
Journal of Computer Graphics Techniques Vol. 9, No. 1, 2020 http://jcgt.org

Progressive Least-Squares Encoding
for Linear Bases

Thomas Roughton
Victoria University of Wellington

Figure 1. Indirect lighting represented through a progressively-baked nonnegative lightmap.
(Scene credit The Baking Lab [Pettineo 2018].)

Abstract

Linear basis functions can be used to encode spherical functions in a compressed format,
wherein information such as a radiance field may be represented by a fixed set of basis func-
tions and corresponding basis coefficients. In computer graphics, the function to encode is
often generated by way of Monte-Carlo integration, and, in contexts such as lightmap or irra-
diance volume baking, it is useful to display a progressive result.

This paper presents an efficient, easily-implemented, GPU-compatible method for pro-
gressively performing approximate least-squares encoding into arbitrary linear bases
(Listing 1). The method additionally supports approximate nonnegative encoding, ensur-
ing that the reconstructed function is positive-valued and improving appearance in a range
of scenarios.

17 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

// The acceleration factor α.

// A value between 1 and 5 is reasonable.

const float acceleration = 1.0;

Colour coefficients[functionCount] = 0.0;

float mcIntegrals[functionCount] = 0.0;

float totalSampleWeight = 0.0;

func updateEstimate(sample) {

totalSampleWeight += sample.weight;

float sampleWeightScale = 1.0 / totalSampleWeight;

Colour delta = sample.value;

float sampleLobeWeights[functionCount];

for functionIndex in 0..<functionCount {

float weight = evaluateBasisFunction(functionIndex,

sample.direction);

delta -= coefficients[functionIndex] * weight;

sampleLobeWeights[functionIndex] = weight;

}

for functionIndex in 0..<functionCount {

float weight = sampleLobeWeights[functionIndex];

float integralGuess = weight * weight;

mcIntegrals[i] += (integralGuess

- mcIntegrals[i])

* sampleWeightScale;

float basisIntegral = sampleWeightScale

+ (1.0 - sampleWeightScale)

* mcIntegrals[i];

float deltaScale = acceleration * weight

* sampleWeightScale / basisIntegral;

coefficients[functionIndex] += delta * deltaScale;

if nonNegativeSolve {

coefficients[functionIndex] = max(

coefficients[functionIndex],

Colour(0)

);

}

if gaussSeidelIteration {

delta *= 1.0 - deltaScale * weight;

}

}

}

Listing 1. Progressive Least-Squares Encoding.

18

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

1. Introduction

Linear bases have long been popular in computer graphics as a means of storing en-
coded radiance information in a compact format. The most common basis functions
used come from the spherical harmonics, a family of orthonormal basis functions that
can be efficiently encoded, decoded, and convolved in real time. However, spherical
harmonics are far from the only useful set of spherical basis functions; the Ambient
Cube [Mitchell et al. 2006], Ambient Dice [Iwanicki and Sloan 2017], Ambient High-
light Direction [Sloan and Silvennoinen 2018], and spherical Gaussian [Wang et al.
2009] basis functions have all seen use in real-time applications. These formats can
provide advantages in real-time reconstruction; for example, they can have reduced
bandwidth requirements or memory footprints compared to high-order spherical har-
monics, and some can be used to more accurately approximate specular irradiance.
However, these formats are nonorthonormal and are therefore costly to encode; en-
coding in a least-squares manner to minimize the error in the approximation requires
multiplication by an N ×N matrix, where N is the number of basis functions, either
as the final step in the encoding or per-sample.

Progressive encoding, in which the encoded result may be used immediately as
each sample is produced, is becoming increasingly important for interactive artist
workflows. For example, interactive lightmap baking tools require progressive visu-
alization of the baked lighting (Figure 1), and for nonorthonormal basis functions the
per-sample matrix multiplication necessary imposes significant computational cost.

Standard least-squares solves additionally impose no constraints upon the basis
coefficients. In recent years, functions such as spherical Gaussians have been used to
represent light sources, where each basis function and its coefficient form a lobe that
can be evaluated for irradiance according to some BRDF [Neubelt and Pettineo 2017].
If the basis coefficients are allowed to be negative, this introduces negative light,
which is physically implausible and produces visual artifacts (Figure 2). Nonnegative
solves avoid this issue, but in prior work could not be performed efficiently on the
GPU and required the full sample set.

(a) Least squares (b) Nonnegative least squares

Figure 2. Indirect specular from spherical Gaussian lightmaps.

19

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

In this paper, we propose a novel method for progressive least-squares encoding
for spherical basis functions. This method is efficient, can run on the GPU, converges
fairly quickly, and requires storing only the current amplitude bi and a weight for each
basis coefficient. Crucially, it allows the imposition of arbitrary constraints upon the
amplitudes by simply projecting the constraints onto the values at each iteration of
the algorithm.

2. Background

When representing a function in a linear basis comprised of a set of basis functions
Bi(s), the goal is to find the weight vector b that minimizes the error between the
target function f(s) and the approximation

∑
i biBi(s). Since, in general, f(s) may

not be exactly represented in the linear basis, we instead need to minimize the error
according to some metric.

One such metric is the least-squares error, defined as the squared difference be-
tween the true value and the approximation. The least-squares error may be eas-
ily solved for and provides good quality results, although it does disproportionately
weight outliers. Minimizing the least-squares error can be done in a functional-
analysis manner by solving the following equation:

min

∫
S

(
∑
i

biBi(s)− f(s))2 ds,

where S is the integration domain; typically, for radiance fields, this will be over the
sphere, but the same techniques apply over the hemisphere or over other arbitrary
domains.

To minimize, we differentiate the function with respect to each unknown bi and
then set the derivative to 0:

E =

∫
S

(
∑
i

biBi(s)− f(s))2 ds;

dE

bi
= 0.

Let g(s) =
∑

j bjBj(s)− f(s). d
bj

[
g(s)

]
= Bj(s) for each bj :

dE

bi
=
d

bi

[∫
S(
∑

i biBi(s)− f(s))2 ds
]

=
d

bi

[∫
S(g(s))2

]
ds

= 2

∫
S
g(s)

d

bi

[
g(s)

]
ds

20

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

= 2

∫
S
g(s)Bi(s) ds

= 2

(∑
j

bj

∫
S

(Bi(s) ·Bj(s))) ds− 2

∫
S

(Bi(s) · f(s)) ds

)
.

Therefore, by setting dE
bi

= 0, we have

∑
j

bj

∫
S

(Bi(s) ·Bj(s))) ds =

∫
S

(Bi(s) · f(s)) ds. (1)

On the right-hand side we have the raw moments, which, when performing Monte-
Carlo integration, are the projection of the sample values onto the basis functions;1

on the left, we have the weight vector b multiplied by the Gram matrix, where Gij =∫
S(Bi(s) · Bj(s)) ds. To find the weight vector b, we can multiply the raw moments

by the inverse of the Gram matrix:2


b1
b2
...
bn

 =


∫
S
(B1(s) ·B1(s))

∫
S
(B1(s) ·B2(s)) . . . (B1(s) ·Bn(s))∫

S
(B2(s) ·B1(s))

∫
S
(B2(s) ·B2(s)) . . . (B2(s) ·Bn(s))

...
...

. . .
...∫

S
(Bn(s) ·B1(s))

∫
S
(Bn(s) ·B2(s)) . . . (Bn(s) ·Bn(s))


−1 

∫
S
(B1(s) · f(s))∫

S
(B2(s) · f(s))

...∫
S
(Bn(s) · f(s))

 .
Note that, in the case of orthogonal basis functions, the Gram matrix G will be a

diagonal matrix, and for orthonormal basis functions (such as spherical harmonics)
the Gram matrix will be the identity matrix.

If the raw moments are computed by Monte-Carlo integration, the Gram matrix
can be applied to each sample to perform progressive encoding. Given a set of sam-
ples where the kth sample sk has the value f(sk), the weight vector b is given by

b =
1

k

∑
k

f(sk)(G−1B(sk)).

2.1. Jacobi and Gauss-Seidel Iteration

Jacobi and Gauss-Seidel iteration are two iterative algorithms for solving systems of
linear equations in a least squares manner. At each step, Jacobi iteration applies the

1Projecting the sample values onto the basis functions simply means averaging the result of multi-
plying each sample value f(s) by each basis function Bi(s).

2The integration variable ds is here omitted for compactness.

21

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

following method to solve the equation Ax = b, where A is a matrix and x and b are
vectors:

x
(k+1)
i =

bi −
∑

j 6=iAijx
(k)
j

Aii
.

Gauss-Seidel iteration differs only in that it updates each element of the x vector
in turn and uses the updated elements to calculate the rest; Jacobi iteration will com-
pute the entirety of the x(k+1) vector before overwriting any part of the previous x(k)

vector.
In their traditional forms, neither Jacobi nor Gauss-Seidel is particularly useful

for progressive least-squares encoding in linear bases. If applied to the full system
variant, we are required to have all samples in advance in the form of accumulated
moments, making the process nonprogressive; alternatively, a system that minimizes
the error with regard to each sample produces an unusably noisy estimate to the b vec-
tor.

Both Jacobi and Gauss-Seidel iteration only conditionally converge. Jacobi iter-
ation is known to converge when the system is diagonally dominant; in the case of
least-squares projection, this means∫

S
Bi(s)

2 ds >
∑
j,j 6=i

|
∫
S
Bi(s)Bj(s) ds|

for all i, although it may also converge under other conditions. Gauss-Seidel iteration,
on the other hand, will converge in any case where the Gram matrix is symmetric
and positive definite, which will always be the case if the basis functions are strictly
positive-valued. Under both Jacobi and Gauss-Seidel iteration, a more diagonally
dominant matrix will converge more quickly than a less diagonally dominant one.

3. Progressive Least Squares

The conceptual underpinning of the progressive least-squares method is to try to eval-
uate how accurately

∑
i biBi(s) approximates each incoming sample f(s) and to ad-

just each basis coefficient bi by the difference in a form of gradient descent. More
formally, the method is a special case of Jacobi or Gauss-Seidel iteration for when the
function space is iteratively sampled.

To derive the method, we start with Equation (1) and solve for a single bi, assum-
ing that all bj are known from a prior iteration:∫

S
(Bi(s) · f(s)) ds =

∑
j

bj

∫
S

(Bi(s) ·Bj(s)) ds

= bi

∫
S
Bi(s)

2 ds+
∑
j,j 6=i

bj

∫
S

(Bi(s) ·Bj(s)) ds.

22

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

Then,

bi

∫
S
Bi(s)

2 ds =

∫
S

(Bi(s) · f(s)) ds−
∑
j,j 6=i

bj

∫
S

(Bi(s) ·Bj(s)) ds.

We can bring the entire right-hand side under the same integral due to the linearity
of integration:

bi

∫
S
Bi(s)

2 ds =

∫
S

(Bi(s) · f(s)−
∑
j,j 6=i

bj(Bi(s) ·Bj(s))) ds

=

∫
S

(Bi(s) · (f(s)−
∑
j,j 6=i

bjBj(s))) ds.

Finally, we end up with the following equation for bi:

bi =

∫
S(Bi(s) · (f(s)−

∑
j,j 6=i bjBj(s))) ds∫

S Bi(s)2 ds
.

If we assume an iterative process and use the values from the previous iteration at
each step, this becomes

b
(k+1)
i =

∫
S(Bi(s) · (f(s)−

∑
j,j 6=i b

(k)
j Bj(s))) ds∫

S Bi(s)2 ds
.

There are two integrals here that can be computed iteratively using Monte Carlo
integration. The denominator,

∫
S Bi(s)

2 ds, can be precomputed; however, it is more
accurate in practice to instead compute the denominator in lockstep with the numera-
tor since doing so helps to cancel out sampling bias. At every step of the algorithm,
the denominator is stored separately from the b vector, requiring for radiance storage
C + 1 values per basis function where C is the number of color channels.

Using this iterative framework, we can simplify the numerator by introducing and
factoring out b(k)i :

b
(k+1)
i =

∫
S(Bi(s) · (f(s)−

∑
j,j 6=i b

(k)
j Bj(s))) ds∫

S Bi(s)2 ds

=

∫
S(Bi(s) · (f(s)−

∑
j b

(k)
j Bj(s) + b

(k)
i Bi(s))) ds∫

S Bi(s)2 ds

=

∫
S(Bi(s) · (f(s)−

∑
j b

(k)
j Bj(s))) ds+ b

(k)
i

∫
S Bi(s)

2 ds∫
S Bi(s)2 ds

≈
∫
S(Bi(s) · (f(s)−

∑
j b

(k)
j Bj(s))) ds∫

S Bi(s)2 ds
+ b

(k)
i .

23

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

Let ∆ = f(s)−
∑

j bjBj(s), or the difference between the current sample value
and the current estimate for the current sample’s direction. The value ∆ is constant
for all coefficients within a given a particular sample and therefore only needs to be
computed once per iteration. Therefore, for each i, we can compute the bi estimate
for a particular sample in direction ωs as

Ests(b
(k+1)
i ) =

Bi(ωs) ·∆s∫
S Bi(s)2 ds

+ b
(k)
i .

Welford’s algorithm [Welford 1962] is a numerically stable algorithm for comput-
ing the mean and variance of some sample set. At each step, the mean µ is updated
with a new sample s as follows:

µ(k+1) = µ(k) +
s− µ(k)

k
.

Therefore, to accumulate the various Monte Carlo estimates for b (which is simply
a matter of averaging the estimates for each sample given uniform random sampling),
we can apply

b
(k+1)
i = b

(k)
i +

1

k
(
Bi(ωs) ·∆s∫
S Bi(s)2 ds

+ b
(k)
i − b

(k)
i )

= b
(k)
i +

1

k
(
Bi(ωs) ·∆s∫
S Bi(s)2 ds

).

This method will iteratively converge to the least-squares solution for b (Figure 3).
The speed of its convergence depends on the sample distribution, the initial estimates,
and an acceleration factor α. It turns out to be possible to increase the convergence
rate of the method at the cost of increased visible noise during the solve (since the
solution will overshoot and correct itself) by performing, at each step,

b
(k+1)
i = b

(k)
i +

α

k
(
Bi(ωs) ·∆s∫

S Bi(s)2
).

A reasonable range for α is between 1 and 5. In our tests, we found α = 3 to
provide the quickest convergence in a range of scenarios, although the best choice
depends on how diagonally dominant the system is and how many samples will be
taken.

It is additionally possible to include a per-sample weight if nonuniform sampling
or filtered accumulation is being performed using West’s extension to Welford’s algo-
rithm [West 1979]. Given a weight ws for sample s, the process becomes

b
(k+1)
i = b

(k)
i +

α ws∑k
nwn

(
Bi(ωs) ·∆s∫

S Bi(s)2
).

i.e., the samples are multiplied by their weight when accumulating and are averaged
by dividing by the total sample weight rather than the sample count.

24

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

(a) The Wells HDR environment map
[Vogl 2010].

(b) Naive projection onto 12 spherical Gaus-
sian lobes (RMSE: 0.470525).

(c) A least-squares fit with 12 spherical
Gaussian coefficients (RMSE: 0.455862).

(d) Progressive least-squares encoding using
12 spherical Gaussian coefficients (RMSE:
0.455971).

Figure 3. Comparison of the naive projection, least-squares, and progressive least-squares
encoding methods.

3.1. Evaluating the Denominator

Special care must be taken in evaluating the denominator I =
∫
S Bi(s)

2 ds. As
already mentioned, the denominator should be computed in lockstep with the numer-
ator; as each basis function’s weight Bi(ω) is evaluated, the value of I should be
updated to be the average of allBi(ω)2 values encountered thus far. However, for low
sample counts, the b estimate will be very noisy, and, since the range of B2

i is [0, 1]

for many basis functions, noise in the estimate can be greatly amplified by noise in I .
We have found two effective methods to mitigate this. The first is to clamp the

value used in the denominator for calculating bi to at least the precomputed true value
of I . The second method, which has slightly lower error on our test sets, is to inter-
polate from 1 to the true value based on the sample index k:

I
(k)
i =

1

k
+ (1− 1

k
) · 1

k

k∑
j=1

Bi(ωj)
2.

3.2. Progressive Gauss-Seidel Iteration

The efficacy of this technique is conditional upon the convergence of Jacobi or Gauss-
Seidel iteration given a particular basis function: the greater overlap there is between

25

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

the basis functions, the slower the system will converge, and if the system is not
diagonally dominant it may not converge at all using Jacobi iteration. In these cases,
we can instead use a form of Gauss-Seidel iteration by updating the value of ∆ after
solving for every basis coefficient:

∆
(k+1)
i+1 = ∆

(k+1)
i + b

(k)
i Bi(ω)− b(k+1)

i Bi(ω)

= ∆
(k+1)
i + (b

(k+1)
i − α

k
(
Bi(ω) ·∆(k+1)

i∫
S Bi(s)2 ds

))Bi(ω)− b(k+1)
i Bi(ω)

= ∆
(k+1)
i − α

k
(
Bi(ω) ·∆(k+1)

i∫
S Bi(s)2 ds

)Bi(ω)

= ∆
(k+1)
i (1− α

k

Bi(ω)2∫
S Bi(s)2 ds

).

Using Gauss-Seidel iteration, this algorithm will converge to the least-squares
solution in the unconstrained case provided that Gauss-Seidel iteration on the full
system would converge. As a rough heuristic, this progressive least-squares algorithm
exhibits similar error to performing somewhere between five and eight iterations of
the Gauss-Seidel algorithm on the full system set up in a functional-analysis least-
squares manner (i.e., Gb = m, where G is the Gram matrix, b is the weight vector,
and m is the vector of projected moments). This is true regardless of whether Gauss-
Seidel or Jacobi iteration is used within the algorithm; however, this algorithm will
only converge using Jacobi iteration in situations where Jacobi iteration on the full
system would converge.

4. Nonnegative Encoding

Extra constraints may be introduced by projecting the basis amplitude onto those
constraints after every iteration; for example, a nonnegative solve can be achieved by
clamping the amplitude to be nonnegative after each sample is added. Doing so may
prevent the system from ever reaching the true value and has no formal mathematical
basis, although intuitively you may reason that subsequent samples will compensate
for the constraint in their solve. In practice, the results from nonnegative clamping
come very close to those achieved using a dedicated nonnegative solver on the full
system (Figure 4).

5. Notes and Limitations

The efficacy of this technique is conditional upon the distribution of the incoming
samples. If the sample points are distributed across the sampling domain in an un-
correlated or negatively correlated fashion (white noise or blue noise) then the result
will converge to the minimum mean-squared error; however, if the sample points are

26

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

(a) The Uffizi HDR environment map [De-
bevec 1998].

(b) A least-squares fit using 12 spherical
Gaussian coefficients (RMSE: 3.07549).

(c) A nonnegative least-squares fit using
12 spherical Gaussian coefficients (RMSE:
3.13181).

(d) Progressive nonnegative least-squares en-
coding using 12 spherical Gaussian coeffi-
cients (RMSE: 3.13928).

Figure 4. Progressive least-squares encoding with negative vs. nonnegative lobe amplitudes.

highly correlated the result will be very poor. Fortunately, we naturally want the sam-
pling pattern to be negatively correlated in most contexts where we are accumulating
radiance samples progressively; in path tracing, for instance, stratified sampling is of-
ten used to ensure that successive samples are not over-representative of a particular
direction. Note also that progressive sample sequences that converge quickly within
the first few samples are ideal, while sample sets that cover the sample space only
once all samples have been taken are very poor choices (Figure 5).

(a) Progressive least-squares encoding with
samples from the Halton 2-3 sequence.

(b) Progressive least-squares encoding with
correlated samples from the Hammersley set.

Figure 5. Progressive least-squares encoding with correlated vs. decorrelated samples.

27

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

If the incoming sample directions are defined uniformly over the hemisphere (as is
the case in lightmap baking) but the integration domain is over the sphere, additional
samples should be added after each true sample with a direction opposite the upper
hemisphere direction and a radiance value of zero.3 This is particularly important
when using fits to approximate some other quantity, such as irradiance from the en-
coded function; integration over the hemisphere requires clipping of the BRDF by the
sampling hemisphere in addition to the BRDF hemisphere and each basis function’s
domain.

The algorithm is reasonably well-behaved in the presence of noisy input, such
as in cases where the function f(s) is estimated by Monte-Carlo integration. With
that said, in lightmap baking contexts, neighbouring texels may reach differing local
minima, resulting in a noisier image than a functional-analysis solve would provide
(Figure 6).

As outlined in Section 2.1 the convergence rate of this algorithm is largely de-
termined by how diagonally dominant the system is. This means that systems with
highly overlapping basis functions may converge slowly and have higher energy in
their encoding compared to a system using more orthogonal basis functions (Fig-
ure 7).

6. Implementation

This method has been implemented and tested across a range of different software
on both the CPU and GPU. Initial prototyping was done within the open source tool
Probulator [O’Donnell 2016], and was later tested within the open source tool The
Baking Lab [Pettineo 2018]; the GPU implementation was tested within a closed-
source engine.

For the GPU implementation, samples were traced from locations in a lightmap
and were accumulated into a 32-bit float RGBA render target per basis function, with
the spherical integral I stored in the alpha channels. A single-channel 32-bit float
render target was also used to store the total accumulated sample weight and results
were splatted across multiple texels using filtered weights.

Care must be taken with regard to the storage of the intermediate weight vector b.
In particular, 16-bit floating point is insufficiently precise to capture the minute ad-
justments to the weights and will cause biasing towards large sample values. In our
implementation, all intermediate results were stored in 32-bit floating point; prelimi-
nary tests done with 64-bit floating point showed minimal improvement in accuracy
over 32-bit.

3Similar considerations apply when performing least squares by attempting to fit the basis functions
evaluated in the sample directions to the sample values directly; doing so when samples are distributed
over a hemisphere is an approximation to functional-analysis least squares over the hemisphere.

28

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

Least Squares Progressive Least Squares

32 Samples

RMSE 0.566 0.601

64 Samples

RMSE 0.495 0.507

128 Samples

RMSE 0.472 0.493

256 Samples

RMSE 0.462 0.472

512 Samples

RMSE 0.461 0.461

Figure 6. Convergence rate of the progressive least-squares encoding method on the Wells
HDR environment map [Vogl 2010] with twelve spherical Gaussian coefficients (λ = 8).

29

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

α = 1.0  

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
M

SE
 fo

r 
Pr

og
re

ss
iv

e 
Le

as
t-

Sq
ua

re
s 

vs
. L

ea
st

-S
qu

ar
es

0%

10%

20%

30%

40%

50%

Sample Count

32 64 128 256 512 1024 2048 4096 8192 16384

! = 0.25 ! = 0.5 ! = 1.0 ! = 1.5 ! = 3.0 ! = 5.0 ! = 7.0 ! = 10.0 ! = 12.0

α = 3.0  

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 R
M

SE
 fo

r 
Pr

og
re

ss
iv

e 
Le

as
t-

Sq
ua

re
s 

vs
. L

ea
st

-S
qu

ar
es

0%

10%

20%

30%

40%

50%

Sample Count

32 64 128 256 512 1024 2048 4096 8192 16384

! = 0.25 ! = 0.5 ! = 1.0 ! = 1.5 ! = 3.0 ! = 5.0 ! = 7.0 ! = 10.0 ! = 12.0

Figure 7. Percentage increase in error vs. sample count for different spherical Gaussian lobe
widths (λ, where lower means a wider lobe) and acceleration factors, measured on the Grace
HDR environment map [Debevec 1998].

30

http://jcgt.org


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

Acknowledgements

Many thanks to Peter-Pike Sloan for his assistance in understanding the functional-analysis
least squares method, and to Matt Pettineo for implementing an earlier version of the algo-
rithm in his open-source tool The Baking Lab. Thank you also to my thesis supervisors,
Taehyun Rhee and Andrew Chalmers, for their help and support during the process that led to
this work.

Publication Note

An earlier version of this paper was published within the thesis Interactive Generation of
Path-Traced Lightmaps [Roughton 2019].

References

DEBEVEC, P. 1998. Rendering Synthetic Objects into Real Scenes: Bridging Tradi-
tional and Image-based Graphics with Global Illumination and High Dynamic Range
Photography. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’98, 189–198.
doi:10.1145/280814.280864. 27, 30

IWANICKI, M., AND SLOAN, P.-P. 2017. Ambient Dice. In Eurographics Symposium on
Rendering - Experimental Ideas & Implementations, Eurographics Association, Goslar,
Germany, 19–29. URL: https://doi.org/10.2312/sre.20171191. 19

MITCHELL, J., MCTAGGART, G., AND GREEN, C. 2006. Shading in Valve’s
Source Engine. In ACM SIGGRAPH 2006 Courses, ACM, New York, NY, USA,
SIGGRAPH ’06, 129–142. URL: http://doi.acm.org/10.1145/1185657.
1185832, doi:10.1145/1185657.1185832. 19

NEUBELT, D., AND PETTINEO, M., 2017. Physically Based Shading in Theory
and Practice: Advanced Lighting R&D at Ready At Dawn Studios. Presented at
SIGGRAPH 2015. URL: https://blog.selfshadow.com/publications/
s2015-shading-course/. 19

O’DONNELL, Y., 2016. Probulator. URL: https://github.com/kayru/

Probulator. 28

PETTINEO, M., 2018. The Baking Lab. URL: https://github.com/TheRealMJP/
BakingLab. 17, 28

ROUGHTON, T. 2019. Interactive Generation of Path-Traced Lightmaps. Master’s thesis,
Victoria University of Wellington. URL: https://torust.me/thesis. 31

SLOAN, P.-P., AND SILVENNOINEN, A. 2018. Directional lightmap encoding insights. In
SIGGRAPH Asia 2018 Technical Briefs, ACM, New York, NY, USA, 1–3. URL: https:
//doi.org/10.1145/3283254.3283281, doi:10.1145/3283254.3283281. 19

VOGL, B., 2010. Light Probes. URL: http://dativ.at/lightprobes/. 25, 29

WANG, J., REN, P., GONG, M., SNYDER, J., AND GUO, B. 2009. All-Frequency Rendering
of Dynamic, Spatially-Varying Reflectance. ACM Trans. Graph. 28, 5 (Dec.), 133:1133:10.
doi:10.1145/1618452.1618479. 19

31

http://jcgt.org
https://doi.org/10.2312/sre.20171191
http://doi.acm.org/10.1145/1185657.1185832
http://doi.acm.org/10.1145/1185657.1185832
https://blog.selfshadow.com/publications/s2015-shading-course/
https://blog.selfshadow.com/publications/s2015-shading-course/
https://github.com/kayru/Probulator
https://github.com/kayru/Probulator
https://github.com/TheRealMJP/BakingLab
https://github.com/TheRealMJP/BakingLab
https://torust.me/thesis
https://doi.org/10.1145/3283254.3283281
https://doi.org/10.1145/3283254.3283281
http://dativ.at/lightprobes/


Journal of Computer Graphics Techniques
Progressive Least-Squares Encoding for Linear Bases

Vol. 9, No. 1, 2020
http://jcgt.org

WELFORD, B. P. 1962. Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics 4, 3, 419420. URL: http://www.jstor.org/stable/
1266577. 24

WEST, D. H. D. 1979. Updating mean and variance estimates: An improved method.
Commun. ACM 22, 9 (Sept.), 532–535. URL: http://doi.acm.org/10.1145/
359146.359153, doi:10.1145/359146.359153. 24

Author Contact Information
Thomas Roughton
t.roughton@me.com

Thomas Roughton, Progressive Least-Squares Encoding for Linear Bases, Journal of Com-
puter Graphics Techniques (JCGT), vol. 9, no. 1, 17–32, 2020
http://jcgt.org/published/0009/01/02/

Received: 2019-05-24
Recommended: 2019-10-09 Corresponding Editor: Angelo Pesce
Published: 2020-01-25 Editor-in-Chief: Marc Olano

c© 2020 Thomas Roughton (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

32

http://jcgt.org
http://www.jstor.org/stable/1266577
http://www.jstor.org/stable/1266577
http://doi.acm.org/10.1145/359146.359153
http://doi.acm.org/10.1145/359146.359153
mailto:t.roughton@me.com
http://jcgt.org/published/0009/01/02/
http://creativecommons.org/licenses/by-nd/3.0/

