peters and
Klein 2015]. We found that this arbitrary choice is substantially worse than the opti-
mal choice, which is [−1, 1]. The near clipping plane of the shadow map is defined to
be at depth −1 whereas the far clipping plane is located at depth 1.

Our reasoning in favor of this definition is based on the effect of linear transforms
on the moments. Let x, y ∈ R with x 6= 0 describe a linear transform of depth values
x · z + y. It induces a linear transform for the moments:

EZ
(
(x · z+ y)j

)
= EZ

(
j
∑

k=0

(
j

k

)

· (x · z)k · yj−k

)

=

j
∑

k=0

(
j

k

)

·xk ·yj−k ·bk. (2)

This linear transform corresponds to a lower triangular matrix with diagonal entries
x0, . . . , xm. Therefore, its determinant is

∏m
j=1 x

j .
Suppose we define depth in the interval [−1, 1] as proposed. If we apply the above

transform, the resulting j-th moment can have a magnitude up to (|x| + |y|)j . Since
we are using floating point numbers, the relative precision is not reduced if we divide
by this magnitude to get back to a maximal magnitude of one. Combining this with
the previous transform yields a determinant of

m∏

j=1

(
x

|x|+ |y|

)j

.

Obviously, the magnitude of this determinant is maximized by choosing y = 0 and
then it is invariant under changes of x.

The transform in Equation (2) acts like a special quantization transform. Maxi-
mizing its determinant has a positive impact on the entropy of the data stored in the
moment shadow map1 [Peters and Klein 2015]. Thus, the choice of the depth interval
[−1, 1] is indeed optimal. For m = 4 the transform mapping moments of depth dis-
tributions on [0, 1] to moments of depth distributions on [−1, 1] has a determinant of

1Strictly speaking this only holds for fixed-point numbers [Peters and Klein 2015] but for robustness
reasons we should consider the worst case and thus we may view floating-point numbers as fixed-point
numbers with the worst case precision.
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1024 which corresponds to an approximate increase in entropy of log2 1024 = 10 bits.
When using 128 bits per texel of the moment shadow map, this diminishes the nega-
tive effects of rounding errors. A lower bias can be used and light leaking is reduced.
At the same time, this change does not induce a significant cost and is easy to imple-
ment.

2.4. Sparse Quantization Transform

When using a moment shadow map with four 16-bit fixed-point channels, the round-
ing errors introduced during storage outweigh the rounding errors arising in Algo-
rithm 1 by far. These rounding errors are minimized most efficiently by using an
arbitrary quantization transform. Thus, using signed depth does not improve the pre-
cision. However, it does enable an optimization.

The cost for application of the original quantization transform [Peters and Klein
2015] is significant. It requires multiplication of a vector by a dense 4× 4 matrix per
texel of the moment shadow map and per shaded fragment. Compared to direct stor-
age of moments arising from depth values in [−1, 1], this globally optimal transform
increases the entropy by 4.28 bits.

We found that the search space in the optimization of the transform can be con-
strained substantially without a large reduction in entropy. In particular, the transform

Θ⋆
4








b1
b2
b3
b4








:=








3
2 0 −2 0

0 4 0 −4
1
2 ·

√
3 0 −2

9 ·
√
3 0

0 1
2 0 1

2








·








b1
b2
b3
b4








+








1
2

0
1
2

0








(3)

still increases entropy by 4.21 bits. Therefore, the quality of the results is practi-
cally unchanged but since half of the entries are zero, application of this transform
is roughly twice as fast. The odd and even moments are transformed separately as
shown in Figure 3.

2.5. Biasing for the Worst Case

We have also improved the original biasing scheme. Speaking in terms of moments
from depth values in [−1, 1], the original scheme replaces a vector of moments b ∈
R
5, which is corrupted by rounding errors, by the vector

b′ := (1− αb) · b+ αb · b⋆ where b⋆ := (1, 0, 1, 0, 1)T ∈ R
5.

This scheme has been derived to offer best results in the average case [Peters and
Klein 2015].

Though, there is a relevant worst case where it fails. Depth values may be clamped
to the interval [−1, 1] to better utilize the depth range without clipping relevant shadow
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(a) Naïve quantization (b) Optimized quantization Θ⋆
4

Figure 3. A visualization of the quantization transform in Equation (3). The red line is the

curve indicated by the axis labels. The yellow area is its convex hull, which contains the

filtered values. Note that the convex hull has a substantially larger area for the optimized

quantization and that the graphs for the optimized quantization arise from the ones for naïve

quantization through a simple affine transform.

casters. In this case, depth distributions of the form

Z = (1− w1) · δ−1 + w1 · δ1

might arise, i.e., the filter region contains solely clamped depth values. To demon-
strate why this is a problem, we write the vector b⋆ as b⋆ = EZ⋆ (b) where

Z⋆ =
1

2
· δ−1 +

1

2
· δ1.

Then the biased vector b′ corresponds to the depth distribution

(1−αb)·Z+αb ·Z⋆ =
(

(1− αb) · (1− w1) +
αb

2

)

·δ−1+
(

(1− αb) · w1 +
αb

2

)

·δ1.

Obviously, this depth distribution only uses the two depth values −1 and 1. Such
depth distributions correspond to vectors of moments on the boundary of the valid do-
main [Peters and Klein 2015, p. 11]. Arbitrarily small rounding errors may invalidate
them. The biasing has failed to accomplish its purpose. When clamping depth values,
this leads to visible instabilities in some places.

To derive a bias that behaves robustly in all cases, we ask for maximal efficiency in
the worst case. More precisely, we ask for a vector of moments b⋆ ∈ convb([−1, 1])

(i.e., it can be represented by a depth distribution on [−1, 1] [Peters and Klein 2015])
having maximal distance to the boundary of the valid domain convb(R). For the
originally proposed vector b⋆ this distance would be zero.

We find this vector by means of a brute-force search in a reduced search space.
This reduction exploits that b(R) and b([−1, 1]) have a mirror symmetry along each
odd dimension. The result of the optimization is

b⋆ = (1, 0, 0.375, 0, 0.375)T.
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This is the biasing scheme that we use in absence of a quantization transform. When
the moments are stored in single-precision floats, we found that a moment bias of
αb = 3 · 10−7 is sufficient.

When the quantization transform in Equation (3) is used, the distance to the
boundary of convb(R) should be computed after application of Θ⋆

4 because the strong
rounding errors apply to the transformed moments. This distorted metric leads to the
optimum

b⋆ = (1, 0, 0.628, 0, 0.628)T.

Using 64 bits per texel, we observed that a moment bias of αb = 6 · 10−5 eliminates
artifacts reliably.

2.6. Results and Discussion

For more details on our implementation we refer to Appendices D.1 and D.2. We note
that all imagery in this paper uses the sRGB color space. Images in previous publi-
cations inappropriately used a linear color space [Peters and Klein 2015; Peters et al.
2016]. Since the sRGB conversion increases small values, it tends to make faint light
leaking noticeable. Over darkening, proposed by Annen et al. [2007], diminishes this
artifact. For example, shadow intensities may be divided by 98% and then clamped to
[0, 1] such that light leaking below 2% disappears. We do this for the surface shadows
in all figures except for Figures 4 and 6, which exhibit light leaking deliberately.

Figure 4 compares several techniques on a scene that is chosen to provoke arti-
facts. Even percentage-closer filtering exhibits some missing contact shadows due to
the required depth bias (Figure 4c). Moment shadow mapping with 64 bits per texel
suffers from slight quantization noise and light leaking in short-range shadows (Fig-
ure 4b). When using 128 bits with depths in [0, 1], both artifacts are much weaker
but still present (Figure 4d). When depth values are defined in [−1, 1], these artifacts
vanish almost entirely (Figure 4f).

At 64 bits per texel exponential variance shadow mapping yields substantially
stronger quantization noise and light leaking than moment shadow mapping (Figs.
4a and 4b). At 128 bits per texel the two techniques have different advantages. Ex-
ponential variance shadow mapping has difficulties with shadows near boundaries
of shadow casters (Figure 4e, green inset) and still exhibits noticeable light leaking
(Figure 4e, cyan inset). Moment shadow mapping does not exhibit these artifacts but
suffers from light leaking when three distinct surfaces are present in the filter region
(Figure 4f, orange inset).

The reduction in run time due to the sparse quantization transform is not always
significant because it may be covered up by other bottlenecks. For a significant mea-
surement, we use a close-up of the smoke in Figure 5 rendered at 3840 × 2160 to
get strong overdraw. In this setting the optimized quantization transform reduces the
overhead for moment shadow mapping with 64 bits per texel from 5.2 ms to 4.7 ms.
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(a) Exponential variance shadow mapping, 64

bits, depth defined in [−1, 1], c−evsm = c+evsm = 5.54

(b) Improved moment shadow mapping, 64 bits,

depth defined in [−1, 1], αb = 6 · 10−5,

b⋆ = (1, 0, 0.628, 0, 0.628)T

(c) Percentage-closer filtering (d) Original moment shadow mapping, 128 bits,

depth defined in [0, 1], αb = 2 · 10−6,

b⋆ = (1, 0.5, 0.5, 0.5, 0.5)T

(e) Exponential variance shadow mapping,

128 bits, depth defined in [−1, 1], c−evsm = 5.54,

c+evsm = 40

(f) Improved moment shadow mapping, 128 bits,

depth defined in [−1, 1], αb = 3 · 10−7,

b⋆ = (1, 0, 0.375, 0, 0.375)T

Figure 4. A bird’s eye view of a scene with a direction sign, a fence and a thin wall. The

three magnified insets receive shadow from the fence only (green), the fence and the thin wall

(cyan) or the direction sign, the fence and the thin wall (orange). This scenario provokes

various artifacts.
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3. Shadows for Translucent Occluders

Filterable shadow maps are compatible with all sorts of linear filtering. Alpha blend-
ing is one such operation. In this section, we show that rendering translucent geometry
to a filterable shadow map with alpha blending is reasonable and we demonstrate that
it works particularly well with moment shadow mapping. The same moment shadow
map is used for opaque and translucent occluders. Thus, there is almost no overhead.

3.1. Related Work

Transmittance from the light to a surface can depend upon the depth in complex ways
when translucent occluders are present. It has been represented as a piecewise lin-
ear function but then filtering is non-trivial [Salvi et al. 2010]. Other approaches
use percentage-closer filtering and randomly discard fragments in proportion to their
translucency [Enderton et al. 2010; McGuire and Enderton 2011].

Fourier opacity mapping [Jansen and Bavoil 2010] introduced the idea of us-
ing filterable shadow maps, namely convolution shadow maps [Annen et al. 2007].
The absorption function (i.e., the logarithm of the transmittance) is represented by
a Fourier series. Absorption can be accumulated additively and thus no sorting is
needed. Translucent shadow maps [Delalandre et al. 2011] take a similar approach
but represent the transmittance function such that sorting is needed. Phenomenologi-
cal scattering [McGuire and Mara 2016] represents transmittance through a variance
shadow map but avoids sorting by stochastically discarding fragments. This technique
also adds heuristic caustics.

3.2. Moment Shadow Maps for Translucent Occluders

Our approach is like translucent shadow maps in that the moment shadow map repre-
sents transmittance. Representing an absorption function would require an additional
channel for the total absorption b0. Besides we want to use a single moment shadow
map for opaque and translucent occluders but opaque occluders correspond to infinite
absorption.

The disadvantage of this choice is that we require a method for order-independent
transparency when rendering to the moment shadow map. We consider this orthog-
onal to our contribution and any existing method should work (e.g., stochastic trans-
parency [Enderton et al. 2010]). Our experiments rely on sorted geometry.

We now demonstrate that alpha blending produces the vector of moments of a
depth distribution Z modeling transmittance of translucent occluders correctly. Given
ns ∈ N surfaces along a light ray at depths z0 < z1 < . . . < zns−1 with opacities
α0, . . . , αns−1 ∈ [0, 1], the amount of light transmitted to depth zf ∈ R is the prod-
uct of the relevant transmittance factors

∏ns−1
k=0, zk<zf

(1 − αk). This transmittance is
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precisely modeled by the depth distribution

Z :=

ns−1∑

j=0

(
j−1
∏

k=0

1− αk

)

· αj · δzj

because at depth zj the fraction αj of the remaining light is blocked.
Suppose we render these surfaces back to front to a moment shadow map using the

over operator for blending. It is safe to assume zns−1 = αns−1 = 1 because we clear
the moment shadow map accordingly. When rendering surface j ∈ {0, . . . , ns − 1},
the source color is multiplied by αj , the destination color is multiplied by (1 − αj)

and the results are added. Thus, the vector of moments b(zj) is first multiplied by αj

and subsequently by (1 − αj−1), . . . , (1 − α0). In the end, we obtain the vector of
moments

b :=

ns−1∑

j=0

(
j−1
∏

k=0

1− αk

)

· αj · b(zj) = EZ (b)

which is exactly the sought-after result. Approximation errors are only introduced
during reconstruction of the shadow intensity from the moments through Algorithm 1.
Note that b0 still does not need to be stored because it corresponds to the total alpha
of all surfaces blended together and due to αns−1 = 1 we know b0 = 1.

Since the over operator is required, translucent occluders have to be rendered to
the moment shadow map directly rather than generating the entire moment shadow
map from a depth buffer. Besides, we need to work around a limitation of current
graphics APIs. The opacity value used for blending cannot be independent from the
values written to RGBA textures. Hence, we use two RG textures, each with 16
bits per channel, instead of a single RGBA texture. Rendering is done using hardware
support for multiple render targets, so performance is only mildly reduced. Of course,
it is still beneficial to use the sparse quantization transform. More details on our
implementation are provided in Appendix D.3.

3.3. Results and Discussion

While we have formulated the approach above for moment shadow maps, it is applica-
ble to any kind of filterable shadow map and related methods utilize that [Delalandre
et al. 2011; McGuire and Mara 2016]. Figure 5 compares results obtained with differ-
ent filterable shadow maps. All shown techniques underestimate the shadow intensity,
so darker results are necessarily closer to the ground truth. We observe that moment
shadow mapping yields the darkest self-shadowing in the smoke and the least light
leaking on the pipes (Figure 5d). Overall it performs best, although the run time in-
crease in comparison to 64-bit exponential variance shadow maps is a bit higher than
usual due to the high shading rate. Using 128-bit moment shadow maps is not ben-
eficial here because the negative effect of the biasing is less significant when depth
distributions are complex in the first place.
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(a) Variance shadow mapping, 32 bits,

2.6 ms/2.5 ms

(b) Exponential variance shadow mapping,

64 bits, c+evsm = c−evsm = 5.54, 3.2 ms/2.9 ms

(c) Exponential variance shadow mapping,

128 bits, c+evsm = 40, c−evsm = 5.54, 4.4 ms/3.5 ms

(d) Moment shadow mapping, 64 bits,

αb = 6 · 10−5, 3.7 ms/3.3 ms

Figure 5. A scene with walls, colored pipes and smoke consisting of 30 textured planes.

Various filterable shadow maps are used to compute the shadows. Results exhibit different

amounts of self-shadowing within the smoke and partial shadow of the smoke on the opaque

surfaces. The shadow map resolution is 10242 and images are rendered at 3840× 2160 with

4× multisample antialiasing. Timings are full frame times when rendering to the filterable

shadow map with/without alpha blending on an NVIDIA GeForce GTX 970.

64-bit exponential variance shadow maps yield slightly weaker self-shadowing in
the smoke and there is strong light leaking at the boundary of the pipe (Figure 5b).
The higher exponent in 128-bit exponential variance shadow mapping actually makes
both artifacts worse (Figure 5c). With variance shadow mapping, shadows cast by the
smoke are reconstructed almost as well as with 64-bit moment shadow mapping but
there is unacceptable light leaking on opaque surfaces (Figure 5a).

Figure 6 demonstrates artifacts encountered with moment shadow mapping for
translucent occluders. The many layers of the smoke in our test scene add to the
complexity of depth distributions and thus light leaking on the surfaces increases
(Figure 6a). 64-bit exponential variance shadow maps exhibit very similar artifacts.
Dividing shadow intensities by 95% resolves the issue in this example. More com-
plex depth distributions degrade the approximation quality at all depths. Therefore,
the silhouette of the blue pipe in the background leads to increased light leaking along
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(a) Light leaking on surfaces (b) Volumetric light leaking

Figure 6. Screenshots of two typical artifacts of shadows for translucent occluders rendered

with 64-bit moment shadow mapping. The complex depth distributions increase light leaking

on surfaces and in the volume. To make the artifacts more visible, shadow intensities are not

scaled and the image on the right does not use a two-pass Gaussian for shadow filtering.

elongated stripes for the self-shadows of the smoke in the foreground in Figure 6b.
Note that rounding errors may accumulate through alpha blending. In some ex-

periments with 64-bit moment shadow maps we observed corresponding artifacts.
Accumulation of rounding errors is particularly strong when there are many overlap-
ping layers with a very low opacity. We found that a simple alpha test discarding
fragments with an opacity below 1% removed these artifacts. If an alpha test is not
an option, one may use 128-bit moment shadow maps or a method for transparency
other than alpha blending.

In spite of these artifacts, we believe that the technique is robust enough for use
in production. It is particularly attractive due to its simple implementation and its low
overhead (e.g., 0.4 ms for the scene in Figure 5d). The combination with stochastic
shadow maps [Enderton et al. 2010] seems compelling for situations where sorting the
translucent geometry is not practical. The technique can also be extended to colored
translucent occluders by using one moment shadow map per color channel.

4. Moment Soft Shadow Mapping

So far, all shown results use a directional light, i.e., a point light at infinite distance.
In reality, light sources always have some area and partial occlusion leads to soft
shadows. Filtered hard shadows resemble soft shadows but they do not harden at
contact points. In the present section, we extend moment shadow mapping to use
an adaptive kernel size. This way, we obtain a highly efficient approximation to soft
shadows.
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4.1. Related Work

Like most other techniques that are suitable for performance-sensitive real-time ap-
plications, our approach uses the framework of percentage-closer soft shadows [Fer-
nando 2005]. This technique uses a common shadow map. For each fragment, it
searches a neighborhood in the shadow map for relevant blockers and computes their
average depth. Then an adequate filter size is computed. For directional lights this fil-
ter size is simply proportional to the distance between receiver and caster. Percentage-
closer filtering computes the filtered shadow intensity. Percentage-closer soft shad-
owing generates plausible results with few noticeable artifacts but the cost is high due
to excessive sampling.

Summed-area variance shadow maps [Lauritzen 2007] try to avoid the sampling
by means of a summed-area table. A summed-area table [Crow 1984] is a prefiltered
representation of a texture where each texel stores the integral over a rectangle from
the left top to its location. The integral over an arbitrary rectangle is queried by
sampling the summed-area table at the four corners of this rectangle (Figure 7a). A
summed-area table of a variance shadow map enables filtering with an arbitrary filter
size in constant time but the blocker search still requires sampling. Filtering is done
using a box kernel which corresponds to a rectangular area light.

Variance soft shadow mapping [Yang et al. 2010] accelerates the blocker search
using a heuristic based on a single query to a summed-area variance shadow map.
Difficult situations are handled in more expensive ways. Convolution soft shadow
mapping [Annen et al. 2008a] uses either a summed-area table or mipmaps to filter
based on convolution shadow maps. The blocker search uses a second set of filter-
able textures. Exponential soft shadow mapping [Shen et al. 2013] uses summed-area
tables over smaller regions of an exponential shadow map to avoid unacceptable pre-
cision loss. Again additional textures are needed for the blocker search. The authors
use kernel subdivision to better approximate Gaussian filter kernels.

4.2. Summed-Area Tables with Four Moments

Our technique follows the same basic steps as variance soft shadow mapping but never
requires more than two queries to the summed-area table. We generate a summed-area
table of a moment shadow map, use it to estimate average blocker depth during the
blocker search, estimate the appropriate filter size and use the summed-area table to
perform the filtering. Our discussion begins with the generation of the summed-area
table.

The summed-area table is created in two passes. The first one creates horizon-
tal prefix sums and the second one creates vertical prefix sums on the output of the
first pass. Both passes are implemented in a compute shader using one thread per
row/column as recommended by Klehm et al. [2014].

For small variance shadow maps the precision provided by summed-area tables
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with single-precision floats may be sufficient but for moment shadow maps it is gen-
erally insufficient. We instead use 32-bit integers and modular arithmetic because this
allows us to exploit prior knowledge about maximal kernel sizes [Lauritzen 2007].

Suppose that the largest used kernel covers nt ∈ N texels (e.g., nt = 784 for a
28×28 kernel). The transformed moments Θ⋆

4(b1, b2, b3, b4) (see Equation (3)) stored
in the moment shadow map initially lie in [0, 1]4. If we multiply them by 232−1

nt
and

round to integers afterwards, the sum of moments in the largest relevant kernel is
known to lie in {0, . . . , 232 − 1}. Thus, this number can be represented by a 32-bit
unsigned integer. At the same time, we still have a precision of

log2
232 − 1

nt
,

which evaluates to 22.4 bits for the example above. This precision is only slightly
worse than the precision of single-precision floats and we found that a moment bias
of αb = 6 · 10−7 is sufficient. For larger kernels, greater values are needed.

In our implementation we generate a 128-bit moment shadow map and generate
an integer summed-area table for it. During this step overflows will occur frequently
but they can be safely ignored because they only subtract multiples of 232. When we
query the summed-area table in a kernel containing nt texels or fewer, we know that
the result has to lie in {0, . . . , 232 − 1} and thus computing it in integer arithmetic
necessarily leads to the correct result.

Having a summed-area table, mipmapping becomes unnecessary. Therefore, the
memory requirements compared to 64-bit moment shadow mapping only increase by
50%:

128 bits

64 bits · 4
3

=
6

4
= 150%.

4.3. Blocker Search

During the blocker search we perform a single look-up in the summed-area table to
query four moments for the search region. We then use Algorithm 1 to turn the biased
moments and the unbiased fragment depth zf into a matching depth distribution Z :=
∑2

l=0wl · δzl consisting of three depth values z0 = zf , z1, z2 ∈ R with probabilities
w0, w1, w2 > 0.

Our assumption is that this reconstruction matches up with the ground truth. If the
search region contains one or two surfaces, the reconstruction is known to be nearly
perfect [Peters and Klein 2015, Proposition 4]. When the search region contains three
surfaces but one of them is at depth zf , the distribution is still uniquely determined
by the moments and is reconstructed correctly [Peters and Klein 2015, Proposition 8].
For this reason, it is beneficial to use the unbiased fragment depth. More complicated
cases are rare.
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Since this distribution is correct by assumption, we can derive the average blocker
depth in analogy to percentage-closer soft shadows:

∑2
l=1, zl<zf

wl · zl
∑2

l=1, zl<zf
wl

.

However, this formulation is not robust. The divisor is exactly the shadow intensity
Z(z < zf ) computed for the search region. It can be arbitrarily small or even exactly
zero. In this case the expression becomes meaningless. A small shadow intensity
implies an unoccluded fragment. For such fragments the blocker search should return
z0 = zf to indicate that a small filter kernel is to be used.

This requirement is incorporated into the above formula robustly by setting the
average blocker depth to

εz0 · z0 +
∑2

l=1, zl<zf
wl · zl

εz0 +
∑2

l=1, zl<zf
wl

(4)

where εz0 > 0 is a small constant. We found that this parameter is not crucial for
the quality. Larger values move all shadow casters slightly towards the receivers thus
making shadows harder. For small values, the average blocker depth may be too far
away leading to an unnecessarily large filter kernel. However, this typically affects
fully lit fragments, so the final result does not change. We use εz0 = 10−3 in all of
our experiments.

4.4. Filtering

Once the average blocker depth is available, the penumbra estimation [Fernando
2005] provides an adequate filter size. Combining it with the texture coordinate of
the fragment in the shadow map, we can compute the left top and right bottom texture
coordinates of the filter region. In general these will not lie in the center of texels.
This necessitates interpolation for our integer summed-area tables.

Conversely to what one might expect, it is incorrect to apply bilinear interpolation
directly to samples at the four corners of the filter region because the underlying
values of adjacent texels differ by unknown multiples of 232. Such problems can
be avoided by operating exceptionally on integrals over regions containing less than
nt texels. Figure 7b demonstrates how the filter region can be partitioned into nine
such regions. For each of these regions it is safe to convert the held moments back
to floating point values. Then the results from the individual regions are summed,
weighting them by the area of their intersection with the filter region. This works
reliably but since 4 · 4 · 4 · 32 = 2048 bits need to be loaded per fragment, the cost
is significant (see Section 4.6.2). As an alternative we tried randomized dithering but
found that the noise is too strong at hard shadow boundaries.
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BA

C D

A+B+C+DA+C

A+BA

D=(A+B+C+D)+A-(A+B)-(A+C)

(a) Rectangular query

Query

Sample position

(grid aligned)

Intermediate integral

(grid aligned)

(b) Rectangular query with interpolation

Figure 7. (a) Summed-area tables enable computation of the integral over a rectangle D from

four samples. (b) To compute the integral over an arbitrary rectangle, we load values of 16

texels and compute the integrals over the nine shown rectangles.

Having the four filtered moments, moment shadow mapping (Algorithm 1) yields
the final shadow intensity. Due to the potentially large filter size, it is important to use
a sufficient depth bias. We recommend increasing it in proportion to the filter size.
Additionally, an adaptive depth bias may be used [Dou et al. 2014].

4.5. Optimization

The most efficient way to optimize the technique is to reduce the number of texture
loads. To avoid the cost of interpolation during the blocker search, we extend the
search region to match the texel grid. Having grid-aligned search regions leads to
small discontinuities in the soft shadows but is easily justified by the considerable
speedup.

Another way to avoid texture loads is to skip filtering when the blocker search
reveals that the fragment lies in the umbra. We already compute the shadow intensity
∑2

l=1, zl<zf
wl as part of Equation (4). If it surpasses a threshold 1−εu where εu > 0,

we assume that the fragment lies in the umbra and immediately return a maximal
shadow intensity. In our experiments a value of εu = 0.01, coupled with division of
the shadow intensity by 99% or less, yields robust results while reducing the need for
texture loads in large, connected regions.

We also tried skipping the filtering step for fully lit fragments but the lower bound
provided by moment shadow mapping leads to too many false positives. It is possible
to use the upper bound instead but then only few fragments are classified as fully lit.
Therefore, we do not recommend this approach and do not use it in our experiments.

4.6. Results and Discussion

We compare moment soft shadow mapping against percentage-closer soft shadows
and a naïve implementation of variance soft shadow mapping in a forward renderer
using a single directional light. All images in this section use a shadow map resolution
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(a) Sintel (b) Quadbot

Figure 8. Moment soft shadow mapping with a search region of 272 rendering shadows for

two models above a plane. Note that the shadows are contact hardening.

of 10242. For percentage-closer soft shadows we benefit from hardware-accelerated
2 × 2 percentage-closer filtering to take four samples at once in the filtering step.
The blocker search loads all texels in the search region to avoid artifacts for fine
structures. Our implementation of variance soft shadow mapping uses neither a hier-
archical shadow map nor kernel subdivision. It is essentially identical to moment soft
shadow mapping but with two instead of four moments. Thus, we expect it to be faster
than the actual technique [Yang et al. 2010] but with more artifacts. All techniques
skip filtering if the result of the blocker search allows it. For additional details on the
implementation of moment soft shadow mapping we refer to Appendix D.4.

4.6.1. Qualitative Evaluation

Figure 8 shows two examples where moment soft shadow mapping produces plausible
soft shadows. It works well for character models (Figure 8a) but also for complex
models with many fine details (Figure 8b). As expected, shadows harden at contact-
points. Note that short-range shadows exhibit slight light leaking. Since precision in
the summed-area table is high, light leaking is only slightly stronger than for single-
precision moment shadow maps (Figure 4f). Using depths in [−1, 1] is beneficial
here.

Figure 9 compares all implemented techniques for soft shadows. Percentage-
closer soft shadowing generates a good result but to get an acceptable run time the
search region has to be limited to 152 and therefore long-range shadows are too hard
(Figure 9a). The other techniques support large search regions efficiently. Our naïve
implementation of variance soft shadow mapping produces objectionable light leak-
ing (Figure 9b). Note that kernel subdivision would fix this but at an increased cost.
Moment soft shadow mapping without interpolation produces visible stripe patterns at
hard shadow boundaries (Figure 9c). Interpolation eliminates this artifact (Figure 9d).

A failure case is shown in Figure 10. Like all techniques based on the framework
of percentage-closer soft shadows, moment soft shadow mapping does not fuse oc-
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(a) Percentage-closer soft shadows, 152 search

region

(b) Naïve variance soft shadow mapping, 272

search region, interpolated

(c) Moment soft shadow mapping, 272 search re-

gion, not interpolated

(d) Moment soft shadow mapping, 272 search re-

gion, interpolated

Figure 9. Various techniques for soft shadows in a scene where shadows are cast over a long

range.

cluders at different depths correctly. It rather replaces them by a single occluder at
the average occluder depth. Therefore, the short-range shadow of a pillar becomes
soft due to the shadow of the more distant brick wall. This artifact occurs whenever
the search region contains more than two occluding surfaces. Thus, it coincides with
increased light leaking making the artifact more noticeable for moment soft shadow
mapping. A stronger depth bias strengthens this light leaking.

The effect of an insufficient depth bias is shown in Figure 11. Lighting that is
nearly parallel to a surface, coupled with large filter regions, is likely to cause wrong
self-shadowing. Moment soft shadow mapping is less susceptible to this artifact than
percentage-closer soft shadows but when using large search regions, it is an issue. In
our implementation the depth bias is proportional to the filter size but not adaptive
with respect to the surface. We believe that an adaptive depth bias will offer robust
results without parameter tweaking, even for large search regions [Dou et al. 2014].

Overall, we found moment soft shadow mapping to be more robust than percentage-
closer soft shadows. With percentage-closer soft shadows missing contact shadows
due to a strong depth bias are hard to avoid (Figure 10a bottom). While moment soft
shadow mapping does not solve this problem entirely, it does diminish it by using
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(a) Percentage-closer soft shadows (b) Moment soft shadow mapping

Figure 10. An example of wrong occluder fusion. The hardness of the contact shadows in the

two magnified insets should be the same. Both shown techniques exhibit this artifact but light

leaking of moment soft shadow mapping strengthens it.

Figure 11. The shadow of a column rendered with moment soft shadow mapping using a

272 search region. The ground is lit at an angle of incidence of 80°. Fragments that are just

outside the penumbra still use a large filter size and wrong self-shadowing occurs due to an

insufficiently biased fragment depth.

lower bounds. Light leaking, which is not present in percentage-closer soft shadows,
is weak thanks to the high precision in the summed-area table.

4.6.2. Run Time

Figure 12 shows run time measurements recorded in our Direct3D 11 implementation
running on an NVIDIA GeForce GTX 970. The cost per texel of the shadow map
increases with the memory per texel (Figure 12a). However, it is less crucial here due
to the high cost per shaded fragment. Even for a 20482 shadow map, all techniques
using filterable shadow maps are faster than percentage-closer soft shadows with a
small 92 search region. We provide more insights on the time it takes to generate the
summed-area table in Appendix C.

The cost per shaded fragment is immense for percentage-closer soft shadows,
especially when using a 152 search region (Figure 12b). Note that such a search region
is still too small to generate sufficiently soft long-range shadows (Figure 9a). Without
interpolation during filtering, moment soft shadow mapping has a slightly lower cost
per fragment than naïve variance soft shadow mapping with interpolation. Enabling
interpolation increases this cost significantly, but moment soft shadow mapping is still
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(a) Fixed output resolution 1920 · 1080 (b) Fixed shadow map resolution 10242

(c) Scene (d) Legend

Figure 12. Frame times for rendering soft shadows with various techniques in the shown

scene. The frame time for rendering without shadows has been subtracted. All techniques

with filterable shadow maps use 4× multisample antialiasing for the shadow map. The output

always uses 4× multisample antialiasing.

consistently faster than percentage-closer soft shadows with a 92 search region.

4.6.3. Conclusions

Percentage-closer soft shadows is easily the most widely used real-time technique for
dynamic soft shadows of moderately large area lights. Moment soft shadow mapping
is substantially faster, scales better to large search regions and large output resolutions
and is less susceptible to wrong self-shadowing, which plagues percentage-closer soft
shadows. The only newly introduced artifact is light leaking, which is weak due to
the high precision in the summed-area table.

Therefore, we believe that it may become the new technique of choice for af-
fordable soft shadows. A notable limitation is that the summed-area table supports
exclusively rectangular light sources aligned with the shadow map. This may not be

38

http://jcgt.org


Journal of Computer Graphics Techniques

Improved Moment Shadow Maps
Vol. 6, No. 1, 2017

http://jcgt.org

ideal, e.g., for shadows of sun light, but the smooth penumbra regions are still plau-
sible. None the less, given a performance target to render soft shadows in 2.1 ms at
1920×1080 with a 10242 shadow map, this technique requires fewer compromises in
quality than other methods. More natural kernels may be constructed from multiple
rectangles at an increased cost.

5. Prefiltered Single Scattering with Moments

Another common simplification in rendering is to assume that all relevant light inter-
actions happen at surfaces. This neglects volumetric scattering occurring in partici-
pating media such as smoke, dusty air, moist air and so forth. Light can be reflected
in midair towards the camera. When this effect is coupled with proper computation
of shadows, it leads to visible shafts of light which provide great artistic value. This
effect is widely used but costly. Scattering occurs everywhere within the volume. At
the same time, the visibility of the light source can change arbitrarily along a view
ray. This visibility term makes the integration expensive.

In this section, we combine moment shadow mapping with prefiltered single scat-
tering [Klehm et al. 2014]. The resulting technique evaluates single scattering using
only one lookup per pixel in a prefiltered moment shadow map. We use either four
(Section 5.3) or six moments (Section 5.4) and adaptively balance between lower and
upper bounds (Section 5.3.1). In addition, we demonstrate how to apply filtering
during the necessary resampling step (Section 5.2).

5.1. Related Work

To keep the cost reasonable, most approaches for real-time scattering disregard global
illumination effects and instead focus on single scattering. Light coming directly from
a light source is scattered into the view ray. Ray marching in a pixel shader [Tóth
and Umenhoffer 2009] is the most immediate way to compute it. Per ray sample, a
common shadow map is sampled to determine visibility. Voxelized shadow volumes
[Wyman 2011] store the shadow map as boolean volume in a different coordinate
system to enable 128 queries at once. A 1D min-max-mipmap may be used to traverse
ray segments that are fully lit or fully shadowed in a single step [Chen et al. 2011].

5.1.1. Prefiltered Single Scattering

Prefiltered single scattering [Klehm et al. 2014] introduces the concept of filterable
shadow maps to single scattering. The single scattering results for all light rays are
precomputed into a convolution shadow map. While this method is fast, independent
of scene complexity, the Fourier series used in convolution shadow maps introduces
ringing and memory requirements are high (e.g., 256 bits per texel). Our work is
an extension of prefiltered single scattering and in the following we provide enough
details on this technique to make our discussion self-contained.
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Besides the restriction to single scattering, prefiltered single scattering makes
a few additional simplifying assumptions that we inherit. The participating media
has to be homogeneous, i.e., its physical properties must be the same everywhere.
Namely, these properties are the extinction coefficient σt defining transmittance, the
phase function f(ωl, ωp) which is the volumetric analog to a BRDF, and the scattering
albedo ρ. We also assume homogeneous lighting from a single directional light with
direction ωl and maximal irradiance El. Multiple directional lights can be handled by
superposition.

Now consider a surface element at distance s from the camera with outgoing
radiance Ls towards the camera. The camera lies in direction ωp at position p. Let
V (q) be a visibility function for the light, mapping a position in 3D-space to one if it
is lit and to zero if it is shadowed. Then the radiance received at the camera is

exp(−σt · s) · Ls + f(ωl, ωp) · El ·
∫ s

0
exp(−σt · t) · V (p− t · ωp) dt.

The first summand is the radiance from the surface that remains after absorption
and out-scattering. The second summand models single scattering. At each lit seg-
ment along the view ray a differential radiance of f(ωl, ωp) · El is added but only
exp(−σt · t) of it is transmitted to the camera.

The cost of computing single scattering lies in the integration, which includes
the visibility term. When we view it as one-dimensional function along a light ray,
the visibility function is a simple Heaviside step function. It is one, up to the first
occluder, and then it is zero. The filterable shadow maps described in Section 2.2
provide means to store such functions in a way that enables the application of filters.
We utilize them to turn integration of single scattering into an integration over rows
of a shadow map.

To this end, the parameterization of the shadow map has to meet two require-
ments. View rays have to map to rows in the shadow map and the depth of view rays
within the shadow map has to be constant. In most cases such a parameterization
can be constructed as simple perspective transform [Klehm et al. 2014]. We have
implemented this linear rectification but for reasons given in Section 5.2 we opted for
the other proposed solution; a non-linear rectification transform applied by means of
resampling [Baran et al. 2010].

To convert coordinates from world space to rectified coordinates, we first convert
to light view-space and move the origin of the coordinate system into the camera
location. In this space the light direction corresponds to the z-axis and the other
axes are chosen arbitrarily but orthogonal as shown in Figure 13. Then the horizontal
texture coordinate in the shadow map corresponds to the distance to the origin after
projecting to the x-y-plane, r. This agrees with the distance between light ray and
camera. For the other two coordinates, we convert to spherical coordinates. The
vertical texture coordinate corresponds to the azimuth ϕ ∈ (0, 2 · π]. Depth stored in
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(a) Rectified coordinates r,

ϕ and θ

(b) Rectified moment shadow map (first

three channels)

(c) Rectified and prefiltered

moment shadow map

Figure 13. Prefiltered single scattering resamples the shadow map into a coordinate system

where each view ray maps to a row. Computation of weighted prefix sums over these rows

effectively precomputes the single scattering result for every possible view ray.

the shadow map corresponds to the flipped inclination π−θ ∈ [0, π]. This way, depth
values in the new coordinate system grow monotonically with original depth values.

Since ϕ and θ are independent of the distance to the camera, view rays map to
shadow map rows and have constant depth as required. At the same time the parame-
terization is valid for a shadow map because each light ray has constant r and ϕ and
thus maps to a single texel. In terms of epipolar geometry ϕ indexes epipolar slices
containing the light direction and going through the camera. Single scattering com-
putations for different epipolar slices are independent. To fit the shadow map tightly,
bounds for r, ϕ and θ are computed such that the entire view frustum is covered (see
Appendix A). Along the dimension of θ we add a guard band to avoid light leaking.
The length of the interval of values for θ is stretched by 10%.

We generate a filterable shadow map b(u, v) in this coordinate system, indexed
with integer texel indices u, v. Each texel stores a representation of the visibility
function along a light ray (e.g., Fourier coefficients [Klehm et al. 2014] or moments)
and filtering a row corresponds to filtering along all view rays in the corresponding
epipolar slice. To precompute the relevant integrals, we need to know the world-space
distance ∆(v) between successive view ray samples per slice. Since this quantity de-
pends upon the inclination θ, a heuristic is required. Sophisticated heuristics have
been proposed [Klehm et al. 2014] but we simply compute the distance for the arith-
metic mean of the minimal and maximal values of θ. Then transmittance-weighted
prefix sums are computed as

bΣ(u, v) :=

∑u
j=0wj,v · b(j, v)
∑u

j=0wj,v

wu,v :=

[

− 1

σt
· exp(−σt · t)

](u+ 1

2)·∆(v)

(u− 1

2)·∆(v)

.
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To compute the scattering for a view ray ending at some location q ∈ R
3, we sam-

ple the prefiltered shadow map bΣ at the appropriate location, reconstruct a shadow
intensity between zero and one as one would for filtered hard shadows, subtract it
from one to get visibility and then multiply by the maximal possible scattering

f(ωp, ωl) · El ·
[

− 1

σt
· exp(−σt · t)

]‖q−p‖2

0

.

This procedure only requires a single lookup in the prefiltered shadow map bΣ
per pixel on screen. Thus, the run time of the technique is independent of the scene
complexity.

5.2. Rectification with Filtering

The linear rectification proposed by [Klehm et al. 2014] tends to allocate major parts
of the shadow map for geometry near the camera while farther geometry is com-
pressed. This can be alleviated by moving away the near clipping plane or by using
split shadow maps but neither solution is quite satisfactory. Besides, non-linear recti-
fication still has to be implemented for the case where an epipole is near the field of
view.

On the other hand, the non-linear rectification described above requires resam-
pling of shadow maps to be implemented efficiently with rasterization hardware.
Since common shadow maps cannot be filtered during resampling, this introduces
considerable aliasing artifacts. Straight silhouettes exhibit staircase artifacts that lead
to visible stripes in the crepuscular rays (Figure 17a). These stripes are not stable with
regard to movements or rotations of the camera which makes them quite noticeable.

Ideally, the shadow map could be filtered during resampling. We have accom-
plished this using moment shadow maps. Instead of taking a sample without filtering
from a common shadow map, we take a filtered sample from a moment shadow map.
We then turn the obtained moments back into a depth distribution because we need to
distort depth in a non-linear fashion. It is appropriate to expect simple distributions
because we are working with small filter regions. In most relevant cases the filter
region will not cover more than two different surfaces.

In Section 2.2.1 we showed how to reconstruct a depth distribution with three
depth values z0, z1, z2 from four moments where z0 = zf is prescribed. This leaves
us with the question how to choose z0. To avoid an arbitrary choice and to obtain a
more efficient solution we let z0 go to infinity. As this happens, w0 approaches zero
and we can discard the depth value z0. The remaining distribution w1 ·δz1 +w2 ·δz2 is
still compatible with the moments b0, b1, b2, b3. Only the fourth moment b4 does not
match. Under the assumption of two or fewer surfaces at nearly constant depth, we
can be certain that the reconstruction is adequate. Otherwise it provides a reasonable
approximation that is certainly better than a single shadow map sample.
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Algorithm 2 Construction of a depth distribution with two depth values from three
moments.
Input: A vector of moments b ∈ R

4 with b0 = 1 and b2 − b21 > 0.
Output: A distribution Z on R such that EZ

(
z
j
)
= bj for all j ∈ {0, 1, 2, 3}.

1. Set q2 := b2 − b21.

2. Set q1 := b1 · b2 − b3.

3. Set q0 := −b1 · q1 − b2 · q2.

4. Solve q2 · z2 + q1 · z + q0 = 0 to get solutions z1, z2 ∈ R.

5. Set w2 :=
b1−z1
z2−z1

and w1 := 1− w2.

6. Return w1 · δz1 + w2 · δz2 .

The described distribution is constructed by Algorithm 2. It fails for inputs with
non-positive variance σ2 := q2 = b2 − b21 but this case is adequately handled by
simply returning δb1 . We provide a correctness proof in Appendix B.

Once we have obtained the distribution, we convert its depths z1, z2 to inclinations
θ1, θ2 as described in Section 5.1.1 and normalize to the interval [−1, 1] clamping out-
of-range values. Then we convert both values to vectors of moments via Θ⋆

m ◦ b and
linearly combine them using the weights w1, w2. The result is stored in b(u, v). At
this point we can also generate more than four moments or other filterable shadow
maps.

Using this scheme is entirely optional. Our implementation creates the rectified,
filterable shadow map b(u, v) using a pixel shader. When filtering is enabled, the pixel
shader takes a filtered sample from a moment shadow map, otherwise it just loads a
texel from a common shadow map. The sample from the moment shadow map is only
slightly more expensive (see Section 5.5.2).

5.3. Prefiltered Single Scattering with Four Moments

Exchanging convolution shadow maps for moment shadow maps in prefiltered sin-
gle scattering is straightforward. Instead of storing values of the Fourier basis in the
shadow map, we store four moments with the usual quantization transform (see Sec-
tion 2.4). When it comes to the computation of the shadow intensity during evaluation
of single scattering, we can proceed as for hard shadows using Algorithm 1.

However, some assumptions made for surface shadows are inadequate for sin-
gle scattering. For surface shadows we always underestimate the shadow intensity to
avoid surface acne. For single scattering this is generally not necessary but we may
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(a) Convolution shadow map,

32 · 8 bits [Klehm et al. 2014]

(b) Moment shadow map,

4 · 16 bits, β = 1

2

(c) Moment shadow map,

4 · 16 bits, β = 0

Figure 14. A view of the pinnacles of a tower. The directional light is hidden behind it but

when single scattering is not underestimated, the light is clearly visible due to leaking artifacts

for large θ.

want to avoid other artifacts. Our solution is to take a weighted combination of the
sharp lower and upper bound. The upper bound is obtained by adding w0 from Algo-
rithm 1 to the lower bound as shown in Figure 2. Thus, the overhead for computing
both bounds is small.

5.3.1. Adaptive Overestimation

Having sharp upper and lower bounds, we need a weight β ∈ [0, 1] to interpolate
between the two. For β = 0 single scattering is underestimated, for β = 1 it is
overestimated. A simple approach would set β = 1

2 such that the worst-case error is
minimal. However, the weight can be set arbitrarily per pixel and a more sophisticated
choice avoids artifacts.

Figure 14a shows an artifact of prefiltered single scattering [Klehm et al. 2014].
Light leaking is strongly increased at the epipole (i.e., when looking into the light).
The inclination of the corresponding view ray is θ = π which corresponds to a min-
imal depth in the rectified shadow map. Thus, no occluder can have a smaller depth.
Near the epipole, inclinations are still large and the leaking only falls off slowly.

If we use moment shadow maps with β = 1
2 , this problem persists (Figure 14b)

but if we underestimate the single scattering it vanishes as expected (Figure 14c).
On the other hand, a constant choice of β = 0 degrades the approximation quality
elsewhere. In particular, at the antipodal point of the epipole, the inclination reaches
θ = 0 and no depth values in the rectified shadow map can be greater than the frag-
ment depth. Thus, underestimation of the single scattering leads to no single scatter-
ing, which is likely incorrect.

To avoid both artifacts while maintaining the best approximation quality in inter-
mediate cases, we set β dependent on the direction of the view ray ωp. The weight β
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is supposed to be zero for ωp = −ωl, one for ωp = ωl and near the epipoles it should
vary slowly. In our experiments, we found that the following choice reliably removes
the artifacts discussed above while providing a smooth and plausible result:

β =
1 + ωT

l · ωp

2
.

5.4. Prefiltered Single Scattering with Six Moments

Four moment shadow mapping works well for surface shadows, because individual
points rarely receive shadow from more than two different surfaces. Prefiltered single
scattering on the other hand computes the average shadow received by an entire view
ray. Such a view ray may be shadowed by many different surfaces at different depths.
Overall, depth distributions are significantly more complex. Using only four moments
for their representation is often insufficient.

Fortunately, Algorithm 1 is formulated for an arbitrary even number of moments.
As a reasonable tradeoff between computational complexity and quality, we investi-
gate the use of six moments. The robust implementation of this method is non-trivial
and we now discuss the necessary steps to avoid numerical noise.

5.4.1. Computation of Roots

Solving the 4× 4 linear system B(b) · q = (z0, . . . , z3)T using a Cholesky decompo-
sition still works well. Next we need to solve the cubic equation

∑3
j=0 qj · zj = 0 for

z. After experimenting with various iterative and closed-form solutions, we settled
for a variation of a closed-form solution proposed by Blinn [2007].

The algorithm presented in the article uses two different branches for computation
of the roots of minimal and maximal magnitude to avoid cancellation. In our appli-
cation, we found that this overhead is unnecessary. Using one of the two branches
to compute all three roots yields results that are free of artifacts. Other closed-form
solutions suffered from artifacts for |q3| ≪ 1 and iterative solutions had a high com-
putational overhead. Among all attempted solutions, the one based on Blinn’s work
is the fastest.

5.4.2. Computation of Bounds

The final step is to approximate the average visibility, which is proportional to the
strength of single scattering. It is a linear combination of the weights w0, . . . , w3,
which are subject to the moment constraints








1 1 1 1

z0 z1 z2 z3
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z30 z31 z32 z33
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The weights in the linear combination are

v0 := β and ∀l ∈ {1, 2, 3} : vl :=

{

0 if zf > zl,

1 if zf ≤ zl.

Written as a dot product, the linear combination is
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T

·
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=:u

.

Since the matrix in this last expression is a Vandermonde matrix, the vector
u ∈ R

4 holds the coefficients of the interpolation polynomial
∑3

j=0 uj · zj taking
value vl for z = zl where l ∈ {0, 1, 2, 3}. We construct its Newton form using
divided differences and then transform back to the canonical basis of polynomials
[Greenbaum and Chartier 2012, p. 181 ff.]. This works efficiently and sufficiently
robust for our purposes.

5.4.3. Quantization and Biasing

In presence of complex depth distributions, even perfect accuracy in all computations
cannot yield a perfect reconstruction. Therefore, we expect the effect of strong bias-
ing to be less drastic for single scattering and using moment shadow maps with low
precision is attractive.

Again, rounding errors should be diminished by means of an affine transform that
is applied to the moments before storing them in the moment shadow map. As in
Section 2.4 we use numerical optimization to determine it. We have experimented
with general transforms and with transforms that operate on odd and even moments
separately. The best found transform belongs to the latter category. It increases the
entropy of the stored data by 12.5 bits per texel and is given by

Θ⋆
6
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T
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0

0
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.

An optimal biasing is determined as for the case with four moments (see Sec-
tion 2.5). The vector of biasing moments is

b⋆ := (1, 0, 0.5566, 0, 0.489, 0, 0.47869382)T.
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For storage of the moments in our Direct3D 11 implementation we use two tex-
tures with either three channels storing 10-bit fixed-point numbers (64 bits per texel,
αb = 4 · 10−3), two and four channels storing 16-bit fixed-point numbers (96 bits per
texel, αb = 8 · 10−5) or three channels storing single-precision floats (192 bits per
texel, αb = 5 · 10−6).

5.5. Results and Discussion

We apply all single scattering techniques in a deferred rendering pass with the depth
buffer as input. Multisample antialiasing is disabled. Note that prefiltered single scat-
tering is fast enough to be applied during forward rendering thus avoiding problems
with multisampling and transparencies but we have not tested this. The details of our
implementation are described in Appendix D.5. Images in this section use a shadow
map resolution of 10242. The rectified shadow map is generated from the shadow
map for surface shadows and has the same resolution.

5.5.1. Qualitative Evaluation

For comparison we have implemented ray marching with equidistant, jittered sam-
ples and prefiltered single scattering using convolution shadow maps with 32 real
coefficients [Klehm et al. 2014]. The compute shader generating the transmittance-
weighted prefix sums is described in detail in Appendix C. For common shadow maps
we use 16-bit textures and for convolution shadow maps we use 8 bits per channel.

Figure 15 shows a comparison of these techniques. The scene mostly consists of
occluders with a large area thus providing a simple case for ray marching. Therefore,
noise is acceptable using 32 ray samples (Figure 15a). Techniques based on prefiltered
single scattering do not produce noise but more systematic errors. When using pre-
filtered single scattering with convolution shadow maps (Figure 15b), ringing due to
the truncation of the Fourier series is strong. Techniques based on moment shadow
mapping do not exhibit ringing (Figs. 15c, 15d). An artifact that is shared by all tech-
niques with prefiltering is magnified (Figs. 15b, 15c, 15d). A window allows a view
onto the interior of the building, which is entirely shadowed. Thus, there should be no
additional single scattering but approximation errors let the window appear brighter
anyway. This artifact is strongest with convolution shadow maps (Figure 15b). Note
that Figures 15a, 15b and 15c exhibit some surface acne from percentage-closer fil-
tering which is not present in Figure 15d because the available moment shadow map
is used for shadowing.

Figure 16 shows a more challenging test case where all techniques exhibit some
characteristic artifacts. In spite of the increased number of samples, ray marching
still produces strong noise (Figure 16a). Ringing in prefiltered single scattering with
convolution shadow maps leads to overly dark concentric circles that change with
camera movements (Figure 16b). A characteristic artifact of prefiltered single scatter-
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(a) Ray marching with 32 samples (b) Prefiltered single scattering with a convolution

shadow map, 32 · 8 = 256 bits

(c) Prefiltered single scattering with four moments

and without filtering, 64 bits

(d) Prefiltered single scattering with six moments

and filtering, 64 bits

Figure 15. A comparison of various single scattering techniques. Note the ringing produced

by convolution shadow maps and the window that appears brighter than the surrounding wall

(magnified). Contrasts in the magnified insets are stretched by a factor of four.

ing with moment shadow maps are excessively sharp boundaries of shadow volumes
(Figs. 16c, 16d). This occurs because the approximation quality can change quickly
as depth distributions become more complex. Using six moments reduces this artifact
heavily (Figure 16d). It is also slightly diminished by a greater moment bias αb.

Figure 17 demonstrates the positive effect of filtering during resampling in an
extreme case. Without filtering, crepuscular rays exhibit fine structures, which change
rapidly as the camera moves or rotates (Figure 17a). Especially for slowly moving
cameras this aliasing can be a very distracting artifact. Applying bilinear filtering to a
moment shadow map during resampling makes the shadows lose details but aliasing
is reduced to a point where it is unproblematic (Figure 17b).

Figure 18 demonstrates a case where approximation errors can be problematic.
As a dragon enters the view, the single scattering is not only attenuated below but
also above it. Especially for moving objects this can be quite noticeable. However,
this artifact is not associated with particular locations in the scene but rather with
particular view rays. If the moving object were seen in a close up the artifact would
likely be much weaker because the distribution of depth values along the view ray
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(a) Ray marching with 128 samples (b) Prefiltered single scattering with a convolution

shadow map, 32 · 8 = 256 bits

(c) Prefiltered single scattering with four

moments and without filtering, 64 bits

(d) Prefiltered single scattering with six moments

and without filtering, 64 bits

Figure 16. A challenging scenario for single scattering techniques involving shadows of trees.

The scene itself is shaded black. Various artifacts are shown in magnified insets (red) next to

the ray marching result (green). Contrasts in the magnified insets are stretched by a factor of

four.

(a) Not filtered (b) Filtered

Figure 17. A view into the shadow of a gate rendered using prefiltered single scattering

with six moments (64 bit). Resampling a common shadow map without filtering yields heavy

aliasing that is not temporally stable. Resampling a four moment shadow map with filtering

(Section 5.2) produces a much smoother result.
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Figure 18. A scene rendered using prefiltered single scattering with six moments. As a

dragon enters, crepuscular rays are not only darkened below but also above it. Magnified

insets stretch contrasts by a factor of four.

(a) Six moments in 6 · 10 bits, αb = 4 · 10−3 (b) Six moments in 6 · 16 bits, αb = 8 · 10−5

Figure 19. An indoor scene where light leaks through walls. The scene is shaded black. Note

that the use of 10 bits per moment leads to quantization noise and that the increased moment

bias αb strengthens light leaking.

would be less complex.
Figure 19 demonstrates the slight quality improvement obtained by using 96 rather

than 60 bits (plus four unused bits) for storage of six moments. The high moment bias
required with 60 bits increases light leaking, which is problematic for indoor environ-
ments with thin walls. Besides, quantization errors manifest as splotches in dark
regions. In some scenarios, the higher quality resulting from 96 bits may be required
but in most situations the lower contrast of single scattering and the surface shading
will cover up the artifacts.

5.5.2. Run Time

We measured frame times on an NVIDIA GeForce GTX 970 and show the results in
Figure 20. The frame times for rendering without single scattering have been sub-
tracted. Since the single scattering is applied in a deferred pass, this means that the
timings shown are almost entirely scene-independent.

As expected, the run time of ray marching only depends weakly on the shadow
map resolution because no post-processing is applied to the common shadow map
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(a) Fixed output resolution 1920× 1080 (b) Fixed shadow map resolution 10242

Figure 20. The contribution to the frame time due to single scattering techniques as function

of shadow map resolution and output resolution. Note that shadow map generation is not

included in these timings because the same (moment) shadow map is used for single scattering

and surface shadows.

(Figure 20a). On the other hand, the cost of shadow map sampling increases rapidly
with the output resolution, especially when using 128 samples (Figure 20b). At this
number of samples, ray marching can only compete with prefiltered single scattering
with four or six moments at very low resolutions such as 480 × 270. Note that these
resolutions may be sufficient when a bilateral upscaling is used but undersampling
artifacts have to be expected.

Prefiltered single scattering with convolution shadow maps gets more expensive
rapidly with growing shadow map resolution because it stores 256 bits per texel.
When using moment shadow maps, the cost per texel is much lower (Figure 20a).
Using six moments stored in 64 bits is slightly more costly than using four moments
stored in 64 bits, which is likely due to the use of two textures for six moments in our
implementation. Filtering during resampling adds to this cost slightly and so does the
use of 96 bits per texel.

Looking at the cost per pixel in the output, we observe that it is similar for all
techniques using six moments but lower for prefiltered single scattering with four
moments (Figure 20b). This is a strong indication that arithmetic operations are the
bottleneck for techniques using six moments. Still, the cost is moderate and even at a
resolution of 3840× 2160 the techniques finish in about 1.5 ms.
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5.5.3. Conclusions

Prefiltered single scattering with moment shadow maps outperforms the approach
with convolution shadow maps clearly. It is faster, does not suffer from ringing and
enables an explicit control over leaking artifacts by interpolating between lower and
upper bounds. Compared to ray marching, the high performance at large output res-
olutions means that no upscaling is needed. These traits make our techniques highly
attractive for performance-sensitive real-time applications.

In most cases, the variants with six moments stored in 64 bits should provide the
best tradeoff between quality and run time. When single scattering is only used as a
subtle effect, four moments may provide sufficient quality. If a moment shadow map
for the scene is already available, the overhead for filtering is small and it should be
used. Otherwise, it depends upon the scene whether the reduced aliasing justifies the
cost for creation of a moment shadow map.

6. Conclusions

All presented techniques are designed to work robustly without separate branches for
special cases. This is made possible by the high approximation quality of moment
shadow mapping. Results may not be physically accurate but they are smooth and
plausible in most situations. Moment shadow mapping itself is already being used
in production by Ready at Dawn Studios and we are confident that the techniques
presented here will also find their way into production.

Rendering in 4k and virtual reality requires high output resolutions. In these set-
tings the cost of creating and filtering a moment shadow map is easily amortized and
our techniques are much faster than techniques based on common shadow maps. This
will make them highly attractive over the next years.

Beyond that, we are hoping to establish the theory of moments as a standard tool
in graphics research and practice. They offer a generic and powerful way to store
compact, filterable representations of distributions. While we have shown a variety of
useful applications here, there is great potential for future work in all sorts of graphics
applications. For example, there could be benefits for order-independent transparency
and volumetric obscurance [Loos and Sloan 2010]. Outside rendering, recent work
has applied the theory of moments to transient imaging [Peters et al. 2015].
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(a) (Flipped) light direction outside frustum (b) Flipped light direction in frustum

Figure 21. The view frustum seen from the perspective of a directional light. By considering

the far plane vertices q0, q1, q2, q3, we can compute sharp bounds for r and ϕ. Computation

of bounds for θ is not shown.

A. Bounds for Rectified Coordinates

In Section 5.1.1 we state that we compute sharp bounds for r, ϕ and θ such that the
entire view frustum is covered. This appendix provides details on this procedure. A
reference implementation is provided in the supplemental materials.

Single scattering should be accumulated over the entire view ray. Thus, we do not
consider the near clipping plane. Let q0, q1, q2, q3 ∈ R

3 be the coordinates of the four
vertices of the far clipping plane of the camera used for main scene rendering in light
view space. Without loss of generality let the camera position be in the origin of the
coordinate system as shown in Figure 21. Then the maximal value for r is given by

rmax := max
j∈{0,...,3}

√

(qj)20 + (qj)21.

Note that (qj)k denotes the k-th entry of the vector qj for k ∈ {0, 1, 2}. Since we
ignore the near plane, rmin := 0.

To determine ϕmin and ϕmax, we compute the maximal pairwise angle enclosed
by the vectors ((qj)0, (qj)1)T ∈ R

2 for j ∈ {0, 1, 2, 3} (Figure 21a). The azimuth of
one of the two involved vectors provides ϕmin, the other provides ϕmax. A special
case arises if the light direction or flipped light direction lies within the view frustum.
This can be checked using the four side clipping planes. In both cases we have to set
ϕmin = 0 and ϕmax = 2 · π to indicate that the boundary of the far clipping plane
surrounds the camera position in the shadow map (Figure 21b).

The computation of θmin and θmax is more intricate because the extremal incli-
nation may be realized at the vertices, on the edges, or within the area of the far
clipping plane. It is convenient to exploit that inclinations depend monotonically on
the z-coordinate of normalized vectors, i.e.,

θj := arccos
(qj)2
‖qj‖2

.
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Taking the minimal and maximal values of θ0, . . . , θ3 yields the extrema at vertices.
The inclination is extremal within the area of the far clipping plane if and only if the
light direction or flipped light direction lie within the view frustum (see above). In
this case an extremal inclination is θmin = 0 or θmax = π, respectively.

To find extrema on an edge of the far plane connecting corner points j, k ∈
{0, . . . , 3}, we take the derivative of the z-coordinate of normalized vectors on the
edge to find critical points:

∂

∂t

(qj + t · (qk − qj))2
‖qj + t · (qk − qj)‖2

= 0.

This equation has the unique solution

t =
(qj)2 · qTj · (qk − qj)− (qk − qj)2 · ‖qj‖22

(qk − qj)2 · qTj · (qk − qj)− (qj)2 · ‖qk − qj‖22
.

If t ∈ [0, 1], we may need to adapt [θmin, θmax] to include the inclination at this point
on the ray.

Note that this whole algorithm only needs to be executed once per frame to get
single scattering for one directional light.

B. Reconstruction from Three Moments

Our method for filtering during resampling relies on Algorithm 2 to turn three mo-
ments into a depth distribution with two depth values. We now provide a correctness
proof for this algorithm.

Proposition 1. Given a valid input, Algorithm 2 works correctly.

Proof. The algorithm reconstructs a depth distribution using exactly two depth values.
Such depth distributions are known to correspond to a singular Hankel matrix B(b)

as defined in Algorithm 1 [Peters and Klein 2015, Proposition 4]. Implicitly, the
algorithm computes the missing fourth moment b4 such that the Hankel matrix is
singular.

For all b4 ∈ R the multilinearity of the determinant implies (remembering that
b0 = 1)

detB

(

b

b4

)

= det






b0 b1 b2
b1 b2 b3
b2 b3 b4




 = b4 · det






b0 b1 0

b1 b2 0

b2 b3 1




+ detB

(

b

0

)

= b4 · (b2 − b21) + detB

(

b

0

)

.
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Thus, we can choose the unique b4 ∈ R that makes the Hankel matrix singular. Then
there is a unique matching depth distribution using at most two depth values [Peters
and Klein 2015, Proposition 4]. Furthermore, if q ∈ R

3 is a vector in the kernel of

B

(

b

b4

)

, these depth values are the roots of the polynomial
∑2

j=0 qj · zj [Peters and

Klein 2015, supplementary, p. 4].
To prove that q := (q0, q1, q2)

T lies in the kernel, we observe that the first two
rows of the Hankel matrix are linearly independent due to

det

(

b0 b1
b1 b2

)

= b2 − b21 > 0.

Thus, the third row is a linear combination of the first two rows and it suffices to show
that q is orthogonal to the first two rows:

(1, b1, b2) · q = (−b1 · q1 − b2 · q2) + b1 · q1 + b2 · q2 = 0,

(b1, b2, b3) · q = (b2 − b21) · q1 + (b3 − b1 · b2) · q2 = q2 · q1 − q1 · q2 = 0.

Therefore, Algorithm 2 computes the two depth values correctly. Note that there
must be two distinct roots. Otherwise there would be a matching depth distribution
with a single depth value z1 and the Hankel matrix would be the rank-one matrix

(

1 z1 z21

)T

·
(

1 z1 z21

)

∈ R
3×3.

The remainder of the algorithm solves the system of linear equations

Ew1·δz1+w2·δz2

(

b0

b1

)

=

(

b0
b1

)

⇔
(

1 1

z1 z2

)

·
(

w1

w2

)

=

(

1

b1

)

which uniquely determines the correct weights.

C. Generating Transmittance-Weighted Prefix Sums

In terms of arithmetic, generation of transmittance-weighted prefix sums is an inex-
pensive operation. We expect the corresponding compute shader to be bandwidth
limited. We benchmark our implementation on an NVIDIA GeForce GTX 970 with
a bandwidth of 196 GB/s. Thus, computation of prefix sums over a 10242 texture
with 64 bits per texel should ideally take

2 · 10242 · 8B
196GB/s

= 85.6µs.

For a texture with 128 bits per texel we expect it to take 171.2µs.
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We use GPU timings obtained with NVIDIA Nsight to compare this expectation to
the actual run times. For the 128-bit textures used in moment soft shadow mapping,
the simple scheme using one thread per row or per column [Klehm et al. 2014] is
clearly bandwidth limited with a run time around 190µs. However, the same approach
is less efficient for textures with 64 bits per texel. Our initial implementation for 64-bit
shadow maps with six moments took 620µs.

Our optimized implementation can process a 64-bit moment shadow map with
four moments in 110µs which is close to the theoretical optimum of 85.6µs. A 64-
bit moment shadow map with six moments takes 180µs so it is not quite optimal
but still only twice as expensive as the theoretical optimum and we were unable to
optimize it further.

This is accomplished using thread groups of 8× 8 threads. For a texture of height
ny ∈ N we spawn ny

8 such thread groups, such that eight threads run per row. At
any point in time each thread group operates on one 8× 8 block in the texture, going
through from left to right. Each thread will independently compute all prefix sums
for its row. However, it will only write out the one prefix sum that corresponds to its
location in the block.

This means that the overall amount of texture reads and additions is multiplied
by a factor of eight but so is parallelism. Besides the writes to the output texture are
coalesced. We tried caching the texture reads into thread-group-shared memory but
the standard texture caches turned out to be more efficient. If the shadow map consists
of multiple textures, they are processed in parallel by separate thread groups.

Our HLSL implementation of this approach for various texture formats is pro-
vided in the supplemental materials. Of course, other GPUs may exhibit different
behavior and we do not recommend using our code in production without performing
benchmarks on the targeted hardware.

D. Implementation Guide

The supplemental materials include documented shader code written in HLSL. The
building blocks in this code are highly modular to enable the many combinations of
techniques supported by the demo. This section provides details on how to com-
bine the provided functions to implement the techniques described in this paper. We
generally describe the fastest approach that we know. In many cases less intricate
implementations are possible at an increased cost.

D.1. Generation of Moment Shadow Maps

In almost all discussed techniques, the first step is to generate a moment shadow map
for the opaque surfaces in the scene.
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Generation of a multisampled shadow map First, set up the view and projection
matrices for the shadow map. The best way to do this depends strongly on the ap-
plication, but whatever works well for common shadow maps works for moment
shadow maps. Using multiple shadow maps for techniques such as sample distri-
bution shadow maps [Lauritzen et al. 2011] is possible. For each shadow map, create
a multisampled depth buffer. We recommend a 16-bit fixed-point format. Then render
all shadow casters to this depth buffer. No render target is bound for this step, and
usually, a pixel shader is not needed either.

Conversion to a moment shadow map Now, initialize a moment shadow map of
matching resolution for each shadow map. The texture must have four channels,
each using either unsigned, normalized 16-bit integers, or single-precision floats (see
Figure 4). It is not multisampled and need not have mipmaps. The depth buffer
is converted to a moment shadow map during a custom resolve in a pixel shader.
For each texel of the moment shadow map, load each sample from the depth buffer.
Then convert the read depth to a linear depth z ∈ [−1, 1] and compute a vector of
moments (z, z2, z3, z4)T. The results for all samples are averaged. Other filters are
possible as long as the weights are non-negative. For 64 bits per texel, apply the
quantization transform in Equation (3). The transformed moments are the output of
the pixel shader. Relevant shader functions in Shaders/Shadow.fx are:

• ComputeFragmentDepth(),

• ComputeMomentVector4Moments_float4(),

• ComputeMomentVector4MomentsOptimized_float4().

D.2. Rendering Filtered Hard Shadows

In most cases a moment shadow map with 64 bits per texel is appropriate for filtered
hard shadows.

Filtering Some amount of filtering has already been done through the custom re-
solve, but more is probably necessary to diminish aliasing. We recommend ap-
plication of a two-pass Gaussian filter to the moment shadow maps. Two pixel
shader passes first blur horizontally and then vertically, though in some cases compute
shaders may be faster. After filtering, generate a full mipmap hierarchy for the mo-
ment shadow maps, likely using built-in functionality of the graphics API. Relevant
shader functions in Shaders/Shadow.fx are:

• ApplyGaussianFilterHorizontal5_float4(),

• ApplyGaussianFilterVertical5_float4().
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Retrieving moments At this point, everything is ready for shading fragments during
forward or deferred rendering. First, compute the appropriate texture coordinate for
a lookup in the moment shadow map. This works the same as for common shadow
maps. At this point, also compute the fragment depth. Then take a single filtered
sample from the appropriate moment shadow map. All hardware-accelerated tex-
ture filtering is applicable, e.g., bilinear filtering, mipmapping and anisotropic filter-
ing. Revert any quantization transform used during generation of the moment shadow
map, then apply the appropriate biasing scheme. Relevant shader functions in Shader-

s/Shadow.fx are:

• ComputeShadowMapCoordinate(),

• Sample4MomentShadowMap(),

• Sample4MomentOptimizedShadowMap().

Computing the shadow Finally, use Algorithm 1 to evaluate the shadow intensity
at the biased fragment depth. For over darkening against light leaking, divide by a
constant like 98% and clamp back to [0, 1]. Subtract the result from one and multiply
into the irradiance of the light source. Relevant shader functions in Shaders/Shadow.fx

are:

• Compute4MomentUnboundedShadowIntensity(),

• ScaleShadowIntensity().

D.3. Handling Translucent Occluders

For translucent occluders in the moment shadow map, still generate a moment shadow
map for opaque occluders first. It may be necessary to split up the four channels across
two textures with two channels to allow alpha blending.

Blending in translucent occluders There are various ways to achieve this because
any method for order-independent transparency may be used. We use sorted geometry
and the over operator but stochastic transparency looks promising as well [McGuire
and Enderton 2011; McGuire and Mara 2016]. In any case take the depth of the
translucent geometry and convert it to a vector of moments as in Section D.1. For
alpha blending, use additive blending and multiply the source by α and the destination
by 1− α.

Moment shadow maps with translucent occluders are used in the same way as
common moment shadow maps.
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D.4. Moment Soft Shadow Mapping

The first step for moment soft shadow mapping is to generate a moment shadow map
with 128 bits per texel using the optimized quantization transform. It is easiest to use
single-precision floats at this point. Note that only axis-aligned rectangular filters are
possible, and therefore it may be necessary to adapt the shadow map parameterization.

Generation of a summed-area table The summed-area table is a four-channel texture
without multisampling or mipmaps storing 32-bit unsigned integers. First, determine
the maximal number of texels in the search region nt. Then use a compute shader
with one thread per row to generate horizontal, integer prefix sums over the moment
shadow map. The floating point moments are converted to integers by multiplying
by 232−1

nt
and rounding. The second pass operates on the output of the first pass

generating vertical prefix sums with one thread per column. Relevant shader functions
in Shaders/Shadow.fx are:

• ComputeFixedPrecision(),

• ApplyPrefixSumHorizontal_uint4(),

• ApplyPrefixSumVertical_uint4().

Blocker search Now everything is ready to shade a fragment. First, compute its co-
ordinates in shadow map space as above. Then derive the texture coordinates bound-
ing the search region, and query the summed-area table without interpolation to obtain
the corresponding moments. The result is used to estimate the average blocker depth.
If the blocker search reveals that the fragment is in the umbra, the shadow computa-
tion is complete at this point. Relevant shader functions in Shaders/Shadow.fx are:

• ComputeShadowMapCoordinate(),

• GetBlockerSearchRectangle(),

• ComputeIntegerRectangleAverage_uint4(),

• Compute4MomentAverageBlockerDepth().

Penumbra estimation Penumbra estimation for moment soft shadow mapping and
percentage-closer soft shadows works exactly the same. The result is used to com-
pute the rectangular filter region for the final filtering of shadows. Relevant shader
functions in Shaders/Shadow.fx are:

• EstimatePenumbraSize(),

• GetShadowFilterRectangle().
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Filtering Finally, query the summed-area table with interpolation to obtain four mo-
ments for the search region. At this stage, undo the quantization transform and apply
weak biasing (e.g., moment bias αb = 6 · 10−7). Then use the moments to compute a
shadow intensity as in Section D.2. Relevant shader functions in Shaders/Shadow.fx

are:

• ComputeRectangleAverage_uint4(),

• Convert4MomentOptimizedToCanonical(),

• Compute4MomentUnboundedShadowIntensity().

D.5. Prefiltered Single Scattering

Input to prefiltered single scattering may be a common shadow map or a moment
shadow map dependent on whether filtering is desired during resampling. This can
be the same (moment) shadow map used for surface shadows and can use arbitrary
parameterizations.

We only discuss prefiltered single scattering with six moments here, but the other
variants are implemented similarly.

Preparation of rectification transforms Prefiltered single scattering transforms the
(moment) shadow map into a very specific coordinate system based on epipolar ge-
ometry. Some quantities for this coordinate conversion should be prepared on the
CPU. HLSL reference implementations for the functions that need to be implemented
on the CPU are provided in Shaders/ParticipatingMedia.fx:

• ComputeRectificationToWorldSpaceDirectional(),

• GetRectifiedSpaceFrustumBounds().

Resampling Generate a six moment shadow map during resampling. It consists of
two textures without mipmapping and multisampling using 10-bit unsigned, normal-
ized integers for red, green and blue. The alpha channel is unused. This is created in a
pixel shader pass using multiple render targets. When not using filtering, sample the
common shadow map at the appropriate coordinate, convert the depth to moments,
apply a quantization transform and output the result. When using filtering, take a fil-
tered sample from the appropriate moment shadow map, represent the moments by
a depth distribution with two depth values using Algorithm 2, convert both depths
to moments, combine them and apply the quantization transform. Relevant shader
functions in Shaders/ParticipatingMedia.fx are:

• GetRectifiedDepth(),

• GetSparseRectifiedRepresentation(),
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• GetMomentsFromDepth3_3(),

• GetMomentsFromSparseRectifiedRepresentation3_3().

Generation of prefix sums Next compute transmittance-weighted prefix sums for
the output of the previous step. The output texture has the same format as the input
texture except that it should have mipmaps. The prefix sums are generated through
the compute shader discussed in Appendix C. Once they are created, generate the
mipmap hierarchy. Relevant shader functions in Shaders/ParticipatingMedia.fx are:

• ApplyTransmittanceWeightedPrefixSumNonLinearRectifi-

cationMSM3_3().

Single scattering pass Finally, apply the single scattering to the rendered scene dur-
ing an additive deferred rendering pass. This pixel shader pass only requires the depth
buffer and the prefiltered six moment shadow map as input. Sample the depth buffer
and compute the world space position of the pixel, then convert to rectified coordi-
nates and sample the six moment shadow map at the corresponding location. Use
the moments to estimate a shadow intensity with adaptive overestimation. Finally,
subtract it from one and multiply by

f(ωp, ωl) · El ·
[

− 1

σt
· exp(−σt · t)

]‖q−p‖2

0

as defined in Section 5.1.1. Relevant shader functions in Shaders/ParticipatingMe-

dia.fx are:

• ComputePrefilteredSingleScatteringCoordinatesNon-

LinearRectification(),

• ComputeAdaptiveOverestimationWeight(),

• ComputePrefilteredSingleScattering3_3Moments(),

• ComputeSingleScatteringNoOcclusionDirectional(),

• ComputeSingleScatteringFactors(),

• ComputeSingleScatteringRadiance().

Index of Supplemental Materials

As supplemental material we provide an executable demo for Windows 7 SP1 x64 and
above using Direct3D 11. While the demo itself is not open source, its documented
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HLSL shader code is. It also supports HLSL shader debugging with tools such as
Visual Studio or RenderDoc to ease reverse engineering.

The materials are in a single archive with a single directory. This directory con-
tains the following important files and subdirectories:

ShadowDemo.exe The executable demo.

vc_redist.x64.exe If the demo is missing DLLs, you likely need to install the Visual
Studio 2015 redistributable files by running this installer.

ShadowSettings.cfg Before running the demo you should set the appropriate resolu-
tion in this text file. It also allows you to enable support for shader debugging.

ReadMe.pdf Since the controls of the demo are not necessarily self-explanatory, this
file provides a manual.

Shaders The demo constructs shaders as needed using functions from the HLSL
code files in this directory. The files Shadow.fx and ParticipatingMedia.fx are
of particular interest. The shaders used by the demo are stored in the directory
CreatedShaders.

ShaderIncludes Some redundant functionality of the shader functions discussed above
has been moved into includes, which you will find in this directory.

Documentation/index.html The shader code includes doxygen comments and this
file provides the documentation that has been generated automatically from
these comments. The documentation also includes hints on where to start read-
ing.
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