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GPU-Centered Font Rendering Directly from
Glyph Outlines

Eric Lengyel
Terathon Software

Figure 1. Glyphs are rendered in a game level directly from Bézier curve data extracted from
a TrueType font. Because no precomputed images or distance fields are utilized, the results
are pixel accurate under any affine or projective transformation, including all scales, rotations,
and perspective distortions.

Abstract

This paper describes a method for rendering antialiased text directly from glyph outline data
on the GPU without the use of any precomputed texture images or distance fields. This ca-
pability is valuable for text displayed inside a 3D scene because, in addition to a perspective
projection, the transform applied to the text is constantly changing with a dynamic camera
view. Our method overcomes numerical precision problems that produced artifacts in previ-
ously published techniques and promotes high GPU utilization with an implementation that
naturally avoids divergent branching.

1. Introduction

Games and other real-time 3D applications often have a need to render text on various
surfaces inside a virtual environment, as shown in Figure 1. Because the camera is
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almost always moving in some way, the glyphs that compose such text are drawn with
continuously changing transforms, and thus the size of the glyphs in the viewport are
almost never the same from one frame to the next. Furthermore, the glyphs are usually
drawn with perspective distortion because the camera isn’t pointed straight at the
surface to which text is applied. This creates a demand for the ability to dynamically
render text with high quality no matter what affine and projective transformations
have been applied to it.

Prerendered glyphs stored in a texture atlas have traditionally been used to apply
text to in-game surfaces. Despite being simple and extremely fast, this technique
suffers from unsightly blurring due to bilinear filtering once the displayed sizes of
the glyphs exceed the resolution at which they’re stored in the texture atlas. This
problem was addressed by the introduction of signed distance field (SDF) methods
[Green 2007], which produce crisp boundaries at all scales by storing distances to the
glyph boundaries in the texture atlas instead of the final appearance of each glyph at
a particular size. However, these methods tend to round off sharp corners and thus
do not preserve the true outlines of the glyphs. Multichannel signed distance fields
[Chlumský 2015] corrected the corner rounding problem, but required a complicated
analysis step in the preparation of the texture atlas and created a new class of difficult-
to-avoid artifacts for complex glyphs.

All of the techniques that store data in a texture atlas are inherently using a discrete
sampling of what is actually an infinitely precise description of a glyph outline. This
inescapably leads to limitations that can be mitigated by increasing the resolution of
the texture atlas, but that can never be completely removed. For applications that
need to render a wide range of characters at potentially large font sizes, a texture atlas
capable of producing glyphs at an acceptable level of quality may have prohibitively
large storage requirements.

The limitations of sampling can be avoided altogether by rendering glyphs di-
rectly from the mathematical curves that define their shapes. No longer does the
source data for each glyph have an intrinsic resolution, because the exact positions of
the outline’s control points are utilized throughout the rendering process without any
prior sampling. The Loop-Blinn [2005] method renders text directly from outline data
by constructing a triangle mesh for each glyph that incorporates the control points as
vertex positions. Each triangle corresponds to at most one component of a glyph’s
outline, and a short calculation in the pixel shader determines whether each pixel
is inside or outside the boundary with respect to that one component. This method
effectively renders precise glyph shapes at all scales, but it requires a complicated tri-
angulation step in which the number of vertices is tied to the number of control points
defining each glyph. At small font sizes, these triangles can become very tiny and
decrease thread group occupancy on the GPU, reducing performance. The variable
and font-dependent numbers of vertices per glyph also make it somewhat difficult to
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perform text layout in general, and greater difficulty arises when attempting to apply
heavily triangulated glyphs to curved surfaces.

A more versatile solution renders each glyph using only two triangles to cover the
glyph’s bounding box. The pixel shader then accesses a subset of all of the compo-
nents of the glyph’s outline to determine whether each pixel is inside or outside the
entire boundary. This requires that we have a robust way of dynamically calculating
either a signed distance value or a winding number at each pixel. The winding num-
ber corresponds to the absolute difference of the number of closed contours wound
clockwise around the pixel and the number of closed contours wound counterclock-
wise around the pixel. Previous attempts at implementing such methods [Esfahbod
2012; Dobbie 2016] have suffered from numerical precision issues that produce a
variety of rendering artifacts. These artifacts often begin to appear upon modest mag-
nification and manifest themselves as dropped pixels inside a glyph or incorrectly
drawn pixels outside a glyph. Because the artifacts are usually due to round-off er-
rors, they tend to be very position sensitive and thus “sparkle” as the location or scale
of a glyph changes. These sparkles also tend to occur along straight lines, producing
“streaking” artifacts at various angles inside or outside a glyph.

We present a new technique in this paper that solves the precision problem and
completely eliminates all artifacts by taking a different approach. Once robustness is
guaranteed, we focus on ways to minimize the number of outline components exam-
ined at each pixel for best performance. Our method requires only widely available
GPU features and can be implemented on OpenGL 3.x / DX10 hardware.

2. Winding Number Calculation

A glyph is defined by a set of closed contours that are each composed of a continuous
piecewise sequence of Bézier curves, as shown in Figure 2. Although cubic curves
are supported by other formats, we restrict ourselves to the quadratic curves used by
TrueType fonts to keep rendering calculations as simple as possible. A particular point
is considered to be inside the glyph outline if the sum of its winding numbers with
respect to all of the contours is nonzero. The winding number for each contour is an
integer that reflects the number of complete loops the contour makes around a point. A
positive number is assigned to one winding direction, clockwise or counterclockwise,
and a negative number is assigned to the opposite winding direction.

The winding number is calculated by firing a ray in any arbitrary direction from
the point being rendered and looking for intersections with each of the contours be-
longing to a glyph. The winding number is initialized to zero. When a contour crosses
the ray from left to right, one is added to the winding number, and when a contour
crosses the ray from right to left, one is subtracted from the winding number (or vice-
versa, as long as the choice is consistent). If the final winding number is zero, then the
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Figure 2. The shape of a glyph is defined by one or more closed contours, each composed of
a continuous sequence of quadratic Bézier curves. The green dots represent on-curve control
points, the red dots represent off-curve control points, and the blue lines are tangent to the
outline. The clockwise winding convention is used in this example, meaning that contours
wound in a clockwise direction contribute a positive winding number, and contours wound
in a counterclockwise direction, like the interior loop of the letter P, contribute a negative
winding number.

point lies in empty space. Otherwise, the point lies inside the glyph outline, and the
fact that it can be positive or negative allows contours to employ either a clockwise or
counterclockwise convention for defining interior regions of the glyph.

Since the ray directions don’t matter, we choose directions that are parallel to the
coordinate axes for convenience. A single component of a contour is defined by the
parametric function

C(t) = (1− t)2 p1 + 2t(1− t) p2 + t2 p3,

which constitutes a quadratic Bézier curve having the 2D control points p1, p2,
and p3. The parameter t varies over the range [0, 1]. For a ray pointing in the direction
of the positive x-axis in a coordinate system in which the point being rendered has
been translated to the origin, we can solve for the values of t at which Cy(t) = 0 by
finding the roots of the polynomial

(y1 − 2y2 + y3)t
2 − 2(y1 − y2)t+ y1,
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where we have set pi = (xi, yi). The roots t1 and t2 are then

t1 =
b−
√
b2 − ac

a
and t2 =

b+
√
b2 − ac

a
, (1)

where a = y1 − 2y2 + y3, b = y1 − y2, and c = y1. In the case where a is near
zero, we instead compute t1,2 = c/2b. For any values of t in the range [0, 1) such that
Cx(ti) ≥ 0, we have found an intersection between the ray and a contour. The value
ti = 1 is specifically disallowed because it corresponds to an intersection at ti = 0 for
the succeeding component in the contour, and we don’t want to count an intersection
at a shared control point twice.

To determine whether a ray intersection corresponds to a positive or negative
change in the winding number, we examine the values of Cy(t) before or after a
root ti , but only in the range [0, 1) and only between the two roots if both fall in that
range. If Cy(t) > 0 for t < ti or Cy(t) < 0 for t > ti, then we add one to the
winding number. Conversely, if Cy(t) < 0 for t < ti or Cy(t) > 0 for t > ti, then
we subtract one from the winding number. Note that these conditions exclude straight
lines parallel to the ray from making any contribution to the winding number.

While sound from a purely mathematical standpoint, the method just described is
plagued by numerical precision errors in any practical implementation whenever y1 or
y3 is near zero. The problem is that the finite number of bits in a floating-point value
are incapable of producing the exactness needed in calculating t1 and t2 when either
could be close to zero or one. The result is that a ray passing too close to the point
where two contour components are connected may end up counting two intersections
or missing both curves altogether, leading to the sparkle and streak artifacts described
in the previous section. The situation is especially bad if the Bézier curve is tangent
to the ray at its first or last control point. Typical hacks, such as the use of epsilons or
coordinate perturbation, may eliminate the problem in some cases, but these measures
are not generally effective and do not lead to a robust solution.

We now introduce a different approach that achieves absolute, unconditional ro-
bustness over the entire space of finite inputs (i.e., no coordinate value is infinity or
NaN). Our new method ignores the values of ti insomuch as whether they satisfy
ti ∈ [0, 1) and instead calculates winding numbers based solely on a binary classifi-
cation of the values y1, y2, and y3, specifically whether each is positive or not positive.
Every quadratic Bézier curve then has a three-bit state that reduces the problem do-
main to exactly eight distinct equivalence classes. For all of the cases belonging to
each equivalence class, contributions to the winding number arising from the two
roots at t1 and t2 are handled in exactly the same way. Furthermore, whenever a
contribution is made for the root at t1, we always add one to the winding number,
and whenever a contribution is made for the root at t2, we always subtract one from
the winding number. Thus, all we have to do is turn a three-bit input into a two-bit
output, and we have all of the information necessary to properly handle all possible
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configurations of a quadratic Bézier curve, including degenerate cases, with respect
to a ray pointing in the positive x-direction.

The eight equivalence classes are illustrated in Table 1. In the columns labelled yi,
a one indicates that yi > 0. In the columns labelled ti, a one indicates that the root at
ti should make a contribution to the winding number if Cx(ti) ≥ 0. The contribution
is always positive one for t1, and it is always negative one for t2, regardless of the
order of Cx(t1) and Cx(t2). The representative curves shown in the table for each
equivalence class cover all 27 cases in which yi < 0, yi = 0, and yi > 0 in order to
make it clear what happens in the important instances in which the ray passes directly
through a control point. A change is made to the winding number whenever the curve
transitions from positive to not positive or vice-versa, and these changes are indicated
by green and red dots in the table. A green dot corresponds to a change of positive one
occurring when the curve transitions from positive to not positive at the root t1, and a
red dot corresponds to a change of negative one occurring when the curve transitions
from not positive to positive at the root t2.

In equivalence classes A and H, no transitions between positive and not positive
ever occur, and thus no change is made to the winding number. In each of the remain-
ing six equivalence classes, the potential for a contribution to the winding number
exists. The historically difficult case, in which a contour is tangent to the ray at an
endpoint shared by two consecutive curves, is handled without explicit detection or
special code. Equivalence class A covers all cases for which a contour is tangent to
the ray at an endpoint but is otherwise negative, ensuring that the winding number is
unaffected. In the similar case that a contour is tangent to the ray at an endpoint but
is otherwise positive, two equal and opposite contributions are always made to the
winding number, and they cancel each other out exactly. This is exemplified by the
many combinations of tangent curves shown in the table in which a green dot and red
dot would coincide when the curves are connected to each other. (Note that there is no
requirement that the curves have a continuous derivative at the endpoint where they
are joined.) In equivalence classes C and F, there is a special case in which y1 and
y3 have the same state but y2 has the opposite state, and it is possible that Cy(t) has
no real roots. In order to handle this case with uniformity, we clamp b2 − ac to zero,
which has the effect of setting t1 = t2 = b/a. If one root makes a contribution, then
the other one does as well in this case because Cx(t1) = Cx(t2), so they cancel each
other out. This combination of a positive and negative contribution is represented by
the yellow dot shown in the table for class F.

The values in the columns labelled ti in Table 1 form a 16-bit lookup table that
can simply be expressed as the number 0x2E74, with row A corresponding to the
two least significant bits and row H corresponding to the two most significant bits.
The values in the columns labelled yi form a shift code such that when the lookup
table is shifted right by twice that amount, then the output state for the corresponding
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Class y3 y2 y1 t2 t1 Representative curves

A 0 0 0 0 0

B 0 0 1 0 1

C 0 1 0 1 1

D 0 1 1 0 1

E 1 0 0 1 0

F 1 0 1 1 1

G 1 1 0 1 0

H 1 1 1 0 0

Table 1. The three bits in the columns labelled yi constitute an input code based on whether
each yi is positive, and they partition the set of all quadratic Bézier curves into eight equiv-
alence classes. The two bits in the columns labelled ti constitute an output code specifying
whether each intersection with the x-axis should make a contribution to the winding number
of the contour to which the curve belongs. Green dots indicate roots at which one is added
to the winding number, and red dots indicate roots at which one is subtracted from the wind-
ing number. The shaded areas represent the interior of a glyph when a clockwise winding
convention is followed.
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equivalence class appears in the lowest two bits. Thus, given y1, y2, and y3 for an ar-
bitrary quadratic Bézier curve that has been translated so that the point being rendered
is at the origin, all we have to do is calculate the value

((y1 > 0) ? 2 : 0) + ((y2 > 0) ? 4 : 0) + ((y3 > 0) ? 8 : 0) (2)

and use it to shift the number 0x2E74 rightward. If the lowest bit of the result is set,
then one is added to the winding number when Cx(t1) ≥ 0. If the second lowest bit
of the result is set, then one is subtracted from the winding number when Cx(t2) ≥ 0.

Because the precision-sensitive range checks on the values of ti have been elim-
inated, it is no longer possible to miscount the number of intersections that a ray
makes with a contour. The shift code is an exact calculation based on the translated
y-coordinates of the input control points, which are invariant along any horizontal ray.
The quadratic and linear terms of Cx(t) are also invariant, leaving only the constant
term equal to the translated x-coordinate of the control point p1 as the quantity that
changes as the ray origin is moved left or right. This guarantees that there exists a
value x0 such that for all x ≤ x0, a particular contour intersection is counted, and for
all x > x0, the same intersection is not counted.

Of course, calculating a discrete inside/outside state at each point being rendered
produces a pixelated, black-and-white image. Instead of calculating an integral wind-
ing number, we can accumulate coverage values that reflect how close each ray inter-
section is to the center of the pixel being rendered. The fraction f of a pixel crossed
by a ray from left to right before an intersection occurs is given by

f = sat
(
m Cx(ti) +

1

2

)
, (3)

where m is the number of pixels in one em, which corresponds to the font size, and sat
is the saturate function that clamps to the range [0, 1]. Adding and subtracting these
fractions from the winding number has the effect of antialiasing in the direction of the
rays. Averaging the final coverages calculated for multiple ray directions antialiases
with greater isotropy, but at a performance cost. Considering only rays parallel to the
coordinates axes is a good compromise, especially when combined with supersam-
pling, as discussed later.

3. Performance Optimization

A glyph is correctly rendered when we consider every contour component for each
pixel intersecting the glyph’s bounding box and accumulate the coverage values. For-
tunately, no branching is necessary to calculate a coverage value, so a pixel shader
runs with high thread-group coherence on the GPU. However, many of the quadratic
Bézier curves make no contribution because they never cross a horizontal or verti-
cal ray fired from a particular pixel center, and the best performance is achieved by
minimizing the number of components that need to be processed.
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Figure 3. A glyph is divided into equal-width horizontal and vertical bands. Two lists of
Bézier curves intersecting each band are created, one sorted in descending order by maxi-
mum x- or y-coordinate (for horizontal and vertical bands, respectively) and another sorted in
ascending order by minimum x- or y-coordinate. Bands are split along a median position, and
rays originating on either side point away from this median to reduce the number of curves
that need to be processed.

We divide each glyph into a number of equal-width horizontal and vertical bands,
as shown in Figure 3. The number of bands is proportional to the total number of
Bézier curves composing the glyph’s outline up to a limit of 16 in each direction. For
each band, we create a list of the curves that intersect the band and sort them in de-
scending order by their maximum coordinates in the band’s direction (x for horizontal
and y for vertical). When a pixel is rendered, we first determine which horizontal band
contains it and loop over the Bézier curves that are known to intersect that band. As
soon as we encounter a Bézier curve for which

max {x1, x2, x3}m < −1

2
, (4)

we can break out of the loop because Equation (3) produces a value of zero from that
point onward. The process is repeated for the vertical band containing the pixel using
a ray that points in the positive y-direction and checking the maximum y-coordinate
of each curve for the early-out condition.

For rays pointing in the positive direction along an axis, more curves need to
be processed for pixels near the left or bottom sides of a glyph than for pixels near
the right or top sides. To reduce the costs of rendering these pixels and make the
whole process more symmetric, we split each band into two parts at a location roughly
corresponding to the median position of the Bézier curves in that band. As shown
in Figure 3, pixels falling on the negative side of the split location fire rays in the
negative direction instead of the positive direction. In these cases, the winding number
contributions must be negated, so Equation (3) is replaced with

f = sat
(
1

2
−m Cx(ti)

)
. (5)

Because the ray is pointing in the opposite direction, we also need to sort the curves in
the opposite order by their minimum coordinates and replace the early-out condition
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given by Equation (4) with

min {x1, x2, x3}m >
1

2
. (6)

Due to the divergence that it introduces in the pixel shader, the band split optimization
can have a negative performance impact at small font sizes, so we make it an option
for text that is known ahead of time to be rendered at larger sizes.

The most straightforward geometry to render for a glyph is a single quad corre-
sponding to its bounding box. In order to capture all of the pixels for which Equa-
tions (3) and (5) could generate fractional values, the box needs to be expanded by
half the width of a single pixel. The bounding boxes for uppercase letters are shown
in the top row of Figure 4 to demonstrate how many glyphs contain nothing but empty
space near the corners. We don’t want to run the pixel shader for all of those pixels
that end up being completely transparent, so we eliminate some of this empty space
by clipping the corners of the bounding boxes where possible, as shown in the bottom
row of Figure 4. Where to clip is determined by considering several normal directions
at each corner, calculating the support plane for each normal direction with respect
to all of the glyph’s control points, and choosing the plane that clips off the triangle
having the greatest area above some minimum threshold. As with the band split op-
timization, this geometry clipping optimization is more effective at larger font sizes.
The tiny triangles that it can produce at small font sizes reduce occupancy on the
GPU, which can result in slightly worse performance.

Figure 4. To reduce the number of pixels rendered for most glyphs, simple quads are replaced
with polygons having up to eight sides after the corners of the bounding boxes are clipped.

4. Implementation

Our implementation stores the control points for every glyph in a four-channel 16-
bit floating-point texture map. The first and second control points belonging to each
Bézier curve are stored in the (x, y) and (z, w) components of a single texel. The
third control point is stored in the (x, y) components of the next texel in the same
row. Since the third control point of one curve is identical to the first control point of
the next curve in the same contour, it is usually the case that the second texel is shared
by two curves, and thus the total storage requirements for the control point data is
slightly larger than eight bytes per curve.
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H band curve count H band data offset H band split location

V band curve count V band data offset V band split location

V band curve count V band data offset V band split location

Curve location, positive sort Curve location, negative sort

Curve location, positive sort Curve location, negative sort

H band curve count H band data offset

One texel for each horizontal band

H band split location

Red (16 bits) Green (16 bits) Blue (16 bits) Alpha (16 bits)

One texel for each vertical band

One texel for each curve in each band

Figure 5. For every glyph, the band data texture includes a header texel for each horizontal
and vertical band, and those are followed by the locations of the curves belonging to each
band in the control point texture.

A second texture map containing four-channel 16-bit integer data holds the loca-
tion of every Bézier curve intersecting the horizontal and vertical bands belonging to
each glyph. The layout of this data is shown in Figure 5. The data for a glyph begins
with a table of band headers for all of the horizontal bands followed by all of the
vertical bands. The header fits into one texel and contains the number of curves inter-
secting the band, the offset to the list of curve locations, and the coordinate value at
which the band is split between negative rays and positive rays. The list of curve loca-
tions is actually two lists that occupy different channels in the same set of texels. One
set of (x, y)-coordinates holding the location of a Bézier curve in the control-point
texture is stored in the red and green channels, and another set of (x, y)-coordinates
is stored in the blue and alpha channels. The list of curves is sorted in descending
order by maximum coordinate in the red and green channels for positive rays, and it
is sorted in ascending order by minimum coordinate in the blue and alpha channels
for negative rays.

The pixel shader that renders a glyph can be found in the supplemental materials.
For the sake of brevity, the band split optimization is omitted, and rays are always
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fired in the positive direction along each of the x- and y-axes. The pixel’s position
in em-square coordinates is interpolated and passed into the pixel shader through
the texcoord input. The starting location of the band data is passed to the pixel
shader from the vertex shader in the lower 12 bits of the x- and y-components of
the glyphParam input. (This limits the band data texture to 4096 × 4096 texels.)
The upper four bits contain the maximum band indexes for vertical bands in the x-
component and horizontal bands in the y-component. Scale and offset parameters are
passed in through the bandParam input, and they are used to calculate band indexes
for each pixel. All bands, both horizontal and vertical, have the same width, so a
single scale value is passed in through the z-component of bandParam. The x- and
y-components contain separate offsets for vertical and horizontal bands, respectively.
Once the scale and offsets have been applied, the resulting band indexes are clamped
to the maximum values specified in the glyphParam input.

After the band indexes have been determined, the shader reads the headers from
the band data texture, locates the per-band curve lists, and calculates a coverage value
for each curve until the early-out condition is satisfied or all of the curves have been
processed. For each curve, Equation (2) is used to calculate a shift code that is then
applied to the lookup table 0x2E74 to move the root contribution code into the lowest
two bits. Although not strictly necessary, the shader then tests whether these two bits
are nonzero before continuing with the coverage calculation because we have found
that doing so provides a small speed increase. If a contribution could be made, then
the roots of the curve are calculated with Equation (1), and the cumulative coverage
value is increased or decreased by the value given by Equation (3) as directed by the
two-bit contribution code.

5. Results

The glyph rendering method described above has been integrated into our professional-
grade game engine [Lengyel 2016], and it is used to handle all text drawing needs,
including user interface widgets, heads-up displays, debugging facilities, and inter-
active panels rendered inside the game world. Samples of these usages are shown in
Figures 6 and 7. The resolution independence of our method allows text to be crisply
rendered at a constant physical size in DPI-aware applications across monitors having
different pixel densities. It also provides a way to render crisp text when the pixel
density may not even be constant over a single glyph, as is the case for text drawn
inside a game world where the camera may be viewing it at an oblique angle.

Compared to a basic text shader that does nothing more than sample glyphs from a
prerendered texture map, containing either final coverage values or a signed distance
field, it should be clear that our method requires considerably more computation.
The cost of the flexibility and scalability provided by rendering directly from outline
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Figure 6. Text is rendered with our method for the heads-up display, showing information
about health, score, and weapons, as well as the interactive panel embedded in the game world
itself and viewed at an oblique angle.

Figure 7. Our method is used to render text in a world editor comprising a complex user
interface that contains windows, menus, lists, check boxes, push buttons, and a variety of
additional widgets. Resolution independence allows the glyphs to cleanly scale to properly
match system DPI settings.
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Font Sample Complexity Time

Arial ABCDEFG 20 1.1 ms

Centaur

  13 
 

Font Sample Complexity Time 

Arial ABCDEFG 20 1.1 ms 

Centaur ABCDEFG 48 1.3 ms 

Halloween ABCDEFG 72 3.8 ms 

Wildwood ABCDEFG 546 13.3 ms 

Table 2. A two-megapixel area was filled with 50 lines of text rendered at 32 pixels per em 
using a variety of fonts and timed on a GeForce GTX 1060 graphics chip. The complexity value 
represents the typical number of Bézier curves composing an uppercase letter in each font. 

Font Glyph 
Count 

TTF Size 
(kB) 

Data Size 
(kB) 

Curve 
Texture Size 

Band 
Texture Size 

Wildwood 64 118 631   4096 × 6   4096 × 23 
Halloween 131 57 294   4096 × 2   4096 × 17 
Centaur 241 81 201   4096 × 2   4096 × 9 
Arial 3223 894 1549   4096 × 11   4096 × 55 
Times 3502 1085 2201   4096 × 16   4096 × 85 
JhengHei 29,386 20,650 52,842   4096 × 507   4096 × 2350 

Table 3. This table lists the number of glyphs contained in a variety of TrueType fonts and the 
sizes of the original .ttf files. The Data Size column lists the storage requirements of the 
glyph data after processing to generate the curve and band texture maps. This size also 
includes a small amount of per-glyph data and information about kerning, ligatures, and 
combining diacritical marks. The last two columns give the dimensions of the curve and band 
texture maps that were generated. 

supersampling in this manner. Because the pixel size grows larger in em space as a 
font is rendered at smaller sizes, care must be taken to expand the width of the bands 
by half of the largest pixel size, equal to the reciprocal of the smallest font size, when 
collecting the curves that intersect each band. Otherwise, the lists of curves belonging 
to each band may not be valid for all sample positions within a pixel. 
 By inflating the pixel footprint and applying a more sophisticated filter, effects 
such as a glow or drop shadow can be implemented. As with the supersampling 
technique, sample positions are always arranged on a line perpendicular to the ray 
direction. An increase in the pixel size corresponds to a decrease in the value of m 
used by Equations (5) and (7), and this causes the coverage gradient to be spread out 
over a longer distance for a softer appearance, as shown in the drop shadow in 
Figure 8. Again, the bands must be expanded to account for the largest effect radius 
so that the lists of curves are valid for each sample point. 
 An extension to the TrueType format facilitates multicolor glyphs by defining 
outlines for multiple layers that are each rendered in a different color and stacked on 
top of each other. (This data appears in 'COLR' and 'CPAL' tables inside a font.) This 
can be implemented by adding an outer loop to our pixel shader and including some 
extra color data in our texture maps. The result is the ability to render multicolor 
emoji and pictographs, as shown in Figure 8. 

48 1.3 ms

Halloween ABCDEFG 72 3.8 ms

Wildwood ABCDEFG 546 13.3 ms

Table 2. A two-megapixel area was filled with 50 lines of text rendered at 32 pixels per em
using a variety of fonts and timed on a GeForce GTX 1060 graphics chip. The complexity
value represents the typical number of Bézier curves composing an uppercase letter in each
font.

data was measured by filling a two-megapixel area with text drawn in a variety of
fonts and recording the time needed to render it on a GeForce GTX 1060 graphics
chip. In the best-performing case, a conventional shader sampling prerendered glyph
images (without an SDF) requires 26 µs to render the text, and the time required by
our method is 1.1 ms, roughly 40 times as long. The performance of our method
strongly depends on the complexity of the font, as determined by the typical number
of Bézier curves composing a glyph, so the best case is achieved using a font like Arial
that has simple outlines and no serifs. Timings for more complex fonts are listed in
Table 2.

The Dobbie [2016] method, which is the previously published method closest to
ours in terms of algorithm design, requires 5.2 ms to render the same text in the same
area using the Centaur font. Its measured time of 10.4 ms was cut in half to account
for the fact that it evaluates four rays, although not a requirement of the algorithm,
instead of the two used by our method. Even after this adjustment, our implementation
is four times as fast, requiring only 1.3 ms.

A TrueType font needs to be preprocessed in order to generate the data format
that is consumed by the glyph shader. The glyph outlines contained in a TrueType
font usually have many implicit control points that require no storage. (An implicit
on-curve or off-curve control point is one that falls exactly halfway between two ex-
plicit control points of the opposite type.) Because the glyph shader must be able
to fetch all three controls points belonging to any quadratic Bézier curve, every con-
trol point must be included in the final data, which increases storage requirements.
Furthermore, the band data needed for efficient rendering adds considerable storage
requirements beyond what is found in a TrueType font. In general, we have found
that the preprocessed data needed by our method is roughly twice as large to several
times as large as the TrueType font from which it is derived. The size differences for a
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Font Glyph TTF Size Data Size Curve Band
Count (KB) (KB) Texture Size Texture Size

Wildwood 64 118 631 4096× 6 4096× 23

Halloween 131 57 294 4096× 2 4096× 17

Centaur 241 81 201 4096× 2 4096× 9

Arial 3223 894 1549 4096× 11 4096× 55

Times 3502 1085 2201 4096× 16 4096× 85

JhengHei 29,386 20,650 52,842 4096× 507 4096× 2350

Table 3. This table lists the number of glyphs contained in a variety of TrueType fonts and
the sizes of the original .ttf files. The Data Size column lists the storage requirements
of the glyph data after processing to generate the curve and band texture maps. This size
also includes a small amount of per-glyph data and information about kerning, ligatures, and
combining diacritical marks. The last two columns give the dimensions of the curve and band
texture maps that were generated.

variety of fonts containing a wide range of characters are listed in Table 3 along with
the dimensions of the texture maps that were generated to hold the final data.

6. Extensions

There are a number of ways in which our glyph rendering method can be extended. In
particular, it is straightforward to implement techniques that utilize multiple samples
per pixel. As the ray origin is moved perpendicular to the direction in which the ray
points, the values of a and b used to calculate roots in Equation (1) are invariant, so a
significant amount of work can be shared over multiple samples. A simple box filter
can be implemented by shifting the ray origin up and down within a pixel’s footprint
for horizontal rays, or right and left for vertical rays, and averaging the coverage
values calculated for each Bézier curve. Figure 8 shows the result of supersampling
in this manner. Because the pixel size grows larger in em space as a font is rendered
at smaller sizes, care must be taken to expand the width of the bands by half of the
largest pixel size, equal to the reciprocal of the smallest font size, when collecting the
curves that intersect each band. Otherwise, the lists of curves belonging to each band
may not be valid for all sample positions within a pixel.

By inflating the pixel footprint and applying a more sophisticated filter, effects
such as a glow or drop shadow can be implemented. As with the supersampling
technique, sample positions are always arranged on a line perpendicular to the ray
direction. An increase in the pixel size corresponds to a decrease in the value of m
used by Equations (3) and (5), and this causes the coverage gradient to be spread
out over a longer distance for a softer appearance, as shown in the drop shadow in
Figure 8. Again, the bands must be expanded to account for the largest effect radius
so that the lists of curves are valid for each sample point.
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Figure 8. Emoji glyph with Unicode value U+01F61C rendered at 34 pixels per em. The
leftmost image is rendered with the average coverage calculated for a horizontal ray and a
vertical ray. The second image applies supersampling with three samples in each direction.
The third image adds a drop shadow, and the fourth image renders six color layers.

An extension to the TrueType format facilitates multicolor glyphs by defining
outlines for multiple layers that are each rendered in a different color and stacked on
top of each other. (This data appears in 'COLR' and 'CPAL' tables inside a font.)
This can be implemented by adding an outer loop to our pixel shader and including
some extra color data in our texture maps. The result is the ability to render multicolor
emoji and pictographs, as shown in Figure 8.
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