
Journal of Computer Graphics Techniques
Rendering Layered Materials with Anisotropic Interfaces

Vol. 9, No. 2, 2020
http://jcgt.org

Rendering Layered Materials
with Anisotropic Interfaces

Philippe Weier
Unity Technologies, EPFL

Laurent Belcour
Unity Technologies

Figure 1. Our model enables the rendering of layered BSDFs with anisotropic interfaces.

Abstract

We present a lightweight and efficient method to render layered materials with anisotropic in-
terfaces. Our work extends the statistical framework of Belcour [2018] to handle anisotropic
microfacet models. A key insight to our work is that when projected on the tangent plane,
BRDF lobes from an anisotropic GGX distribution are well approximated by ellipsoidal dis-
tributions aligned with the tangent frame: its covariance matrix is diagonal in this space. We
leverage this property and perform the adding-doubling algorithm on each anisotropy axis
independently. We further update the mapping of roughness to directional variance and the
evaluation of the average reflectance to account for anisotropy. We extensively tested this
model against ground truth.
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1. Introduction

In physically-based rendering engines, appearance models are key to produce realistic
images [Burley 2012]. One way to enrich the set of materials models is to incorporate
structure at the surface of objects, such as a brushing direction for metals. This is
typically done with anisotropic material models. Another way to enrich the models is
to build more complex material models by simulating light bouncing between many
strata before leaving the surface. This can be achieved using layered materials mod-
els [Jakob et al. 2014; Belcour 2018; Zeltner and Jakob 2018; Guo et al. 2018] where
the surface of an object consists of many plane-parallel interfaces with microfacet
geometries.

In this work, we aim to build a new reflectance model for anisotropic layered
materials that is compatible with real-time constraints. Since there is no closed form
to evaluate anisotropic layered materials, numerical methods are required. For effi-
cient evaluation, one can precompute the layered bidirectional reflectance distribution
function (BRDF) and store it using an harmonic representation [Jakob et al. 2014;
Zeltner and Jakob 2018]. Another way to robustly evaluate the layered BRDF is to
stochastically evaluate it [Guo et al. 2018]. However, these methods require either
long per-material precomputations, large storage requirements, or high sample counts
to be correctly evaluated. We build our model on a more efficient and lightweight
method that approximates light transport in layered BRDFs and achieves real-time
performance [Belcour 2018].

In this paper, we extend this latter model to render anisotropic layered materials
in an offline scenario. Our key insight is that BRDF lobes from anisotropic GGX
normal distribution, once projected on the tangent plane, are well approximated by
an ellipsoidal distribution aligned with the tangent-frame’s axis. We leverage this
property to extend the isotropic model to handle anisotropy.

Concurrently, Yamaguchi et al. [2019] extended the layered BRDF model of Bel-
cour to handle interfaces with anisotropic normal distributions. Both our work and
theirs are built on the observation that projected anisotropic BRDF lobes are aligned
with the tangent frame. They further looked at the case where the surface’s anisotropy
is not aligned with the tangent frame, which we omit here; their analysis would ap-
ply as well to our method. Because real-time pre-integration of light sources with
anisotropic BRDFs is not yet feasible, they targeted interactive performance and re-
lied on Monte-Carlo integration. Here, we focus on rendering quality rather than on
efficiency. Also, our work goes a step further and extends two elements that Yam-
aguchi et al. reused from the isotropic model: the mapping of roughness to variance
and the evaluation of the average reflectance at an interface.

Our contributions are the following:
• An analysis of how anisotropic BRDF lobes behave differently in comparison

to isotropic ones in the statistical framework of Belcour and how we can gen-
eralize the isotropic model using a decorrelation approximation (Section 3.1).
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• A new method to efficiently evaluate the average reflectance of an anisotropic
rough surface based on Schlick’s Fresnel approximation (Section 3.2).

• A new method to find a more accurate conversion of roughness to variance,
how it can be used to represent anisotropic materials, and the improvements it
brings to the isotropic case (Section 3.3).

• A validation of our offline implementation of this generalized model for anisotropic
materials against a ground truth (Sections 4 and 5).

2. The Isotropic Layered BSDF Model

In this section, we summarize the work of Belcour [2018] (see Figure 2). We refer
readers to the original article for more details.

Mixture Model. In this model, light transport in the layered structure is approximated
as a BSDF, ρ, that is a mixture of microfacet models with GGX normal distribution
(Figure 2 (d)):

ρ(ωi,ωo) =
∑
k

ρk (ωk,ωo;Rk, αk) ,

where ωi and ωo are, respectively, the incoming and outgoing directions, ρk is a GGX
microfacet model with roughness αk, incident direction ωk, and directional albedo
Rk that we will call a BRDF lobe:

ρk (ωk,ωo;Rk, αk) =
RkG(ωk,ωo)D(ωh, αk)

4〈ωk,n〉〈ωo,n〉
,

where ωh = ωk+ωo

||ωk+ωo|| is the half-vector direction, D(ωh) is the normal distribution
function, and G(ωi,ωo) is the shadowing/masking term.

(a) Global statistics (b) Atomic operator on statistics (c) Combining layers’ statistics (d) Resulting mixture of BSDFs

Figure 2. (a) Belcour’s model expresses the directional statistics (energy, mean, and variance)
of a layered BSDF in the projected plane; (b) Instead of computing the complete transport,
it tracks a statistical summary at each step. To do so, it decomposes light transport in dif-
ferent atomic operations (reflection, refraction, etc.); (c) Atomic operations are combined to
evaluate multiple scattering between layers with a new adding-doubling algorithm working
on statistics; (d) Finally, the model instantiates multiple BRDF lobes from those statistics to
approximate the entire layered BSDF. (Figure reproduced with permission.)
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The number of BRDF lobes is defined by the number of interfaces. The param-
eters of the kth BRDF lobe are derived from the statistics of the outgoing radiance
of paths interacting up to the kth interface before exiting the surface (Figure 2 (c)).
In this work, we concentrate on surface scattering only. However, our method is still
compatible with forward scattering and absorption by participating media.

Statistical Analysis. The statistics studied by Belcour [2018] are the first three mo-
ments (i.e., energy, mean, and variance)1 of directional radiance projected orthogo-
nally on the unit disc. In this projected space, the BRDF lobe of an isotropic mi-
crofacet model such as GGX is close to radially symmetric. Thus, only the 1D ra-
dial variance of the lobe was studied. Mappings from moments (energy, mean, and
variance) to the inputs of a BRDF lobe (directional albedo, incident direction, and
roughness) are numerically computed for a microfacet BRDF model with GGX nor-
mal distribution [Walter et al. 2007]. In this setup the conversion from roughness to
variance σ = f(α) and its inverse α = f−1(σ) provides a way to retrieve the equiv-
alent roughness of a GGX lobe for a given variance; the conversion from incident
direction ωi to the first moment µi uses the orthographic projection µi = [ωi.x,ωi.y]

The moments of all paths interacting up to the kth interface are computed using
an adding-doubling algorithm [van de Hulst 1980] that takes as input and outputs
zeroth-, first- and second-order moments (instead of radiance or irradiance for the
original algorithm). This algorithm is made possible by the decomposition of light
transport into atomic operators acting on the statistics of radiance. The different op-
erators for surface interaction are summarized in Table 1. They require the knowl-
edge of the roughness to variance mapping σ = f(α) and of the average reflected

Rough Reflection Rough Refraction

energy eR = ei × r12 eT = ei × t12

mean µR = −µi µT = −η12 µi

variance σR = σi + f(α12) σT =
σi
η12

+ f(s× α12)

Table 1. The atomic operators approximate the outgoing radiance’s energy e, mean µ, and
variance σ given an incident radiance’s energy ei, mean µi, and variance σi. For each statistic,
the exponent indicates whether it has to be used for a reflected or transmitted lobe (for example
σR for the variance of a reflected lobe). Those operators require the knowledge of the average
reflected/transmitted energy, r12 and t12, the index of refraction between the two medium η12,
the interface’s roughness α12, the fake refraction roughness scaling s, and the roughness to
variance mapping, σ = f(α).

1We also use an abuse of notation and write σ to denote the variance.
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(and transmitted) radiance at an interface:

r12 =

∫
Ω
F (ωi,ωo)

Dωi(ωh)G2(ωi,ωo)

G1(ωi)
dωh,

where Dωi(ωh) is the distribution of visible normals, G2 and G1 are the shadowing-
masking functions [Heitz 2018], and F (ωi,ωo) is the Fresnel reflectance. For dielec-
tric interfaces, the average transmitted energy is t12 = 1− r12.

Analytical Multiple Scattering. Since all operators are affine transformations of the
statistics, multiple scattering between two interfaces has an analytical form. For ex-
ample, the average energy of light reflected between two interfaces and finally trans-
mitted through the top one (denoted e∞R ) is approximated by

e∞R '
∞∑
i=0

t12 r23 [r21 r23]
i t12 ei,

=
∞∑
k=0

eiR,

where eiR is the incident radiance (usually set to one). This approximation of e∞R has
an analytical form:

e∞R '
r23 t

2
12

[1− r12 r23]
ei.

Similarly, the average transmitted radiance also has a closed form (see Listing 3 in
Appendix A, lines 54–48). Note that those closed forms assume that light paths are
not more angularly spread after two bounces on the same interface than after one
bounce.

Under the same hypothesis, the average variance of light paths interacting with
two interfaces before being transmitted through the top one is approximated using a
weighted sum. Since the variance of a weighted sum of distribution is the weighted
sum of the the distributions’ variances, the average variance has a closed-form solu-
tion (see Listing 3, lines 69–71, and the original paper’s Equation (38)).

Adding-Doubling. The adding-doubling algorithm leverages the fact that the average
distribution of light interacting with two interfaces is equivalent to a reflection oper-
ator (the same argument holds for refraction). To compute the statistics of radiance
reflected and refracted by a stack of layers, the adding-doubling algorithm iteratively
stacks interfaces (starting from the top to the bottom in our case) and tracks the re-
flected and transmitted statistics for light coming from above the surface and light
coming from below using the previously mentioned closed form (see Listing 3 in
Appendix A). With these building blocks, we can build any layered material configu-
ration.
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3. The Anisotropic Layered BSDF Model

We extend the statistical model described in the previous section to support anisotropic
interfaces. Our layered anisotropic BSDF model is expressed as a weighted sum of
anisotropic GGX BRDF lobes:

ρ(ωi,ωo) =
∑
k

ρk (ωk,ωo;Rk,αk) ,

where αk = (αk,x, αk,y) is the anisotropic roughness for the GGX microfacet model
ρk. We use the adding-doubling strategy on the statistics of the incident and outgoing
radiance to estimate those parameters. However, the adding-doubling algorithm is
no longer performed on a scalar value, but on a vector of two components. This is
possible since the BRDF lobes are axis-aligned (see Section 3.1)
In the following sections, we explain:

• Our analysis of BRDF lobes in the tangent plane (Section 3.1);

• How we estimate the outgoing average energy from an anisotropic BSDF lobe
to estimate the outgoing energy and mix the variances (Section 3.2);

• How to convert an anisotropic roughness to a couple of linear variance using
our new mapping (σx, σy) = f(αx, αy) (Section 3.3).

3.1. Analysis of Anisotropic BRDFs

We studied the shape of anisotropic BRDF lobes when projected in the unit disk
(see Figure 3). For the GGX microfacet model, we found that the projected dis-
tribution was aligned with the anisotropy axis (see Figure 4 and our supplemental
material). This insight enables us to treat the variance along each axis independently.
Instead of performing the adding-doubling algorithm on a scalar variance, we per-
form it on a two-component variance vector (one component per anisotropy axis).
See Appendix A for a detailed implementation of the algorithm.

z

x

y

(a) Spherical space

y

x

(b) Projective space

Figure 3. To study the statistics of the BRDF lobe resulting from a GGX distribution (a) in
the spherical domain, we use the space of directions projected onto the tangent plane (b).
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Figure 4. The shape of the projected BRDF lobe with a GGX distribution remains axis-
aligned whatever the incident direction ωi = (θ,φ) (indicated by the cross) or roughness
α = (αx, αy). As shown, both when the incident direction is aligned with the tangent frame
(left) or unaligned (right), the outgoing lobe is still axis-aligned with the tangent frame.

A dependence between the anisotropy axes is still maintained by the estima-
tion of the average reflected/transmitted energy in an anisotropic BRDF lobe (see
Evaluate SchlickFresnelAniso function call, line 42 of Listing 3), and we
detail it in Section 3.2. The last element not described is the conversion from rough-
ness to variance (see roughnessToVariance and varianceToRoughness)
function calls in Listing 3), and we describe it in Section 3.3).

3.2. Average Energy for One Interaction

In the isotropic case, the average reflectance, r12, is tabulated on a 4D regular grid.
However, Bati et al. [2019] found that for offline rendering, this pre-integration pro-
vided little benefit. We followed their finding and removed both the average re-
flectance and correction term for total internal reflection in our offline implemen-
tation. However, in our real-time implementation, we found that the pre-integrated
FGD term has a non-negligible visual impact for the first lobe. In game engines, the
Fresnel reflectance is approximated using Schlick’s Fresnel [1994]. This approxi-
mation separates the Fresnel in two terms, which simplifies its pre-integration with
a split-sum [Karis 2013]. Including the effect of anisotropy in such a model would
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require moving the 2D split-sum texture to a 4D one, accounting for the view vec-
tor’s azimuth and the second roughness. We introduce a method that does not require
additional storage. We start from Schlick’s Fresnel formulation,

F (cos(θD)) = R0 + (1−R0)
(
1− cos(θD)

5
)
,

where θD is the difference vector in the half-angle parametrization and R0 is the
reflectance at normal incidence defined by the refractive index. The directional albedo
is thus

r12(ωi) =

∫
Ω
F (〈ωi,ωh〉)

Dωi(ωh)G2(ωi,ωo)

G1(ωi)
dωh,

where G(., .) is the shadowing/masking function and D(.) is the normal distribution
function. Instead of searching for a separable form for r12(ωi), which would be
difficult due to the integral over solid angles (remember that reflected radiance is
separable in the projected disc space), we found a solution that only required scaling
the input ωi of the isotropic r12(ωi).

Anisotropic Fetch We found that the shape of the average reflectance of Schlick’s
Fresnel with an anisotropic BSDF lobe was close to a stretching of the average re-
flectance of an isotropic BSDF lobe (see Figures 5 (a) and (b)). Hence, to evaluate
the anisotropic average reflectance, we stretch the incident direction by the difference
in roughness: ω′x = 1

1+∆α2
x
ωx, and ω′y = 1

1+∆α2
y
ωy; and obtain ωz from ω′x and

ω′y). Listing 1 shows our implementation. With this method, we only need to store
the split-sum texture of Karis and modify the fetch function to handle the anisotropy.
Figure 5 shows how our method better reproduces the anisotropic effect of average
Fresnel in a white-furnace environment. Our method extends to the general form of
the pre-integrated Fresnel reflectance. Please refer to our supplemental material for
an interactive validation.

(a) Karis [2013] (b) Reference (c) Ours

Figure 5. Preintegrating the Fresnel term using the split-sum approximation (a) fails to ac-
count for the anisotropy of the lobe (b). In this white-furnace setting with α = (0, 0.5), our
solution (c) correctly captures the anisotropic shape of the Fresnel term.
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1 void Evaluate_SchlickFresnelAniso(vec3 wi, vec3 F0, vec2 alpha,
2 out vec3 R, out vec3 T) {
3
4 // Scale the incident direction
5 float min_axy = min(alpha.x, alpha.a.y);
6 float delta_x = alpha.x - min_axy;
7 float delta_y = alpha.y - min_axy;
8 wi.xy = vec2(wi.x/(1.0+delta_x*delta_x), wi.y/(1.0+delta_y*delta_y));
9 wi.z = sqrt(1.0 - dot(wi.xy, wi.xy)));

10
11 // Eval the part that is used for the split integral
12 vec2 splitSum = textureLod(t_splitSum, vec2(wi.z, min_axy), 0.0).xy;
13
14 // Return the result
15 // If the interface is not transmissive, do not compute T
16 R = vec3(1)*splitSum.x + F0*splitSum.y;
17 T = 1.0 - R;
18 }

Listing 1. We evaluate the anisotropic r12 term from the classical split-sum element by scaling
the incident direction.

Note that this method is not restricted to the layered BSDF model and could be applied
to surface shading with anisotropic microfacet models. In our implementation, we
did not look at the problem of multiple scattering in the micro-surface. However, the
method of Turquin [2019] could be used to rescale the missing energy.

3.3. A New Linear Mapping

Due to the shape of the GGX microfacet distribution (notably its tail), the reflection
operator on variance is inaccurate. More precisely, it tends to over-estimate the vari-
ance and leads to over-blurring. To compensate, Belcour defined a corrected variance
space, the linear variance space. The idea is to modify the conversion from roughness
to variance to correct for this over-estimation.

Say we have an invertible function f that converts an input roughness into
variance:

σ = f(α) , andα = f−1(σ).

Ideally, if the incident radiance were distributed as a Gaussian and the reflection
operator were a convolution by a Gaussian kernel, the variance of the outgoing re-
flected radiance would be

σo = f(α) + σi,

where α is the roughness of the surface and σi (respectively, σo) is the variance of
the incident (respetively, outgoing) radiance. Thus, the variance after two bounces of
a Dirac incident lighting would be

σ12 = f(α1) + f(α2). (1)
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In this work, we generate this linear variance space using non-linear fitting of paramet-
ric curves f and f−1. We do so by exploiting Equation (1) and computing numerically
the variance of a single reflection for a varying anisotropic roughness σ = fd(α)

(see Figure 6 (a)). By numerically finding the inverse of this function, we obtain
α = f−1

d (σ), and we can use this mapping to extract the single scattering roughness
that correspond to a given variance (such variance could come from light scattered
multiple times). We also compute the variance of outgoing radiance after two bounces
on plane parallel surfaces σ12 = gd(α1,α2). Finally, we optimize our parametric
model to fit the following equality:

f−1 (gd (α1,α2)) = f−1 (f (α1) + f (α2)) .

We found out that the roughness αy has little influence on the variance σx for low
values of αx. It only affected σx for high roughness (see Figure 6 (a)). By symmetry,
the same can be observed for σy with low values of αy. This indicates that the map-
ping can be approximated in a simpler form with 1D functions per anisotropy axis
that decorrelate the dimensions:

f(α) = (f1(αx), f1(αy))

f−1(σ) =
(
f−1

1 (σx), f
−1
1 (σy)

)
.

We used a log sigmoid and let the optimizer choose its parameters:

f1(x) = log

(
1 +

b xa

1− xa

)
f−1

1 (y) =

(
ey − 1

ey − 1 + b

) 1
a

.

(a) σx = fd(αx, αy) (b) αx = f−1
d (σx, σy) (c) α12 = f−1

d (gd (α1,α2))

Figure 6. Our linear mapping f converts an input anisotropic roughness α to a pair of vari-
ances σ = (σx, σy). To build f , we numerically computed fd (a) and its inverse mapping
f−1
d that converts a variance to its associated roughness (b). For this latter function, we had

to extrapolate for the (σx, σy) values that were not covered by fd (highlighted in gray). With
that function, we can display the equivalent roughness of radiance after two bounces (c). We
optimized both function f and f−1 with respect to the data for the two-bounces case gd (c).
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(b) Zoom

Figure 7. In this plot, we show the equivalent roughness after two bounces on isotropic sur-
faces at normal incidence. The abscissa denote the first roughness of the first bounce and the
color of the curve (red for zero and blue for one) the roughness of the second bounce. Our
new linear mapping function better fits the ground truth data for low roughnesses compared
to the one of Belcour (see zoom-in one the right). However, both methods fail to correctly ap-
proximate high roughness (see (a) on the left) as they converge to one for any second interface
roughness.

We found that using a ' 1.29 and b ' 1.31 gives a closer match to the reference
curve of equivalent roughness after two bounces than Belcour’s fit for the isotropic
case (see Figure 7) and provides a lower error compared to the ground truth when
used in the adding-doubling scheme (see Figure 8). Thus, we recommend using our

(a) Reference (b) [Belcour 2018] (c) Ours

Figure 8. In this scene, our fit of the linear mapping (c) reduces the error to the ground truth
compared to Belcour’s fit (b). We used α1 = (0.1, 0.1), η1 = 1.5 for the first layer and
α2 = (0.1, 0.1), η2 = 0.0, κ2 = 1.0 for the second layer.
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(a) Reference (b) 2D fit (c) Decorrelated fit

Figure 9. Our decorrelated fit (c) produces perceptually close rendering compared to a refer-
ence (a). Using a more complex fit (b) improves accuracy but the gain can be hard to notice.

fit instead, even for the isotropic case. Note that we computed fd and gd using a
normal incident direction with unit energy.

We tested the alternative of fitting a 2D function and its inverse (see Appendix B
for details). We found that the decorrelated fit was perceptually as close to the refer-
ence as the 2D fit and that the increased complexity and evaluation cost of this latter
method was hard to justify (see Figure 9). Our implementation of this mapping is
provided in Listing 2.

1 #define CONST_A 1.28809776
2 #define CONST_B 1.31699416
3
4 vec2 roughnessToVariance(vec2 a)
5 {
6 vec2 aPow = clamp(pow(a, vec2(CONST_A)), 0.0, 0.99999);
7 return log(vec2(1.0) + (vec2(CONST_B) * aPow) / (vec2(1.0) - aPow));
8 }
9

10 vec2 varianceToRoughness(vec2 v)
11 {
12 vec2 c = exp(v) - vec2(1.0);
13 return pow(c / (c + vec2(CONST_B)), vec2(1.0 / CONST_A));
14 }

Listing 2. We computed a new conversion function from roughness to variance and back.

4. Results

In this section, we present the results of and validation for using our layered BSDF
model. First, we implemented it as a Mitsuba [Jakob 2010] plugin to validate it against
a ground truth (Section 4.1). Second, we implemented it in the Unity engine and
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present our real-time results (Section 4.2). All our computation and timings were run
on an Intel i7-6900K + Nvidia Geforce GTX 1060 GPU.

4.1. Offline Results

We extensively compared our approximative model against a ground truth. Our ground
truth is computed as a stochastic evaluation of light transport in the layered structure.
Please refer to our interactive supplemental material for more details and results. Our
model is visually close to the reference for low to moderate (α ' 0.3) roughnesses.

Figures 10 and 11 display a subset of our validation material. In Figure 10, we
fix an isotropic top layer of α = (0.05, 0.05) and vary the bottom layer’s roughness.

Figure 10. A comparison between the reference and our decorrelated model with a fixed
roughness α1 = (0.05, 0.05) for the dielectric layer and a second conductor layer with varying
roughness
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Figure 11. A comparison between the reference and our decorrelated model with a varying
roughness for the first dielectric layer and a second conductor layer with fixed roughness
α1 = (0.05, 0.05)

In Figure 11, we fix an isotropic bottom layer of α = (0.05, 0.05) and vary the top
layer’s roughness. For both examples, the top layer IOR is η1 = 1.5 and the bottom
complex IOR is η2 = 0.0, κ2 = 1.0.

Timings. We compared the running time of our method with the one of Belcour. We
list our timings in Table 2.

Area Light (512spp) Teaser (512spp)
[Belcour 2018] 12.1s 5.6m

Ours 15.2s 6.3m

Table 2. We measured the difference in rendering time between using the isotropic model of
Belcour and our anisotropic extension. For the Area Light scene, we set the roughnesses to
zero to measure the difference in the computation of the adding-doubling method.
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Figure 12. A simple textured asset rendered in Unity using our implementation.

4.2. Real-Time Results

We implemented our anisotropic layered material model in the Unity engine, on top
of the high-definition rendering pipeline (HDRP) (see Figure 12). We made minimal
changes to the implementation, but found out that the use of our model will be limited
by how engines render anisotropic BRDF models with image based lighting. The
HDRP uses the method of Revie [2011] to fake the preintegration of environment
lighting with anisotropic BRDF lobes. However, with this method two lobes with the
same mean direction but different roughness will not appear aligned. While this is not
a big deal when one has to render one BRDF lobe, it impacts the realism of our model
that consists of many BRDF lobes. To overcome this, we use the same technique as
Yamaguchi et al. [2019] and use Monte-Carlo integration. This greatly diminishes the
performance of the shading model and impedes its use in production: for 128 Monte-
Carlo samples, our method takes between 10ms to 42ms to render a frame at 720p,
depending on the coherence of the texture fetches.

Anisotropic IBL Preintegration. There is no working solution so far to pre-filter cube-
map or envmap textures with respect to anisotropic BRDF lobes, nor there is a work-
ing solution to shade area-light sources with anisotropic highlights. Thus, there is
a reduced applicability of anisotropic layered materials for real-time rendering. An
interesting research avenue lies in the ability to perform such evaluations.

5. Limitations

High Roughnesses. In Figure 10 we can observe the difference with a ground-truth;
for very low roughness our model closely approximates the reference even at grazing
angles. At higher roughness, our model slightly overestimates the roughness at graz-
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ing angles. This is due to the fact that our Fresnel is only accurate at normal incidence,
since our second-order statistic computation for the first and second bounce assumes
a normal incidence. A more accurate model would introduce a correction factor that
accounts for these changes at grazing angles, but the complexity of a brute-force cal-
culation of all the parameters would result in a high-dimensional function not suited
for a fast evaluation.

Grazing Angles. When considering a varying top layer as in Figure 11, we observe
that this effect is even stronger since the conductor layer almost acts as a mirror and
most energy is then scattered by the dielectric layer. A clear depiction of this phenom-
ena can be seen in Figure 13. For more results and an interactive viewer for different
scenes please refer to our supplemental material.

Ref Ours

(a) Area Light (b) Crop - Reference (c) Crop - Ours

Figure 13. Our method differs from the reference at grazing angles. This is due to the
correlation between total internal reflection (TIR) and our precomputed average reflectance
for one bounce. Since we do not account for it, our model overblurs the reflectance at grazing
angles. We usedα1 = (0.05, 0.05) for the top layer andα2 = (0.1, 0.0) for the bottom layer.

Opposing Anisotropies. Another limitation of the statistical model is that it cannot
represent layers with opposing anisotropies well. A material with two layers, each
with strong anisotropy along a different axis (say (1, 0) for the first layer and (0, 1)

for the second layer), will result in a diamond-shaped highlight that is not possible to
represent with a GGX normal distribution. We showcase this effect in Figure 14.

Anisotropy Axis. In our work, we assumed that the different layers shared the same
anisotropy axis. Working with different anisotropy axes would require tracking the
full 2×2 covariance matrix in the adding-doubling process as Yamaguchi et al. [2019]
does. Our method could, without restriction, also be extended to do so.

52

http://jcgt.org


Journal of Computer Graphics Techniques
Rendering Layered Materials with Anisotropic Interfaces

Vol. 9, No. 2, 2020
http://jcgt.org

Ref Ours

(a) Area Light (b) Crop - Reference (c) Crop - Ours

Figure 14. When the anisotropy axes are opposed between the two layers, a slightly stronger
horizontal blur can be seen in the reference. In this case we have the following configuration:
α1 = (0.1, 0.0) and α2 = (0.0, 0.05)

6. Conclusion

We presented an extension of the layered BRDF model of Belcour [2018] to han-
dle anisotropic surfaces. We built on the analysis that when projected on the tan-
gent plane, BRDF lobes are closely approximated by ellipsoidal-shaped distributions
aligned with the tangent frame axis. Based on that observation, we re-used the adding-
doubling method on a vector of variances and treated each anisotropy axis indepen-
dently. Doing so, we improved the conversion of roughness to variance to better fit
the isotropic and anisotropic case. We improved the split-sum form of Karis [2013]
to handle anisotropic BRDF lobes.
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A. Anisotropic Adding-Doubling Code

1 void ComputeBsdfLobes(in vec3 wi, in BsdfLayer[NUM_LAYERS] layers, out BsdfLobe[NUM_LAYERS] lobes)
2 {
3 /* Init all layers to zero */
4 for(int i=0; i<NUM_LAYERS; ++i) {
5 lobes[i].wi = wi;
6 lobes[i].R = vec3(0);
7 lobes[i].a = vec2(0);
8 }
9

10 /* Define the different global terms for the adding-doubling */
11 vec3 R0i = vec3(0.0), Ri0 = vec3(0.0), T0i = vec3(1.0), Ti0 = vec3(1.0);
12 vec2 s_r0i = vec2(0.0), s_ri0 = vec2(0.0), s_t0i = vec2(0.0), s_ti0 = vec2(0.0);
13 float j0i = 1.0, ji0 = 1.0;
14
15 /* Iterate on all the layers and apply the adding-doubling equations */
16 for(int i=0; i<NUM_LAYERS; ++i)
17 {
18 // Evaluate the IOR ratio
19 float eta = abs(1.0/layers[i].n);
20
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21 /* Evaluate Snell law */
22 vec3 wt = -refract(-wi, vec3(0,0,1), 1.0/layers[0].n);
23
24 /* Evaluate the variance of the reflected lobe and transmitted lobe
25 * for a diract impulse. */
26 vec2 s_r12 = roughnessToVariance(layers[i].a);
27 vec2 s_r21 = s_r12;
28
29 vec2 s_t12, s_t21; float j12=1.0, j21=1.0;
30 if(wt.z >= 0.0) {
31 const vec2 alpha_scale = layers[i].a * 0.5 * abs(wt.z * eta - wi.z);
32 s_t12 = roughnessToVariance(alpha_scale / (wt.z * eta));
33 s_t21 = roughnessToVariance(alpha_scale / (wi.z / eta));
34
35 // Scale due to the interface
36 j12 = (wt.z / wi.z) * eta;
37 j21 = 1.0 / j12;
38 }
39
40 /* Evaluate the reflection coefficent R12 and the transmission coefficient T12 */
41 vec3 R12, R21, T12, T21;
42 Evaluate_SchlickFresnelAniso(wi, layers[i], R12, T12);
43 R21 = R12; T21 = T12;
44
45
46 /* Multiple scattering forms */
47 const vec3 denom = (vec3(1.0) - Ri0 * R12);
48 const float d_avg = average(denom);
49 const vec3 m_R0i = (T0i * R12 * Ti0) / denom;
50 const vec3 m_Ri0 = (T21 * Ri0 * T12) / denom;
51 const vec3 m_Rr = (Ri0 * R12) / denom;
52
53 // Evaluate the adding operator on the energy
54 const vec3 e_R0i = R0i + m_R0i;
55 const vec3 e_T0i = (T0i * T12) / denom;
56 const vec3 e_Ri0 = R21 + m_Ri0;
57 const vec3 e_Ti0 = (T21 * Ti0) / denom;
58
59 // Scalar forms for the spectral quantities
60 const float r0i = average( R0i );
61 const float e_r0i = average( e_R0i );
62 const float e_ri0 = average( e_Ri0 );
63 const float m_r0i = average( m_R0i );
64 const float m_ri0 = average( m_Ri0 );
65 const float m_rr = average( m_Rr );
66 const float r21 = average( R21 );
67
68 /* Evaluate the adding operator on the normalized variance */
69 vec2 _s_r0i = (r0i * s_r0i + m_r0i * (s_ti0 + j0i * (s_t0i + s_r12 + m_rr * (s_r12 + s_ri0)

)));
70 vec2 _s_t0i = j12 * s_t0i + s_t12 + j12 * (s_r12 + s_ri0) * m_rr;
71 vec2 _s_ri0 = (r21 * s_r21 + m_ri0 * (s_t12 + j12 * (s_t21 + s_ri0 + m_rr * (s_r12 + s_ri0)

)));
72 vec2 _s_ti0 = ji0 * s_t21 + s_ti0 + ji0 * (s_r12 + s_ri0) * m_rr;
73 _s_r0i = (e_r0i > 0.0) ? _s_r0i / e_r0i : vec2(0.0);
74 _s_ri0 = (e_ri0 > 0.0) ? _s_ri0 / e_ri0 : vec2(0.0);
75
76 /* Store the mean reflectance and roughness */
77 lobes[i].R = m_R0i;
78 lobes[i].a = varianceToRoughness( s_ti0 + j0i * (s_t0i + s_r12 + m_rr * (s_r12 + s_ri0)) );
79
80 /* Update energy */
81 R0i = e_R0i;
82 T0i = e_T0i;
83 Ri0 = e_Ri0;
84 Ti0 = e_Ti0;
85
86 /* Update mean */
87 wi = wt;
88
89 /* Update variance */
90 s_r0i = _s_r0i;
91 s_t0i = _s_t0i;
92 s_ri0 = _s_ri0;
93 s_ti0 = _s_ti0;
94
95 /* Update jacobian */
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96 j0i *= j12;
97 ji0 *= j21;
98
99 /* Early exit in case the layer does not transmit light */

100 if(layers[i].n < 0) return;
101 }
102 }
103

Listing 3. The adding-doubling algorithm takes as input a set of layers and a view-vector
configuration and outputs a set of BRDF lobes that approximate the correct light transport.

B. Linear Mapping: A 2D Fit

In this section, we present the form used for our 2D fit (see Figure 9). Due to symmetry of the
inputs, we choose to use the same 2D function for both dimensions by swapping the inputs:

f(α) = [fx(αx, αy), fx(αy, αx)] ,

f−1(α) =
[
f−1
x (αx, αy), f

−1
x (αy, αx)

]
.

In practice, we optimized

fx(αx, αy) = αxlog
(
1 +

bαa
x

1− αa
x

)
exp

(
c (αx − αy)

2
+ d (αx − αy)

)
,

with a = 0.0134517769, b = 0.0123629536, c = 0.493769777, and d = 0.225934414 for
the evaluation of roughness to variance. And

f−1
x (σx, σy) =

[
1

1 + b
eσx−1

]1/a [
1

1 + c
eσy−1

]1/d
exp (e [σx − σy]) ,

with a = 1.38609881, b = 0.609910674, c = 100.608653, d = 64.1513931, and e = 10−05

for the evaluation of variance to roughness.

Index of Supplemental Materials

We provide the following supplemental materials:

• Mitsuba plugins containing both our layered material and our reference code can be
found at jcgt.org/published/0009/02/03/mitsuba_supplemental.
zip. We also provide the Area Light scene.

• An HTML webpage with interactive results can be found at jcgt.org/published/
0009/02/03/html_supplemental.zip. . This archive is 4Gb and contains a
couple of HTML pages with results. To use this page, we recommend launchng a
simple HTTP server at the root of the archive (see README for more details).
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