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(e) Exponentiated

Figure 1. An input texture (a) is randomly tiled (b). Overlapping the tiles with linear blending
(c) removes the seams but suffers ghosting and contrast loss. Histogram-preserving blending
(d) preserves the contrast. Using exponentiated blending weights (e) reduces ghosting artifacts
and better preserves structured texture details. Our implementation is per-channel and avoids
lengthy precomputation. Our formulation avoids clipping artifacts by using the truncated
Gaussian distribution with a soft-clipping contrast operator. For textures that would exhibit
coloration artifacts (such as this one), we blend in YCbCr color space and perform histogram
preservation only on the luminance. [Input photograph by Steve Winter, National Geographic
Creative.]

Abstract

To support interactive authoring of high-resolution randomly tiled textures, we modify the
histogram-preserving tiling algorithm of Heitz and Neyret to avoid any lengthy preprocessing.
Instead of calculating a 3D histogram transformation by optimal transport, which can take
minutes even at low resolution, the input texture is transformed using per-channel 1D look-
up tables, constructed trivially from the input histogram on texture load. Three sources of
clipping are described. Modifying the algorithm to use a truncated Gaussian distribution
and a novel soft-clipping contrast operator avoids clipping artifacts while retaining very high
rendering performance. Per-channel histogram preservation is sufficient for most textures, but
some will produce unwanted colorations; these can often be avoided by performing histogram
preservation only on luminance. Exponentiating the blending weights can reduce ghosting
artifacts and better preserve structured texture details.
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restored

(e) Histogram
restored

Figure 2. Illustration of histogram-preserving blending. The input texture (a) is first trans-
formed (using our per-channel implementation) to have a Gaussian histogram (b). After ran-
domized tiling with linear blending (c), the histogram is still Gaussian but with reduced vari-
ance and spatially inconsistent contrast. A local contrast operator restores the original vari-
ance (d), and inverting the Gaussianization transformation restores the original histogram (e).
[The input texture is from [Heitz and Neyret 2018]; only a portion is shown.]

1. Introduction

Texture maps are a critical component of production in our studio, with each 3D
surface typically having dozens of texture layers controlling its appearance. Due to
the vastness of our worlds, mapping unique high-resolution texture detail for every
surface would require a prohibitive amount of memory, and hand-painting every sur-
face would require a prohibitive amount of authoring time. Instead, artists hand-paint
textures only where needed and apply tiled textures everywhere else. To break up
repetition, artists typically apply tiled textures in two or more layers which are offset
and overlapped, but blended regions can appear blurry and suffer reduced contrast as
in Figure 1(c).

Heitz and Neyret [2018] proposed randomized texture tiling using a histogram-
preserving blending operator to preserve the contrast in blended texture regions. They
tiled the image plane with a virtual triangle lattice, randomly selected a texture tile
at each lattice point, and then blended the three nearest textures across each triangle
using barycentric weights. To preserve contrast, they recalled that blending statisti-
cally independent samples has the effect of convolving their histogram, that convolv-
ing Gaussian distributions produces a Gaussian distribution with reduced variance,
and that the variance lost due to linear blending can be restored using linear scaling
around the expected value. To leverage this, they transformed the input texture to
have a Gaussian histogram before blending. After blending, they restored the vari-
ance of the Gaussian distribution using a per-pixel adjustment based on the blending
weights, and then inverted the Gaussianization to restore the original histogram. The
histogram-preserving blending process is depicted in Figure 2.

To avoid coloration artifacts, Heitz and Neyret performed the histogram trans-
formation as a 3D process. To transform the input texture to have a 3D Gaussian
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distribution, they first generated a texture with uncorrelated Gaussian color noise of
the same resolution as the input, and then rearranged the texels to have the same
structure as the input using a 3D optimal transport algorithm to minimize the squared
difference between the two images. After linear blending and scaling to restore the
original variance, they recovered the original histogram using a 3D LUT which they
constructed using 3D optimal transport in the reverse direction. Heitz and Neyret re-
ported that the generation of the Gaussianized input texture and 3D LUT took several
minutes for a 256× 256 texture.

Heitz and Neyret’s results are impressive, but our requirements differ. In some
ways, ours are more demanding; in others less so:

• To support our interactive authoring workflows, we must process texture edits
within a fraction of a second.

• Our tiled texture resolutions are typically 4096× 4096 or higher.

• Most of our textures are grayscale (used as masks to blend between layers or
modulate material properties).

• Most of our textures are 8-bit (which has no impact on the implementation
except that it exacerbates clipping artifacts as shown in Section 3).

• We prefer to implement all transformations using 1D LUTs for rendering effi-
ciency.

Based on our requirements, we perform 1D (per-channel) histogram preservation
which is trivial compared to 3D histogram preservation and requires only minimal
preprocessing time. We were pleasantly surprised that only a small minority of color
textures exhibited coloration artifacts. However, we did encounter two artifacts un-
related to color: we found that using the infinite Gaussian distribution of Heitz and
Neyret can introduce clipping artifacts in some textures, and we found that textures
with strong structure can exhibit ghosting artifacts. In our implementation, we aim to
reduce or eliminate these artifacts while avoiding lengthy preprocessing.

The remainder of this paper is structured as follows. In Section 2 we describe
how histogram-preserving blending can be performed using 1D LUTs which can be
trivially built on texture load. In Section 3 we discuss sources of clipping and describe
how using the truncated Gaussian distribution with our soft-clipping contrast operator
can avoid clipping artifacts. In Section 4 we investigate unwanted colorations in a
problematic texture and show that blending in the YCbCr color space and performing
histogram preservation only on the luminance can avoid coloration artifacts while
sacrificing some color contrast. In Section 5 we show that exponentiating the blending
weights can reduce ghosting artifacts and better preserve structured texture details. In
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Section 6 we detail our implementation. Finally, we present and discuss our results in
Section 7.

All of the figures in this paper were generated using our per-channel implementa-
tion, and unless otherwise noted, used our truncated Gaussian formulation and soft-
clipping contrast operator. YCbCr blending and exponentiated blending are optional
features and were only used in figures where indicated.

2. Per-channel Histogram-preserving Blending

In this section, we describe naive per-channel (1D) histogram-preserving blending,
which we then refine in subsequent sections.

Gaussianization. Transforming samples through the CDF of a given distribution
results in a uniform distribution; likewise, transforming uniformly distributed samples
through the inverse CDF results in the given distribution, and transforming between
arbitrary distributions can be achieved by combining these two operations [Bergen
and Heeger 1995].

To Gaussianize the texture, we first transform each texel through the CDF of the
input histogram to produce a uniform distribution and then transform to the Gaussian
distribution using the Gaussian distribution’s inverse CDF; we combine these two
steps into a single 1D LUT per channel.

The infinite Gaussian distribution as used in [Heitz and Neyret 2018], its CDF,
and inverse CDF are, respectively,
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1√

2πσ2
exp

(
−

(x− 1
2)2

2σ2

)
,

CDFG(x;σ) =
1
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(
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2
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,
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2
+
√

2σ2 erfinv (2x− 1)

where σ2 is the variance. We use the recommended σ = 1
6 from Heitz and Neyret.

Linear blending. As in [Heitz and Neyret 2018], we linearly blend texel values
x1 . . . xN using weights w1 . . . wN (which are assumed to sum to one):

x̂ = w1x1 + · · ·+ wNxN . (1)

Each x represents a single value, with operations repeated per channel for multi-
channel textures. With the randomized tiling of Heitz and Neyret, N = 3, but the
method is applicable to any N . [We use the hat symbol to denote blended values and
distributions such as x̂ and Ĝ.]
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Contrast restoration. A linearly blended distribution is a convolution of the distri-
bution with itself. The convolution of linearly blended Gaussian distributions is a
Gaussian distribution with reduced variance:

H
Ĝ

(x̂;σ) =
1

w1
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x
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)
∗ · · · ∗ 1

wN
HG
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x
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w2
1 + · · ·+ w2
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(2)

and therefore,
CDF

Ĝ
(x̂;σ) = CDFG (x̂;σW ) .

The contrast restoration operator, which can be derived by transforming through
the CDFs, becomes a simple linear expansion:

S
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CDF
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2
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Histogram restoration. To restore the original histogram after blending, we simply
transform through the inverse of the 1D LUTs we used for Gaussianization.

3. Avoiding Clipping Artifacts

We encountered three sources of clipping artifacts in our naive implementation. The
first is due to the fact that the Gaussian distribution is defined over (−∞,∞) and
the Gaussianization transformation maps some of the texels to values outside of [0, 1]

which then get clipped when stored in a fixed-point texture format. Though the per-
centage of affected texels is small (roughly 0.3%, or ∼ 3000 pixels in a 1024× 1024

texture), artifacts can be visible if the clipped texels are concentrated in one part of
the image as in Figure 3(b).

Another source of clipping, illustrated in Figure 4(b), occurs when the linear con-
trast operator pushes blended texel values beyond [0, 1] which then get clipped if
the inverse Gaussianization is implemented with a LUT (which is typically specified
only for values within [0, 1]). For instance, when blending three textures with equal
weights, S

Ĝ
produces values outside of [0, 1] for any x̂ / 0.21 or x̂ ' 0.79. This

could affect as many as 8.2% of the blended pixels where features happen to align on
adjacent tiles.

Given that CDFG maps (−∞,∞) back to [0, 1], both forms of clipping would
be avoided if a floating-point texture were used and inverse Gaussianization were
performed analytically, but doing so would come at some cost. And even though
no values would be clipped, the result could still appear clipped as illustrated in Fig-
ure 4(c). This third type of clipping artifact occurs when the contrast operator expands
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(a) Input (b) Fixed-point
texture

(c) Floating-point
texture

(d) Truncated
Gaussian

Figure 3. Illustration of clipping artifacts resulting from storing a texture with an infinite
Gaussian histogram in a fixed-point format. An input texture (a), shown with its native his-
togram, is Gaussianized and then restored without tiling or blending (b-d). Clipping occurs
if the intermediate Gaussianized texture is represented in fixed-point (b), resulting in spikes
in the histogram and visible artifacts, indicated by red arrows. Representing the intermediate
Gaussianized texture in floating-point (c) avoids the clipping. Using the truncated Gaussian
distribution (d) avoids the clipping without requiring a floating-point texture. [The input tex-
ture is from [Heitz and Neyret 2018, suppl.]]

(a) No blending (b) Clipping due to
inverse LUT

(c) Apparent
clipping due to SĜ

(d) Our soft-clipping
operator, S∗

[Ĝ]

Figure 4. Illustration of clipping artifacts resulting from the linear expansion of contrast
operator SĜ. The texture from Figure 3 is randomly tiled, shown with no blending (a) and
histogram-preserving blending (b-d). Even though a floating-point texture is used here, ar-
tifacts can still be introduced when SĜ pushes values beyond [0, 1] that get clipped by the
inverse Gaussianization LUT (b). And even if inverse Gaussianization is implemented ana-
lytically, the result can still appear clipped (c) where SĜ compresses texture details into the
tails of the distribution. Using the truncated Gaussian distribution with our soft-clipping con-
trast operator (d) allows the use of a fixed-point texture and inverse LUT while avoiding these
artifacts and otherwise preserving the blended result.
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texture details into the tails of the distribution, where they are strongly compressed by
the inverse Gaussianization, giving them a flattened appearance.

In our implementation, we avoid the first two types of clipping artifacts by using
the truncated Gaussian distribution that maps values strictly within [0, 1], and we are
thus permitted to use fixed-point textures and LUTs without penalty. We address the
third type of clipping artifact by using a soft-clipping contrast operator. We describe
the truncated Gaussian distribution and present our soft-clipping contrast operator in
the following subsections.

3.1. Truncated Gaussian Distribution.

The truncated Gaussian distribution, denoted [G], is defined strictly within [0, 1]:

H[G](x;σ) =
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2
)2

2σ2

)
;C(σ) = 1

erf

(
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2
√
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2

(
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2
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))
,

CDF−1[G](x;σ) =
1

2
+
√

2σ2 erfinv

(
1

C(σ)
(2x− 1)

)
. (3)

This differs from the infinite Gaussian distribution only in the constraint over the
domain of x and the normalization constant C(σ) that accounts for the truncation. As
before, we use σ = 1

6 .
The linear contrast operator, S

Ĝ
, no longer applies as it generates values beyond

[0, 1] that are undefined for CDF[G]. Instead, the contrast operator for the truncated
Gaussian distribution, S

[Ĝ]
, must be rederived using the convolution of truncated

Gaussian distributions.
Note that S

[Ĝ]
does not have a practical closed form and must be approximated.

Rather than approximating S
[Ĝ]

precisely, which would only serve to reproduce the
tail compression artifact from Figure 4(c), we take this as an opportunity to reduce
the flattening by introducing a “soft-clipping” contrast operator, S∗

[Ĝ]
.

3.2. Soft-clipping Contrast Operator

As can be observed in Figure 5(left, black), S
[Ĝ]

is nearly linear for the middle portion
of the curve (matching the slope of S

Ĝ
), rolling off smoothly and becoming nearly flat

as it approaches 0 or 1. For our approximation, S∗
[Ĝ]

, we choose a piecewise function

which is linear (and equal to S
Ĝ

) for the middle half of the range (i.e. S∗
[Ĝ]
∈ [14 ,

3
4 ]),

and blends smoothly to 0 or 1 using a quadratic segment at the ends. As before, we
compute W from the blend weights as in Equation (2). These constraints fully define
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Figure 5. A comparison of our soft-clipping contrast operator, S∗
[Ĝ]

, yellow, vs. S[Ĝ], black,
for W = .75. (left) S∗

[Ĝ]
is shown for a range of W values; the portion between the dashed

lines is linear and matches S[Ĝ] (right).
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Figure 6. Plot comparing the effect of the infinite Gaussian contrast operator (blue) versus
our soft-clipping operator (yellow, dashed) for W =

√
1/3, the minimum W for blending

three textures. The two differ only on close inspection (right) where the soft-clipping operator
exhibits less value compression near the ends of the distribution. [The actual functions plotted
are CDFG

(
SĜ

(
CDF−1G (x̂)

))
and CDF[G]

(
S∗
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0 otherwise,
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2
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= 1− S∗

[Ĝ]
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(4)

S∗
[Ĝ]

is plotted and compared with S
[Ĝ]

in Figure 5. When viewed in conjunc-
tion with the Gaussianization transformation, as illustrated in Figure 6, our truncated
Gaussian formulation with soft clipping only deviates minimally from the infinite
Gaussian result, and only at the ends of the distribution where it avoids becoming
overly flat.
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(a) Input (b) Linearly
blended

(c) Gaussianized (d) Contrast
restored

(e) YCbCr

Figure 7. Example of coloration artifacts. A portion of an input texture with subtle red and
green hue variation is shown in (a). Randomized tiling with linear blending in the native color
space (i.e. without histogram preservation) shows contrast loss but no unusual coloration (b).
Blending in a Gaussianized color space produces unexpectedly saturated red and green pixels
(c). Applying the histogram-preserving contrast operator makes the red and green colorations
even more pronounced (d). Blending in YCbCr color space using histogram-preservation only
for Y avoids unwanted coloration (e). [The input texture is from [Heitz and Neyret 2018]]

4. Avoiding Coloration Artifacts

Simply blending color values in their native color space can produce colors that were
not in the original texture; blending color values in a histogram-transformed space
and performing per-channel contrast adjustments can make unexpected coloration
even more likely. Three-dimensional histogram preservation as in [Heitz and Neyret
2018] avoids unexpected colors by remapping blended, contrast-adjusted colors to
ones that occur within the original image. However, per-channel (1D) histogram
preservation makes no such attempt and unexpected coloration may persist in the
result.

Of the textures shown in [Heitz and Neyret 2018] (including the supplementary
results), we only found the ones shown in Figures 7 and 11 to have visible coloration
artifacts; the leopard texture in Figure 7 is the most obvious and even this one requires
close inspection. In Figure 8, we examine the cause of the discolorations that occur
with the leopard texture and show that the nonlinearity of the Gaussianization trans-
form is amplifying color variations in the input image which are further amplified by
the contrast operator.

We find that we can preserve the contrast while avoiding introducing coloration
artifacts by linearly transforming to YCbCr and performing histogram-preserving
blending only on the luminance (Y), using ordinary linear blending (non-histogram-
preserving) on the chrominance channels. Assuming that blending the untransformed
texture would produce no objectionable colors, linear blending in a linearly trans-
formed space produces the same result as blending in the original color space, and
thus we will have no unexpected hues. Preserving luminance contrast preserves most
of the apparent contrast as human vision is more sensitive to luminance differences
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Figure 8. Illustration of discoloration cause. A pair of input colors from Figure 7 (trian-
gles) is Gaussianized through the input LUT (red, green, blue curves), linearly blended with
equal weight (dashed lines, resulting in X’s), contrast adjusted (resulting in diamonds), and
histogram-restored through the inverse LUT, producing the final colors (circles). For input
colors that are neutral with respect to the histogram, the blended result is also neutral (left).
When a small change is made to the red value of one of the inputs (small red arrow), the
nonlinearity of the histogram transformation amplifies the color difference, and the contrast
adjustment further increases the difference (large red arrow), resulting in an unexpected green
hue (right).

than color differences. Figures 7 and 11 show that using YCbCr avoids coloration
artifacts in those examples.

Because discoloration artifacts are rare and typically subtle, and because there is
a possibility of a reduction in color contrast, we recommend to use YCbCr only as
necessary.

5. Reducing Ghosting Artifacts

Even when the contrast is restored using histogram-preserving blending, image ghost-
ing can still occur with randomized tiling, with details from overlapping tiles showing
through in blended regions. We find that using exponentiated blending weights pro-
vides a simple and efficient means to reduce ghosting and preserve more structured
detail from the source texture. To perform exponentiated blending we raise each
weight to a power and renormalize the resulting weights:

w′i =
wγi∑N
i=1w

γ
i

. (5)

A plot of Equation (5) is shown in Figure 9, and an illustration of the effect for a range
of exponent values is shown in Figure 10. Further results are shown in Figure 13.

40

http://jcgt.org


Journal of Computer Graphics Techniques
On Histogram-preserving Blending for Randomized Texture Tiling

Vol. 8, No. 4, 2019
http://jcgt.org

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0 γ
1

2

4

8

16

γ = 1 γ = 2 γ = 4

Figure 9. Exponentiated blending weight plotted for various values of γ. Left: w′1 plotted
versus w1 (with w2=1−w1 and w3=0). Right: w′1 evaluated over triangle tile.

γ = 1 2 4 8 16

Figure 10. Blending using exponentiated blend weights with different values of γ. Ghosting
is visible at γ ≤ 2, and tile structure is visible at γ ≥ 8. Blending with γ = 4 provides good
structure preservation for this texture without revealing tile structure.

Algorithm 1 Gaussianizing a texture. (All operations are per-channel.)

for each texel x do . compute histogram
histogram[x]← histogram[x] + 1

end for
sum = 0

for i from 0 to LUTsize-1 do . build LUT
sum← sum + histogram[i]

LUT[i]← sum
end for
for i from 0 to LUTsize-1 do . normalize and Gaussianize LUT

LUT[i]← CDF−1[G]

(
LUT[i]/sum; 1

6

)
. Eq. (3)

end for
for each texel x do

x← LUT[x] . apply LUT to texture
end for
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6. Implementation

Algorithm 1 summarizes our Gaussianization process which we apply to the texture
on load. Algorithm 2 summarizes our histogram-preserving blending process. In the
equations, x is assumed to be [0, 1] with appropriate scaling applied as needed (e.g.,
multiplying or dividing by 255 for an 8-bit texture).

If we are blending in YCbCr color space, we transform to YCbCr space before
Algorithm 1, and perform Algorithm 1 only on the Y channel; in Algorithm 2 we
perform contrast correction only on Y. Following Algorithm 2, we convert the blended
color from YCbCr back to RGB as the final step.

Algorithm 2 Histogram-preserving blending of texels x1, x2, x3 with weights
w1, w2, w3.

w′i ← wγi /(w
γ
1 + wγ2 + wγ3 ); for i ∈ {1, 2, 3} . exponentiate (Eq. (5))

x̂← w′1x1 + w′2x2 + w′3x3 . linear blend (Eq. (1))
W ←

√
(w′1)

2 + (w′2)
2 + (w′3)

2 . compute variance scale factor (Eq. (2))
x̂← S∗

[Ĝ]
(x̂;W ) . restore contrast (Eq.(4))

x̂← LUT−1[x̂] . de-gaussianize

7. Results and Discussion

Clipping-free blending. With histogram-preserving blending using the infinite Gaus-
sian distribution, clipping artifacts such as in Figure 3(b) can occur if the texture is
stored in fixed-point representation, or as in Figure 4(b), if the inverse Gaussianiza-
tion operator (CDFG) is applied as a LUT. Even if CDFG is evaluated analytically
per-pixel (as in [Heitz and Neyret 2018, Eq. 22]), artifacts such as Figure 4(c) may
still occur. Though the histogram is perfectly preserved globally, this is not true lo-
cally; when prominent features align on adjacent tiles, the assumption of statistically
independent sampling does not hold. In the extreme, a texture may by chance align
nearly exactly with itself on adjacent tiles in which case no variance will be lost dur-
ing blending and the linear expansion of S

Ĝ
will induce either maximal clipping (if

CDFG is implemented as a LUT) or maximal detail compression (if CDFG is imple-
mented analytically).

Our truncated Gaussian formulation with soft-clipping avoids such clipping arti-
facts while permitting the use of a fixed-point texture and a LUT for inverse Gaussian-
ization. Even when such clipping artifacts are few, using the soft-clipping operator
does no harm, and the additional computation is modest, making it a robust approach.
The soft-clipping operator also has a fairly simple form, and a more accurate approx-
imation of S

[Ĝ]
would likely come at additional cost.
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We note that clipping with the infinite Gaussian could be reduced through the
use of a narrower Gaussian. For instance, σ = 1

8 is sufficient to avoid the need for
a floating-point texture for the artifact in Figure 3(b), but doing so sacrifices some
dynamic range of the texture, and also does not improve the artifact in Figure 4(c).

As an aside, we found that histogram-preserving blending can also be performed
using the uniform distribution. The main advantage of doing so is simplicity in that
one can blend uniformly distributed samples directly, skipping the Gaussianization
step. Blended values will have a non-uniform distribution, and applying an appro-
priate contrast operator can recover the uniform distribution; a contrast operator for
blending three uniformly distributed samples is derived in the Appendix. An addi-
tional advantage of using the uniform distribution is that it intrinsically avoids gen-
erating values outside of [0, 1]. Though mathematically appealing, it unfortunately

RGB YCbCrInput

Figure 11. Examples of coloration artifacts that are avoided by blending in YCbCr color space
and performing histogram-preserving blending only on the Y channel. [The input textures are
from [2018] and Heitz and Neyret [2018, suppl.]]
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does not improve the artifact in Figure 4(c), and the contrast operator requires more
computation than our soft-clipping operator. Thus we have not found it advantageous
in practice.

Color preservation. We have found that most textures do not exhibit coloration arti-
facts with per-channel (1D) histogram preservation, and for examples we have found,
as in Figure 11, we have shown that blending in YCbCr color space and performing
histogram-preserving blending on just the Y channel avoids discoloration. Many ad-
ditional results comparing per-channel RGB with YCbCr luminance-only histogram
preservation are shown in Figure 12; in most cases the results are indistinguishable.

Additionally, the jaguar texture in Figure 1 exhibits significant discoloration if
blended as RGB. The input image in this case contains substantial color noise in
the dark pixels which is presumably introduced by the digital camera sensor and not
present in the subject. In that figure, YCbCr blending with histogram-preservation
only on Y is used to avoid discoloration.

For our YCbCr formulation, we choose the one from the JPEG image file for-
mat [International Telecommunication Union 2011] simply because of its widespread
use, but other formulations should work. There are also other potential choices for
luminance-separated color spaces. However, hue-separated spaces such as HSV and
HSL are problematic for linear blending given that hue values wrap around from 1 to
0 (e.g., blending a near-red of 0.99 with a near-red of 0.01 results in a cyan hue rather
than the expected pure red). Color spaces with nonlinear transformations were not
considered.

Another color preservation option was recently demonstrated in the concurrent
work of Deliot and Heitz [2019] where the authors performed histogram-preserving
blending in a colorspace defined by the eigenvectors of the RGB covariance matrix
such that the color channels are naturally decorrelated. This may provide superior
results in that it would not suffer color contrast loss, but at the modest expense of
increased preprocessing time. We wouldn’t however expect more than a marginal
quality improvement as we have not found significant color contrast loss or residual
coloration artifacts with our approach. The main advantage might be in robustness as
their approach should never perform adversely, for instance with non-color data such
as a normal map. A detailed comparison is left for future work.

Another open question is whether textures exist that can be tiled and blended and
yet have such strong color correlation, or such an unusually shaped 3D histogram,
that neither our YCbCr blending nor Deliot and Heitz’s eigenvector blending is satis-
factory. These may require 3D histogram preservation as in [Heitz and Neyret 2018],
to remap blended colors to colors present in the original image, but even this may not
eliminate all unwanted colors. For instance, blending a texture with red flowers in a
field of green will likely result in some flowers turning green, which is unnatural.
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RGB YCbCrInput

Figure 12. Randomized tiling with histogram-preserving blending using our truncated Gaus-
sian formulation with soft-clipping. In each group, the left image is the input, the middle
image uses RGB blending, and the right image (flipped for easier comparison) uses YCbCr
blending with histogram-preservation only on Y. Results continue on the following pages.
[Input textures from Heitz and Neyret [2018] and [2018, suppl.]]
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(a) Input (b) γ = 1 (c) γ = 8

Figure 13. Input textures with strong structure shown here benefit greatly from exponentiated
blending. [The input textures are from maxTextures.com, courtesy of Max Boughen.]

Exponentiated blending. Exponentiated blending is an optional feature that is in-
dependent of the blending method used (and of whether using histogram-preserving
blending or not). Results benefiting from exponentiated blending are shown in Fig-
ure 13. The exponent, γ, can be any positive real value, though integer exponents
typically require less computation. If floating-point exponents are used, then β = 1

γ

with a range of 0 to 1 may provide a more user-friendly parameterization.
We have found that for most textures a value of γ = 4 works well, and hard-

coding this value reduces each exponentiation to two multiplies. But if it can be

Stage Time (ms)
Texture preprocessing < 1
Randomized tiling 38
Exponentiated blending < 1
Contrast restoration, S∗

[Ĝ]
5 (per channel)

(SG, for comparison) 3 (per channel)
Inverse Gaussianization (LUT) 7 (per channel)
YCbCr to RGB (if used) 5
Total (RGB) 75
Total (YCbCr) 56

Table 1. Timing breakdown for generating a 4Kx4K image from a 256x256 input texture
(using 24 core Xeon @ 3.0GHz).
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afforded, this is likely a value that is worth tuning for the specific texture. Given that
we assume σ = 1

6 is fixed, γ remains our only free parameter.

Timing. Timings are shown in Table 1. Using YCbCr adds overhead to transform
back to RGB, but offers a net gain as only the Y channel needs contrast restoration
and inverse Gaussianization.

8. Conclusion

We have shown that performing histogram-preserving blending per-channel requires
trivial precomputation and provides high-quality results for most textures, and that us-
ing a truncated Gaussian formulation with our soft-clipping contrast operator avoids
clipping artifacts while permitting the use of a fixed-point texture format and a LUT
for inverse Gaussianization. Together these features support smooth interactive edit-
ing of large tileable textures. Coloration artifacts may occur with per-channel blend-
ing for some textures and we have shown that luminance-only blending offers a poten-
tial solution, and a modest performance advantage over per-channel RGB blending as
a fringe benefit. Additionally, we have demonstrated that using exponentiated blend-
ing weights can reduce ghosting artifacts and improve the result for some textures.

Appendix - Uniform Distribution

The uniform distribution is

HU (x) = Π

(
x− 1

2

)
=

{
1 0 ≤ x ≤ 1

0 otherwise

CDFU (x) = CDF−1U (x) =

{
x 0 ≤ x ≤ 1

0 otherwise

The convolution of uniform distributions is

H
Û

(x̂) =
Π( x

w1
− 1

2)

w1

∗ · · · ∗
Π( x

wN
− 1

2)

wN

which is a piecewise polynomial with degree N − 1. The CDF of the blended distri-
bution, CDF

Û
, is the integral of this convolution and is therefore a piecewise polyno-

mial with degree N . The contrast operator is equal to this CDF (noting that CDF−1U
is identity):

S
Û

(x̂) = CDF−1U

(
CDF

Û
(x̂)
)

= CDF
Û

(x̂)
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0.0 0.2 0.4 0.6 0.8 1.0

H
Û

(x̂)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

S
Û

(x̂)

Figure 14. Linear blend of three sets of 220 uniformly distributed samples with weights
0.1, 0.3, and 0.6, shown with predicted distribution (left) and corresponding contrast operator
(right).

The contrast operator for a blend of three uniformly distributed values is

S
Û

(
x̂|x̂ ≤ 1

2
; a, b, c

)
=



x̂3

6abc 0 ≤ x̂ < a
a2−3ax̂+3x̂2

6bc a ≤ x̂ < b
a3−3a2x̂+3ax̂2+(b−x̂)3

6abc b ≤ x̂ < min(a+ b, c)
2x̂−a−b

2c a+ b ≤ x̂ < 1
2

a3+b3+c3−3x̂(a2+b2+c2)+3x̂2(a+b+c)−2x̂3
6abc c ≤ x̂ < 1

2

S
Û

(
x̂|x̂ > 1

2
; a, b, c

)
= 1− S

Û
(1− x̂; a, b, c)

where a, b, and c are the blending weights, a ≤ b ≤ c, and a+ b+ c = 1.
H
Û

(x̂) and S
Û

(x̂) are illustrated in Figure 14.
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