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Surface Gradient–Based Bump Mapping
Framework

Morten S. Mikkelsen
Unity Technologies, USA

Figure 1. The left pair of images on the top row show a low-resolution model in wireframe
and a lit version using a normal map baked from a high-resolution model to the primary set
of texture coordinates. In the top right pair of images, we see a normal map of generic detail
applied to the clothes using the primary and secondary set of texture coordinates, respectively.
Furthermore, we apply details to the hair and beard using the 3D procedural bump map known
as fractalsum noise. The corresponding close-ups are shown in the bottom row. As we
can see, by using the secondary set of texture coordinates, the artist is able to reorient the
tiling direction.

Abstract

In this paper, a new framework is proposed for the layering and compositing of bump maps,
including support for multiple sets of texture coordinates as well as procedurally generated
texture coordinates and geometry. Furthermore, we provide proper support for bump maps
defined on a volume, such as decal projectors, triplanar projection, and noise-based functions.
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1. Introduction

Since the year 2000, as described in [Kilgard 2000], the approach to normal mapping
in real-time 3D graphics has remained largely the same. That is, a transformation by
a 3 × 3 TBN (tangent, bitangent, and normal) matrix, where the tangent and bitan-
gent are precomputed offline at the vertex level. Today, this conventional approach is
beginning to show its age:

1. In modern computer graphics, material layering is critical to achieving rich
and complex environments. However, conventional normal mapping does not
extend to multiple sets of texture coordinates, since game engines typically only
store one tangent space per vertex (for memory and performance reasons).

2. Traditional normal mapping does not allow for proper order-independent blend-
ing between different forms of bump influences, such as separate sets of texture
coordinates, object-space normal maps, and volume bump maps (such as tripla-
nar projection, decal projectors, and volumetric noise).

3. Geometry of a more procedural nature does not work well with traditional nor-
mal mapping either, since generating a per-vertex tangent space in real time—
for every frame—is impractical. Some examples are blend shapes, tessellation,
cloth, water, and procedural trees.

For blend shapes, one might alternatively store a pregenerated tangent and sign
bit with each vertex of a blend shape. However, memory footprint is a concern, plus
linearly blending sets of tangent vectors across several shapes will often produce in-
correct results. In the context of tessellation, generating a vertex-level tangent space
directly from the control mesh is not meaningful, since it may be very coarse and de-
viate significantly from the limit surface. Furthermore, linear interpolation of tangents
will not provide a vector that is tangent to the limit surface.

The reader of this paper is expected to be familiar with shader authoring and
normal mapping, and also possess a basic understanding of differential geometry.

2. Previous Work

Bump Mapping was originally introduced by Blinn [1978] to mimic high-frequency
detail on curved surfaces. The surface S consists of a collection of charts where each
chart has a known parameterization σ : R2 → R3 and partial derivatives ∂σ

∂s and ∂σ
∂t ,

where (s, t) ∈ R2. Furthermore, we are given a height map H : R2 → R, which
is used to assign a value H(s, t) to each corresponding point on S. A new virtual
surface τ is defined as the displacement of σ by H along the surface normal ~n (see
Figure 2):

τ = σ +H · ~n. (1)
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However, rather than rendering the highly detailed surface τ , bump mapping uses a
cheaper alternative, whereby the initial surface σ is rendered using the corresponding
normal of τ , which creates the illusion of a detailed surface. This replacement of the
initial normal ~n is referred to as the perturbed normal, ~n′.

(a) Initial surface (b) Height map (c) Combined

Figure 2. (a) The initial surface σ, (b) the height map H , and (c) the combined result after
displacement using Equation (1) and the new surface normals.

The normal of the displaced surface can be computed as the cross product of the
partial derivatives of the parameterization for τ :

∂τ
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=
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Blinn’s unnormalized perturbed normal is given by Equation (2) and uses approxima-
tions for ∂τ

∂s and ∂τ
∂t by omitting their last term. In this formulation, ~n is defined as

normalizing ∂σ
∂s ×

∂σ
∂t . This presents a problem when shading, since the texture param-

eterization does not determine the forward-facing direction of the normal ~n. This is
solved in [Mikkelsen 2008] via an alternate derivation, where the normal to the graph
of H ,

g(s, t) = (s, t,H(s, t)) ,

∂g

∂s
× ∂g

∂t
=

(
1, 0,

∂H

∂s

)
×
(
0, 1,

∂H

∂t

)
=

(
−∂H
∂s

,−∂H
∂t

, 1

)
, (3)

is transformed to the surface σ using the transpose inverse of the matrix

N =

 ∂σ
∂s

∂σ
∂t ~n

 ,
where the vector ~n is known to be unit length and perpendicular to the surface σ but
can face in either direction. This transformation yields the vector ~n′, and using the
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scalar triple product it can be expressed as

~n′ = (N−1)T ·

 −∂H
∂s

−∂H
∂t

1


= ~n+

(~n× ∂σ
∂t )

∂H
∂s + (∂σ∂s × ~n)

∂H
∂t

~n • (∂σ∂s ×
∂σ
∂t )

, (4)

where the symbol • represents the dot product. Furthermore, the denominator in the
second term of Equation (4) is equal to

det(N) = ~n •
(
∂σ

∂s
× ∂σ

∂t

)
= ±

∥∥∥∥∂σ∂s × ∂σ

∂t

∥∥∥∥
and is positive when the parameterization is orientation preserving. When both equa-
tions are normalized, the formulation given here is identical to that of Blinn’s Equa-
tion (2) except that there is no assumption that det(N) is positive.

A more compact and generalized version of Equation (4) was discovered by
Mikkelsen [2010] in the form of

~n′ = ~n−∇SH, (5)

where ∇SH is the surface gradient. More specifically, for a given point p on the sur-
face S and an arbitrarily small open volume B ⊂ R3 containing p, if there exists a lo-
cal extension H̃ : B → R such that H̃ is smooth and obeys H̃|B∩S = (H ◦ σ−1)|B∩S
(see Figure 3), then the surface gradient at p is by definition

∇SH = ∇H̃ − ~n ·
(
~n • ∇H̃

)
, (6)

which is the projection of the regular gradient∇H̃ = (∂H̃∂x ,
∂H̃
∂y ,

∂H̃
∂z ) onto the tangent

plane at p.
Any two such local extensions at p will produce the same surface gradient. To see

this, we rotate the scene such that the tangent plane at p aligns with the XY -plane.
In this case, for any choice of a local extension, the gradient ∇H̃ will only differ in
the third component ∂H̃

∂z , which will be zero after projection onto the XY -plane to
produce∇SH̃ .

Equation (5) tells us that the perturbed normal depends on the shape of the sur-
face S and the distribution of displacement values assigned by H , but not the under-
lying parameterization. However, to see that this formulation is in fact identical to
Equation (4) and thus Blinn’s perturbed normal, we can equate the second term of
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(a) Cut-out region (b) Local extension

Figure 3. (a) A surface S with a 2D texture map H applied to it. (b) A local extension H̃
at the point p (red dot) on S. The domain of this extension is an open volume B ⊂ R3,
containing p, and is outlined in red. The corresponding red outline in (a) represents B ∩ S.

Equation (5) with the second term of Equation (4), which leads to the following:

∇SH =
(∂σ∂t × ~n)

∂H
∂s + (~n× ∂σ

∂s )
∂H
∂t

~n • (∂σ∂s ×
∂σ
∂t )

(7)

=
([

∂H
∂s

∂H
∂t 0

]
·N−1

)T
.

The vector given by Equation (7) is in the tangent plane of σ. However, to be
the surface gradient, the dot product between it and some given unit-length tangent
vector ~v must give the rate of change in the direction of ~v. This property holds, since
for a given linear combination ~v = a · ∂σ∂s + b · ∂σ∂t , where a, b ∈ R, we obtain
∇SH • ~v = a · ∂H∂s + b · ∂H∂t when using Equation (7).

An important subtlety to Equation (4) is that the formulation is scale dependent.
Though this is the expected behavior, it can be impractical (from a workflow stand-
point) for an artist to have to adjust the scale of H relative to the extent of the surface.
In real-time graphics, a very common scale-independent variant was introduced in
[Peercy et al. 1997], which as an approximation assumes N is an orthogonal matrix
stored at the vertex level, which implies N = (N−1)T . We will refer to this matrix as
M , where

~t =
∂σ
∂u∥∥∂σ
∂u

∥∥ ,
~b = sign (det(N)) ·

(
~n× ~t

)
,

M =

 ~t ~b ~n

 . (8)
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Furthermore, the partial derivatives are defined on the domain (u, v) ∈ R2, which
represents an unnormalized texture space such that one unit corresponds to one pixel
in the texture map for H(u, v). This allows the partial derivatives of H to remain
independent of the height map resolution (width, height). In the corresponding nor-
malized parameter space (s, t) ∈ R2, one unit corresponds to the full texture, and the
relation between the two is given by

(s, t) =

(
u+ 1

2

width
,
v + 1

2

height

)
. (9)

By replacing (N−1)T in Equation (4) with M , we arrive at

~mz · ~n′ ' M · ~m (10)

= ~t · ~mx +~b · ~my + ~n · ~mz, (11)

where

~m =

[
−∂H
∂u −∂H

∂v 1
]T

√
∂H
∂u

2
+ ∂H

∂v

2
+ 1

(12)

is the normalized version of Equation (3), hence the scaling of ~n′ by the factor ~mz in
Equation (10). The vector ~m is referred to as the tangent-space normal and is stored
per pixel in a normal map. Alternatively, we may think of ~m as the perturbed normal
~n′ but normalized and transformed into the orthogonal frame of reference represented
by M . An important observation is that although M is orthogonal at the vertex, the
interpolated matrix is not, so ~n′ must be renormalized before use in the pixel shader.

3. Modern Framework

What we want is a practical, modern framework for normal mapping that solves the
limitations described in Section 1 and provides a uniform processing of all bump
influences. The basis for such a framework is implicitly given by the surface gradient–
based formulation of Equation (5), which provides a unified solution because of two
important properties of the surface gradient:

1. It is a linear operator.

2. It depends on the shape of the surface and the given distribution of bumps across
the surface but does not depend on the underlying parameterization.

The first property tells us that if a bump map is expressed as a linear combination of
several bump maps, then the surface gradient of the function is equal to the corre-
sponding linear combination of surface gradients:

H = s0 ·H0 + s1 ·H1 + · · ·+ sn ·Hn, (13)

∇SH = s0 · ∇SH0 + s1 · ∇SH1 + · · ·+ sn · ∇SHn. (14)
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To be clear, we do not need the actual displacement maps H1, H2, . . . ,Hn to use this
framework: they are conceptual priors to the normal maps.

The second property tells us that it does not matter what the specific unwrap of
texture coordinates looks like, or even if the bumps were mapped to the surface via a
volume bump map.

Together, the two properties allow us to accumulate different forms of bump con-
tributions as surface gradients provided that we can establish the surface gradient
in each case. Concretely, the following structure for a bump mapping framework
emerges from Equations (5) and (14):

1. Bump scales are applied by scaling each surface gradient by a user-specified
displacement value.

2. All surface gradients are added together into a final surface gradient (Equa-
tion (14)).

3. Finally, a resolve is done by normalizing the difference between the initial unit
length surface normal and the accumulated surface gradient (Equation (5)).

We can perform the resolve step using the function in Listing 1, and we can adjust
the intensity of a bump map by modulating its surface gradient (or alternatively the
derivative (∂H∂u ,

∂H
∂v )). The value nrmBaseNormal corresponds to ~n and is calcu-

lated and written to a static global during the prologue step outlined in Section 3.7.

float3 ResolveNormalFromSurfaceGradient(float3 surfGrad)

{

return normalize(nrmBaseNormal - surfGrad);

}

Listing 1. Resolve function to establish the final perturbed normal.

As an aside, when a negative value is used to weight a surface gradient, the effect
corresponds to inverting the bump map, since∇S(−H) = −∇SH . Doing so will re-
flect ~n′ by ~n, as indicated by Equation (5). We can even perform this operation directly
on an already perturbed normal v by using reflect(-v, nrmBaseNormal).

While the framework is straightforward in concept, it requires knowledge of how
to obtain a surface gradient for each relevant scenario. This is what we will focus on
in the following subsections.

3.1. Derivatives vs. Tangent-Space Normals

Tangent-space normal maps are the most common representation for bump mapping.
This standard is compatible with our proposed framework, but as we shall see, on the
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shader side it is more practical to convert the sampled value into a two-component
derivative, on the fly, rather than use a three-component vector.

As indicated by Equation (12), we may convert the tangent-space normal ~m ∈
[−1; 1]3 to the derivative ~d = (∂H∂u ,

∂H
∂v ) using Equation (15) and use Equation (16)

when only two components (~mx, ~my) are available due to texture compression:

~d =

(
− ~mx

~mz
,− ~my

~mz

)
(15)

=
(−~mx,−~my)√

max
(
ε, 1− ~m2

x − ~m2
y

) . (16)

// Input: vM is tangent space normal in [-1;1].

// Output: convert vM to a derivative.

float2 TspaceNormalToDerivative(float3 vM)

{

const float scale = 1.0/128.0;

// Ensure vM delivers a positive third component using abs() and

// constrain vM.z so the range of the derivative is [-128; 128].

const float3 vMa = abs(vM);

const float z_ma = max(vMa.z, scale*max(vMa.x, vMa.y));

// Set to match positive vertical texture coordinate axis.

const bool gFlipVertDeriv = false;

const float s = gFlipVertDeriv ? -1.0 : 1.0;

return -float2(vM.x, s*vM.y)/z_ma;

}

Listing 2. Conversion of tangent-space normal ~m to a derivative ~d.

The implementation in Listing 2 returns the derivative ~d ∈ [−128; 128]2, which
corresponds to a maximum angle of 89.55◦. The main motivation for using the deriva-
tive form rather than tangent-space normals in the shader is that it implicitly allows
all bump contributions to conform to Equation (5), as we shall see in Section 3.2.

It is important to note that the correct setting for gFlipVertDeriv in Listing 2
is always a constant but is specific to your codebase. When gFlipVertDeriv is
set to false, if (0, 0) represents the upper-left corner of the texture, then positive
green in the normal map must represent down. Alternatively, if (0, 0) represents the
lower-left corner, then positive green must represent up. If this is not the case, you
will need to set gFlipVertDeriv to true in Listing 2. You will also, most likely,
need to negate sign w in Listing 9 depending on your existing build process and
shaders. This is because the derivative must be with respect to the positive axis for s
and for t.
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3.2. TBN-Style Surface Gradient

Normal mapping in real-time graphics uses the scale-independent approach described
in Section 2 and as given by Equation (11), where the vectors ~t and ~b represent the
tangent and bitangent, respectively. As previously defined, ~n is the initial normalized
surface normal and ~m is the tangent-space normal (Equation (12)). By leveraging
Equation (15) and rearranging terms in Equation (11), we arrive at a derivative-based
formulation, which corresponds to Equation (5):

~n′ =
1

~mz
·
(
~t · ~mx +~b · ~my + ~n · ~mz

)
= ~n−

(
~t · −~mx

~mz
+~b · −~my

~mz

)
= ~n−

(
~t · ~dx +~b · ~dy

)
. (17)

Note that the scale by 1
~mz

> 0 will cancel out in the final resolve when ~n′ is normal-
ized before use (see Listing 1).

The majority of existing tools employed by artists to author normal maps use
a standard known as mikkTSpace (see [Golus 2020]) to generate the matrix M per
vertex, as given by Equation (8). The motivation for this is to ensure that the same
transformation M is used when generating a normal map and when rendering with it.
For more information, the reader is referred to [Mikkelsen 2011].

The mikkTSpace standard dictates that the interpolated but unnormalized vertex
attributes for~t,~b, and ~nmust be used in the shader to match the normal map. However,
for the surface gradient–based formulation, the interpolated vertex normal must be
normalized. We can address this conflict by reusing the same trick as before, which is
that a positive uniform scale of the perturbed normal cancels out in the final resolve,
so we can multiply all three vectors by the reciprocal magnitude of the unnormalized
but interpolated vertex normal:

~t← 1

‖~n‖
· ~t, ~b← 1

‖~n‖
·~b, ~n← 1

‖~n‖
· ~n.

This allows us to use a surface gradient–based formulation that is mikkTSpace com-
pliant, where ~n is normalized and ~t and ~b have been scaled accordingly. We perform
this adjustment to the basis mikktsTangent and mikktsBitangent in List-
ing 9. The final TBN-style surface gradient is summarized in Listing 3 and can be
used with the adjusted basis vectors as parameters for vT and vB. The first parameter,
deriv, corresponds to (∂H∂u ,

∂H
∂v ), as described in Section 3.1.

Though mikkTSpace compliance requires vertex attributes for ~t and ~b, game en-
gines typically only provide one tangent space per vertex, which does not account
for multiple sets of texture coordinates or even procedural texture coordinates. We
address this limitation in the next section.
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float3 SurfgradFromTBN(float2 deriv, float3 vT, float3 vB)

{

return deriv.x*vT + deriv.y*vB;

}

Listing 3. TBN-style surface gradient.

3.3. TBN Basis without Vertex-Level Tangent Space

For a scenario in which the tangent ~t and bitangent~b do not exist at the vertex level for
a given set of texture coordinates, the vectors must be generated on the fly in the pixel
shader. The following function depends on sigmaX, sigmaY, flip sign, and the
initial unit-length normal nrmBaseNormal, which are cached and initialized at the
beginning of the pixel shader, as described in Section 3.7. The values sigmaX and
sigmaY represent the first-order derivatives of the surface position with respect to
screen-space dPdx and dPdy but perpendicular to nrmBaseNormal. By using the
chain rule, we obtain the tangent as ~t = sigmaX · dXds+ sigmaY · dYds.

void GenBasisTB(out float3 vT, out float3 vB, float2 texST)

{

float2 dSTdx = ddx_fine(texST);

float2 dSTdy = ddy_fine(texST);

float det = dot(dSTdx, float2(dSTdy.y, -dSTdy.x));

float sign_det = det < 0.0 ? -1.0 : 1.0;

// invC0 represents (dXds, dYds), but we don’t divide

// by the determinant. Instead, we scale by the sign.

float2 invC0 = sign_det*float2(dSTdy.y, -dSTdx.y);

vT = sigmaX*invC0.x + sigmaY*invC0.y;

if (abs(det) > 0.0) vT = normalize(vT);

vB = (sign_det*flip_sign)*cross(nrmBaseNormal, vT);

}

Listing 4. Procedural TBN basis.

The function in Listing 4 delivers the tangent frame as an orthonormal set that
may be used as parameters to the function SurfgradFromTBN() in Listing 3.
Furthermore, the function works regardless of whether the texture coordinates are
defined clockwise or counterclockwise.

3.4. Surface Gradient from Object- or World-Space Normal

In some cases, it is convenient for an artist to use an object- or world-space normal
map that represents the normal after it has already been perturbed. However, we want
to integrate these into the surface gradient–based framework so that we can adjust
the bump scale and combine them with other bump mapping contributions, such as
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tangent-space normal maps, decals, triplanar projection, etc. In other words, we need
a method to convert the object- or world-space normal to a surface gradient.

We receive as input the sampled object- or world-space normal ~v of arbitrary
positive magnitude, and the initial normal ~n is also known. The vector ~v represents
the direction of ~n′ but not its magnitude. Thus, there exists some factor k ∈ R 6=0

such that ~v = k · ~n′. We can solve for ∇SH by reordering terms in Equation (5) and
substituting ~n′ with 1

k · ~v, where the factor k is determined using the following:

~n • ~v = k ·
(
~n • ~n′

)
= k · ((~n • ~n)− (~n • ∇SH))

= k · (1− 0)

= k.

The final utility function is given in Listing 5.

// Surface gradient from a known "normal" such as from an object-

// space normal map. This allows us to mix the contribution with

// others, including from tangent-space normals. The vector v

// doesn’t need to be unit length so long as it establishes

// the direction. It must also be in the same space as the normal.

float3 SurfgradFromPerturbedNormal(float3 v)

{

// If k is negative then we have an inward facing vector v,

// so we negate the surface gradient to perturb toward v.

float3 n = nrmBaseNormal;

float k = dot(n, v);

return (k*n - v)/max(FLT_EPSILON, abs(k));

}

Listing 5. Run-time conversion of object- or world-space normal to surface gradient.

3.5. Scale-Dependent Bump Mapping

It is important to distinguish between scale-dependent and TBN-style bump mapping.
With the latter, the intensity of the bump effect does not depend on the tiling rate of
the normal map across the surface. The reason for this is a combination of tradition,
artist workflow convenience, and the fact that it reduces the memory footprint of the
tangent frame by assuming it represents an orthonormal basis at the vertex level.

When applying displacement-style bump mapping, the perturbed normal is meant
to represent the new vertex normal of the actual displacement-mapped mesh. In this
case, we cannot ignore the tiling rate, nor can we assume that the bitangent is perpen-
dicular to the tangent.

The surface gradient for this scenario is summarized in Listing 6 using Equa-
tion (7). The values for dPdx, dPdy, and nrmBaseNormal are cached in the pro-
logue given in Listing 9 and must all be in the same frame of reference. An important
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subtlety to note is that dPdx and dPdymust be the screen-space derivatives of the ini-
tial surface position before displacement. The only exception to this is when perform-
ing a separate bump mapping pass on the new surface after displacement mapping, in
which case nrmBaseNormal would also need to be replaced with the normal of the
displaced surface.

When isDerivScreenSpace is set to true, deriv represents the screen-
space derivatives of the height: dHdx and dHdy. A crude single-sample approach
for calculating these in the pixel shader is to use ddx fine(height) and
ddy fine(height) directly. However, since this is based on numerical differ-
encing across a block of 2× 2 pixels, better quality is achieved by using the three-tap
approach provided in Listing 7.

// dim: resolution of the texture deriv was sampled from.

// isDerivScreenSpace: true if deriv is already in screen space.

float3 SurfgradScaleDependent(float2 deriv, float2 texST, uint2 dim,

bool isDerivScreenSpace = false)

{

// Convert derivative to normalized (s,t) space.

const float2 dHdST = dim*deriv;

// Convert derivative to screen space by applying

// the chain rule. dHdx and dHdy correspond to

// ddx fine(height) and ddy fine(height).

float2 texDx = ddx(texST);

float2 texDy = ddy(texST);

float dHdx = dHdST.x*texDx.x + dHdST.y*texDx.y;

float dHdy = dHdST.x*texDy.x + dHdST.y*texDy.y;

if (isDerivScreenSpace)

{

dHdx = deriv.x;

dHdy = deriv.y;

}

// Equation 3 in [Mikkelsen 2010].

float3 vR1 = cross(dPdy, nrmBaseNormal);

float3 vR2 = cross(nrmBaseNormal, dPdx);

float det = dot(dPdx, vR1);

const float eps = 1.192093e-15F;

float sign_det = det < 0.0 ? -1.0 : 1.0;

float s = sign_det/max(eps, abs(det));

return s*(dHdx*vR1 + dHdy*vR2);

}

Listing 6. Surface gradient of scale-dependent bump mapping.
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// 3 taps: better quality than float2(ddx fine(H), ddy fine(H)).

float2 dSTdx = ddx(st), dSTdy = ddy(st);

float Hll = hmap.Sample(sampler, st).x;

float Hlr = hmap.Sample(sampler, st + dSTdx).x;

float Hul = hmap.Sample(sampler, st + dSTdy).x;

float2 deriv = float2(Hlr - Hll, Hul - Hll);

Listing 7. Forward differencing: three-tap screen-space derivative of the height.

3.6. Volume Bump Maps

The concept of a space function was introduced by Perlin [1985] and is defined as a
function H that varies over a three-dimensional domain H : (x, y, z) → R. We can
assign colors to a surface embedded in this volume by sampling the space function
using the point p on the surface associated with the pixel being shaded. Perlin refers to
this as a solid texture. The same approach can be used to assign displacement values
to a surface when using a scalar space function H . In the following, we will refer to
this as a volume bump map.

It is suggested in [Perlin 1985] that a normal perturbing effect may be achieved
by adding the volume gradient ∇H = (∂H∂x ,

∂H
∂y ,

∂H
∂z ) to the initial normal ~n and

renormalizing. This does not produce the correct normal, as pointed out by Worley in
[Ebert et al. 2003], and instead the correct solution is described as using the traditional
bump mapping method of Blinn [1978]. However, this requires a known surface pa-
rameterization and known partial derivatives of the surface position, and generally
requires storing the sampled displacements in a 2D texture, performing a precompu-
tation step to evaluate the derivatives of H with respect to u and v, and generating
MIP maps, which is presumably why this approach is not used in [Perlin 1985] nor in
[Ebert et al. 2003].

A significantly simpler way to achieve the correct result is to leverage the discov-
ery made by Mikkelsen [2010] that Blinn’s perturbed normal has a surface gradient–
based formulation, as given by Equation (5) and also provided as a shader function in
Listing 1. We can produce the surface gradient∇SH from∇H and the initial normal
~n using Equation (6), which is summarized as a function in Listing 8.

// Used to produce a surface gradient from the gradient of a volume

// bump function such as 3D Perlin noise. Equation 2 in [Mik10].

float3 SurfgradFromVolumeGradient(float3 grad)

{

return grad - dot(nrmBaseNormal, grad)*nrmBaseNormal;

}

Listing 8. Surface gradient produced from volume gradient.
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(a) Perlin’s perturbation (b) Surface gradient–based

Figure 4. (a) Perlin-based normal perturbation can produce visual artifacts. (b) These are
avoided by using our method.

The difference between Perlin’s method in [Perlin 1985] and the correct approach
is visually significant. Figure 4 provides a comparison using Perlin noise–based
bump mapping (see [Perlin 2002]), where the elevation level is indicated in green
and reddish-brown. As a correction, ∇H is negated in Figure 4(a) to invert the dis-
placement direction.

If ∇H is above the tangent plane, the intensity of the bump effect becomes un-
derstated when using Perlin’s method. If the gradient is below the tangent plane, the
perturbation impact is increased until it finally pulls the normal inward, resulting in
the black spots we see in Figure 4(a). Using the surface gradient–based method, we
get the artifact-free result shown in Figure 4(b).

It is worth emphasizing that resampling the displacements, storing them in a 2D
texture map, and using traditional bump mapping is mathematically equivalent to
using the method in Listing 8 and resolving using Listing 1.

3.7. Pixel Shader Prologue of Framework

The code snippet in Listing 9 calculates various parameters that are used by many of
the other listings. Thus, to use the framework functions without further modification,
it is necessary to retrofit this prologue into your own shader.

In a scenario where one resolve has already been performed using Listing 1, it
is possible to perform a second pass of bump mapping on top. We refer to this as
post-resolve bump mapping, and in this case the values nrmBaseNormal, dPdx,
dPdy, sigmaX, sigmaY, and flip sign must be updated. However, in some
cases, ddx fine() and ddy fine() will not produce useful values because there
is no longer a correspondence between the pixels in each 2 × 2 block. An example
of this is parallax occlusion mapping (POM) (see Section 4.3), since different inter-
section points may be found during the ray-marching step at each of the four pixels.
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Deferred rendering is another common case that exhibits divergence, at regional dis-
continuities such as silhouette boundaries. In such cases, we can calculate dPdx and
dPdy analytically from the position and normal, as shown in Listing 10. Using this
method, dPdx and dPdy will already be perpendicular to nrmBaseNormal, so
they will be identical to sigmaX and sigmaY, respectively.

One issue with using analytical dPdx and dPdy values is that the interpolated
vertex normal ~n may be backfacing with respect to the view vector ~v. When this is
the case, a workaround is to correct the normal in Listing 10 by reflecting it toward
the observer as ~n− 2 · (~v • ~n) · ~v.

// Cached bump globals, reusable for all UVs including procedural.

static float3 sigmaX, sigmaY, nrmBaseNormal, dPdx, dPdy;

static float flip_sign;

// Used for vertex-level tangent space (one UV set only).

static float3 mikktsTangent, mikktsBitangent;

float4 PixelShader(VertexOutput In) : SV_Target

{

// NO TRANSLATION! Just 3x3 transform to avoid precision issues.

float3 relSurfPos = ToRelativeWorldSpace(In.surfPos.xyz);

// mikkts for conventional vertex-level tangent space

// (no normalization is mandatory). Using "bitangent on the fly"

// option in xnormal to reduce vertex shader outputs.

float sign_w = In.tangent.w > 0.0 ? 1.0 : -1.0;

mikktsTangent = In.tangent.xyz;

mikktsBitangent = sign_w*cross(In.normal.xyz, In.tangent.xyz);

// Prepare for surfgrad formulation w/o breaking mikkTSpace

// compliance (use same scale as interpolated vertex normal).

float renormFactor = 1.0/length(In.normal.xyz);

mikktsTangent *= renormFactor;

mikktsBitangent *= renormFactor;

nrmBaseNormal = renormFactor*In.normal.xyz;

// Handle two-sided materials. Surface gradients, tangent, and

// bitangent don’t flip as a result of flipping the base normal.

if (IsFlipNormal()) nrmBaseNormal = -nrmBaseNormal;

// The variables below (plus nrmBaseNormal) need to be

// recomputed in the case of post-resolve bump mapping.

dPdx = ddx_fine(relSurfPos);

dPdy = ddy_fine(relSurfPos);

sigmaX = dPdx - dot(dPdx, nrmBaseNormal)*nrmBaseNormal;

sigmaY = dPdy - dot(dPdy, nrmBaseNormal)*nrmBaseNormal;

flip_sign = dot(dPdy, cross(nrmBaseNormal, dPdx)) < 0 ? -1 : 1;

Listing 9. Bump mapping prologue to initialize reusable parameters.
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// Calculate ddx(pos) and ddy(pos) analytically.

// Practical when ddx and ddy are unavailable.

// pos: surface position of the pixel being shaded.

// norm: represents nrmBaseNormal of the position being shaded.

// mInvViewProjScr: transformation from the screen

// [0;width] x [0;height] x [0;1] to the space pos and norm are in.

// x0, y0: the current fragment coordinates (pixel center at .5).

void ScreenDerivOfPosNoDDXY(out float3 dPdx, out float3 dPdy,

float3 pos, float3 norm,

float4x4 mInvViewProjScr,

float x0, float y0)

{

float4 plane = float4(norm.xyz, -dot(pos, norm));

float4x4 mInvViewProjScrT = transpose(mInvViewProjScr);

float4 planeScrSpace = mul(mInvViewProjScrT, plane);

// Ax + By + Cz + D = 0 --> z = -(A/C)x - (B/C)y - D/C.

// Intersection point at (x, y, -(A/C)x - (B/C)y - D/C, 1).

const float sign_z = planeScrSpace.z < 0.0 ? -1.0 : 1.0;

const float nz = sign_z*max(FLT_EPSILON, abs(planeScrSpace.z));

const float ac = -planeScrSpace.x/nz;

const float bc = -planeScrSpace.y/nz;

const float dc = -planeScrSpace.w/nz;

float4 C2 = mInvViewProjScrT[2];

float4 v0 = mInvViewProjScrT[0] + ac*C2;

float4 v1 = mInvViewProjScrT[1] + bc*C2;

float4 v2 = mInvViewProjScrT[3] + dc*C2;

// 4D intersection point in world space.

float4 ipw = v0*x0 + v1*y0 + v2;

// Use derivative of f/g --> (f’*g - f*g’)/g
2.

float denom = max(FLT_EPSILON, ipw.w*ipw.w);

dPdx = (v0.xyz*ipw.w - ipw.xyz*v0.w)/denom;

dPdy = (v1.xyz*ipw.w - ipw.xyz*v1.w)/denom;

// If mInvViewProjScr is in normalized screen space [-1;1]2,

// then scale dPdx and dPdy by 2/width and 2/height,

// respectively. Also, negate dPdy if there’s a Y-axis flip.

// dPdx *= 2.0/width; dPdy *= 2.0/height;

}

Listing 10. Calculation of dPdx and dPdy when ddx and ddy are unavailable.
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4. Applications and Testing

In this section, we cover some examples of practical use cases for the surface gradient–
based framework and compare with existing traditional methods where applicable.

4.1. Multiple Sets of Texture Coordinates

Reusing generic detail in the form of tileable 2D textures on different surfaces re-
quires an unwrap of each mesh—as texture coordinates—with careful seam place-
ment, orientation, and scale. However, with the emergence of modern workflows
such as photogrammetry, projecting detail from a high-resolution model to a low-
resolution model, or painting in 3D directly onto the surface, the authored texture is
uniquely tied to the mesh. In this case, the unwrap is tailored toward utilizing as much
of the texture resolution as possible rather than supporting reuse. In the following, we
will refer to these as the tileable unwrap and the unique unwrap, respectively.

The ability to combine multiple layers on a surface allows us to mimic complex
and expansive surface detail that would otherwise require excessive texture resolution
and become impractical to author from an artist workflow standpoint. In some cases,
3D models may even leverage a third and fourth unwrap, yet for normal mapping
game engines only provide one tangent space per vertex, which is specific to the first
unwrap of the model. For this reason, artists are traditionally required to keep all
normal maps on the mesh assigned to the same unwrap, which is far from ideal.

An example of this is shown in Figure 1 as a low-resolution model of a gnome.
As a preprocess, the surface normals of a high-resolution model of the gnome are
projected onto the low-resolution version and stored in a normal map using the unique
unwrap. In the top row, starting from the left, we first see the gnome in wireframe,
then lit using the aforementioned normal map. Continuing to the right we see generic
tileable detail added on top using the unique and tileable unwraps, respectively. In the
case of the latter, we used Listing 4 to produce a tangent space. In the bottom row are
the corresponding close-ups. When using the unique unwrap for both contributions,
we get an implausible result where the generic details maintain the same orientation
on the shoulder strap as on the shirt. In contrast, using the tileable unwrap allows the
details to align with the shoulder strap itself.

4.2. Alternative Methods for Accumulating Bump Maps

Over the years, different methods to combine normal maps have surfaced, and several
are described by Barré-Brisebois and Hill in their survey [2012]. In the following,
we will highlight some of the most common methods described in their survey and
correlate these to the framework we are proposing here. These methods are partial
derivatives (PD), whiteout (WO), Unreal Developer Network (UDN), and reoriented
normal mapping (RNM).
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The problem is defined thus: given two tangent-space normals ~a,~b ∈ [−1; 1]3,
how do we combine these in a way that gives the impression of stacking up the bump
maps but gives the desired aesthetic appearance? Given this somewhat fuzzy goal,
it is unsurprising that two of these methods, WO and UDN, are empirical. In the
survey, they are described as the result of normalizing

[
~ax +~bx ~ay +~by ~az ·~bz

]
and

[
~ax +~bx ~ay +~by ~az

]
, respectively. In contrast, the PD approach simply

adds the corresponding partial derivatives for ~a and~b, as given by Equation (15).
An important observation to make is that PD, WO, and UDN, as described, as-

sume that both normal maps are assigned to the same unwrap. Now, using our frame-
work, we can easily extend all three to work across multiple unwraps.

Compositing Method First Tangent Normal Second Tangent Normal
PD ~a ~b

WO
[
~ax ~ay ~az ·~bz

] [
~bx ~by ~az ·~bz

]
UDN ~a

[
~bx ~by ~az

]
Table 1. Surface gradient–based variants of surveyed methods for PD, WO and UDN.

In any of the three cases, we convert both the first and second tangent-space nor-
mals in Table 1 into a derivative using Listing 2 and then proceed to produce a surface
gradient from each of them using any of the applicable methods described in Sec-
tion 3. Finally, we add the surface gradients together and resolve using Listing 1.

The final method we will cover from the survey is RNM, given here by Equa-
tion (18), as derived in [Barré-Brisebois and Hill 2012]:

~m =
1

~az + 1

 ~ax
~ay

~az + 1

 ·
[ ~ax ~ay ~az + 1

]
·

 −~bx−~by
~bz


−

 −~bx−~by
~bz

 . (18)

This method corresponds directly to post-resolve bump mapping described in Sec-
tion 4.6. In this case, ~a represents the first perturbation step and ~b represents the
second. However, unlike our post-resolve approach, the RNM method does not pro-
vide a solution that supports multiple unwraps, object-space normal maps, or volume
bump maps. Despite these limitations, it is very efficient, thus it remains useful in the
context of post-resolve bump mapping when using two tangent-space normal maps
that are assigned to the same unwrap. In this case, we can convert the result from
RNM into a surface gradient, allowing us to combine the bump contribution with
other forms of bump mapping within our framework.

4.3. Parallax Mapping

Techniques that are strongly related to displacement mapping (described in Section 3.5)
are parallax mapping [Kaneko et al. 2001; Welsh 2004] and parallax occlusion map-
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ping (POM) [Brawley and Tatarchuk 2005]. Just as with displacement mapping, these
techniques are sensitive to the tiling rate, so using a TBN-style frame of reference is
incorrect.

A detailed explanation of parallax mapping and POM is beyond the scope of this
paper. But, in short, you transform the view vector into texture space and search for
the first intersection with the height map along the ray, starting at the current pixel.

The function given in Listing 11 transforms the unit-length input direction dir

and establishes the 2D line segment in texture space as a vector ~v along which we
must search for the intersection between the ray and the height field.

When skipProj is false, the search range is extended (~vx, ~vy, ~vz) →
(~vx~vz ,

~vy
~vz
, 1) such that the third component is always one unit along nrmBaseNormal.

This projection is not used with the more basic approach in [Welsh 2004] (as ex-
plained in their Section 4.3), so in this case skipProj should be set to true. A
correction is applied at the end of Listing 11, where we scale by the user parame-
ter bumpScale to account for this factor in the displacement vector bumpScale*
H(s,t)*nrmBaseNormal. This implies that a height level of 1.0 corresponds to
the displacement distance bumpScale along the normal, in world space.

// dir: normalized vector in same space as surface pos and normal.

// bumpScale: p’ = p + bumpScale*DisplacementMap(s,t)*normal.

float2 ProjectVecToTextureSpace(float3 dir, float2 texST,

float bumpScale, bool skipProj = false)

{

float2 texDx = ddx(texST);

float2 texDy = ddy(texST);

float3 vR1 = cross(dPdy, nrmBaseNormal);

float3 vR2 = cross(nrmBaseNormal, dPdx);

float det = dot(dPdx, vR1);

const float eps = 1.192093e-15F;

float sgn = det < 0.0 ? -1.0 : 1.0;

float s = sgn/max(eps, abs(det));

float2 dirScr = s*float2(dot(vR1, dir), dot(vR2, dir));

float2 dirTex = texDx*dirScr.x + texDy*dirScr.y;

float dirTexZ = dot(nrmBaseNormal, dir);

// To search heights in [0;1] range use dirTex.xy/dirTexZ.

s = skipProj ? 1.0 : 1.0/max(FLT_EPSILON, abs(dirTexZ));

return s*bumpScale*dirTex;

}

Listing 11. Transformation of project vector to texture space for parallax mapping.

A useful feature, provided by the function in Listing 12, is the ability to evaluate
the corrected position at the surface, which corresponds to the corrected offset for
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the texture coordinates. From the initial surface position, the offset in the tangent
plane, and the height value at the corrected location, it is trivial to evaluate the new
displaced surface position. It is worth noting that the same thing cannot be done
using a traditional vertex-level tangent space, since we need to take the ratio between
world-space units and texture-space units into account for a proper conversion.

When the initial surface is not flat, a similar correction should ideally be applied to
the normal nrmBaseNormal, where the correction vector is vx ·dNdx+vy ·dNdy.
The values vx and vy are as given in Listing 12, and dNdx and dNdy represent
ddx() and ddy() on nrmBaseNormal.

// initialST: initial texture coordinate before parallax correction.

// corrOffs: parallax-corrected offset from initialST.

float3 TexSpaceOffsToSurface(float2 initialST, float2 corrOffs)

{

float2 texDx = ddx(initialST);

float2 texDy = ddy(initialST);

float det = texDx.x*texDy.y - texDx.y*texDy.x;

const float eps = 1.192093e-15F;

float sgn = det < 0.0 ? -1.0 : 1.0;

float s = sgn/max(eps, abs(det));

// Transform corrOffs from texture space to screen space.

// Use 2x2 inverse of [ddx(initialST) | ddy(initialST)].

float vx = s*( texDy.y*corrOffs.x - texDy.x*corrOffs.y);

float vy = s*(-texDx.y*corrOffs.x + texDx.x*corrOffs.y);

// Transform screen-space vector to the surface.

return vx*sigmaX + vy*sigmaY;

}

Listing 12. Transformation of the POM chosen correction vector from texture space to the
surface.

Once the correction to the texture coordinates has been performed by adding the
offset vector, the POM or parallax mapping process proceeds by sampling all remain-
ing textures of the material (with the same unwrap) using these new coordinates.

A notable problem is the way in which the GPU determines the fractional MIP
level to sample, which is based on the difference in texture coordinates between adja-
cent pixels on the screen within a block of 2 × 2 pixels.1 A better result is achieved
by using the HLSL intrinsic CalculateLevelOfDetail() with the texture co-
ordinates before correction, where this chosen level of detail is used together with
the texture coordinates after correction to perform subsequent texture sampling with
SampleLevel().

1The problem was also discussed in Section 3.7 in the context of ddx fine() and ddy fine().
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4.4. Triplanar Bump Mapping

Triplanar projection [Geiss 2007a] involves parallel-projecting three images Hx, Hy,
and Hz (u, v) → R onto the rendered surface, where each image is assigned to a
separate axis ~x, ~y, or ~z. The parameter (u, v) represents unnormalized coordinates
such that one pixel represents one unit. For triplanar bump mapping with a left-hand
coordinate system, the final height map is summarized as follows:

H (x, y, z) = wx ·Hx (z, y) + wy ·Hy (x, z) + wz ·Hz (x, y) , (19)

where w(~n) = (wx, wy, wz) is a smooth function of the surface normal ~n and is used
to weight the contributions from each of the three projections. As noted earlier in
Section 3, we do not need the actual displacement maps for images Hx, Hy, and Hz

in practice.
Note that in Equation (19) we have implicitly assumed that (0, 0) represents the

lower-left corner of a height map. A change to the upper-left corner can be achieved
by inverting the second sampling coordinate for each height map: H(s, 1 − t), in
normalized coordinates. But in this case, we must also negate the second coordinate
of each of the three derivatives that we receive in Listing 13. Similarly, a change
to a right-hand coordinate frame is straightforward. In this case, Hx(−z, y) and
Hy(x,−z) are sampled using negated coordinates for z, which means that we must
negate deriv xplane.x and deriv yplane.y in Listing 13, which in practice
is achieved by negating the third component of grad.

To use triplanar bump mapping within our framework, we need to establish the
surface gradient ∇SH for Equation (19). At this point we should acknowledge that
w(~n) depends on the initial normal ~n, which means that the derivative of w depends
on the derivative of ~n. However, similar to [Blinn 1978], we assume that the deriva-
tive of ~n is sufficiently close to zero. For a deeper analysis of this approximation, the
reader is referred to [Mikkelsen 2008]. Thus, we can proceed under the assumption
that w(~n) = (wx, wy, wz) is sufficiently constant at each point p being shaded. Al-
though Equation (19) does not represent a valid volume bump map at a global level
due to its dependency on ~n—which in turn depends on the surface—we can think of
it as a tiny local volume bump map containing p on the surface as we shade it with a
fixed w. The gradient on this volume is then given as

∇H '
(
wz ·

∂Hz

∂u
+ wy ·

∂Hy

∂u
,wz ·

∂Hz

∂v
+ wx ·

∂Hx

∂v
, wx ·

∂Hx

∂u
+ wy ·

∂Hy

∂v

)
.

Finally, we can determine the surface gradient∇SH using Equation (6).
It is worth noting that an alternative solution is to establish the surface gradient

for each two-dimensional mapped image separately, using Equation (7), and then
accumulate the three surface gradients as a weighted average using the coordinates of
w as weights. However, this results in exactly the same surface gradient∇SH .
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The complete implementation of triplanar bump mapping is given in Listing 13,
and the implementation for establishing weights is given in Listing 14. Note that
triplanar projection can also be performed on a surface that has already been bump
mapped. In this case, we simply replace nrmBaseNormal with the perturbed nor-
mal in Listings 1, 8, and 14.

// Triplanar projection is considered a special case of volume

// bump map. Weights are obtained using DetermineTriplanarWeights()

// and derivatives using TspaceNormalToDerivative().

float3 SurfgradFromTriplanarProjection(float3 triplanarWeights,

float2 deriv_xplane, float2 deriv_yplane, float2 deriv_zplane)

{

const float w0 = triplanarWeights.x;

const float w1 = triplanarWeights.y;

const float w2 = triplanarWeights.z;

// Assume deriv xplane, deriv yplane, and deriv zplane are

// sampled using (z,y), (x,z), and (x,y), respectively.

// Positive scales of the lookup coordinate will work

// as well, but for negative scales the derivative components

// will need to be negated accordingly.

float3 grad = float3(w2*deriv_zplane.x + w1*deriv_yplane.x,

w2*deriv_zplane.y + w0*deriv_xplane.y,

w0*deriv_xplane.x + w1*deriv_yplane.y);

return SurfgradFromVolumeGradient(grad);

}

Listing 13. Triplanar normal mapping using a surface gradient–based formulation.

// Adapted from

// http://www.slideshare.net/icastano/cascades-demo-secrets.

float3 DetermineTriplanarWeights(float k = 3.0)

{

float3 weights = abs(nrmBaseNormal) - 0.2;

weights = max(0, weights);

weights = pow(weights, k);

weights /= (weights.x + weights.y + weights.z);

return weights;

}

Listing 14. Determination of blend weights for triplanar mapping.

The traditional implementation for triplanar projection by Geiss [2007b] is similar
to the one we give here, but there are two key differences. First of all, the traditional
method uses the first two components of the tangent-space normal directly in the
implementation instead of the corresponding derivatives. Second, Geiss uses Perlin’s
method to perturb the surface normal, as described in Section 3.6.
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Figure 5. Left: The result of using the traditional method for triplanar projection, which
flattens the intended details. Middle: The result of using a more correct derivative-based
approach but still using Perlin’s perturbation method, which gives artifacts at the crossover
between planar projections. Right: Our method. The corresponding close-ups are shown in
the bottom row.

Figure 5 shows an example of triplanar projection, which is used to add detail
from a tiling hemisphere normal map. The traditional method of Geiss is shown on
the left, and as we can see, the hemispheres become flattened as a result of omitting
the conversion to a derivative, which gives us a peak slope of 45◦ rather than a near-
vertical limit.

In the middle image, we apply the conversion to a derivative but still use Perlin’s
method to perturb the normal. This results in the same type of artifact described in
Section 3.6 and shown in Figure 4(a). The artifact appears mainly near the crossover
between the planar projections, since this is where the volume gradient will stray the
most from the tangent plane of the surface. Finally, the image on the right shows the
correct result, which we get by using the surface gradient–based method described in
this section.

4.5. Decal Projector

Similar to triplanar projection, the decal projector is a special case that is ideally
processed as a volume bump map. It is defined as parallel-projecting an image H :

(u, v) → R onto the rendered surface but relative to a user-specified orthonormal
frame of reference ~x, ~y, and ~z. Within this local frame of reference, H is sampled
using (x, y) as the sampling coordinates, which means that the image is conceptually
repeated along the ~z-axis, so the volume gradient transformed into a common frame
of reference is equal to

∇H =
∂H

∂u
· ~x+

∂H

∂v
· ~y.
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Once again, we can readily determine the surface gradient ∇SH using Equation (6),
leading to the simple implementation provided in Listing 15.

// axisX, axisY: X- and Y-axes of decal projector. Same space as

// normal.

float3 SurfgradFromDecal(float2 deriv, float3 axisX, float3 axisY)

{

// Transform volume gradient.

float3 grad = deriv.x*axisX + deriv.y*axisY;

// Produce a surface gradient.

return SurfgradFromVolumeGradient(grad);

}

Listing 15. Decal projector as volume bump map.

As in Section 4.4, we have assumed that (0, 0) represents the lower-left corner of the
bump map. Like before, in order to convert to the upper-left corner, we would need
to invert the second sampling coordinate and negate deriv.y in Listing 15.

At this point, an important observation to make is that, just as the surface gradient
is a linear operator, the same is true for the volume gradient. Thus, we do not have to
perform the projection to the surface, SurfgradFromVolumeGradient(), per
decal. Instead, we can accumulate the volume gradient of each decal one by one and
only project onto the surface at the very end to obtain the surface gradient. This is
particularly useful in a scenario where decals are processed prior to having access to
the initial normal ~n, such as before running a G-buffer pass.2

Figure 6. Left: A decal placed such that the ground plane and a torus intersect with it, as
illustrated by the green region, and where the direction of projection is shown with a red arrow.
Middle: The result of using the negated direction of projection as the normal to be perturbed.
Right: The improved result achieved when using a surface gradient–based approach to perturb
the normal of the embedded surface.

2The same feature allows us to modulate by the spatial falloff associated with the projector volume
as a bump scale applied to either the surface gradient or the volume gradient.
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Today’s game engines typically apply decal projectors by using the negated pro-
jector direction as the normal to be perturbed, then later blend the result with the
normal of the embedded surface to which the decal is applied. The problem with this
method is that it leads to inferior quality when applied to a curved surface or when the
projector direction is misaligned with the normal of the embedded surface, as shown
in the middle of Figure 6. When we use the surface gradient–based approach de-
scribed in this section, we are able to perturb the surface normal of the actual surface,
which gives the improved result seen on the right.

4.6. Post-Resolve Bump Mapping

In Section 3.7, we briefly discussed using bump mapping back-to-back, where we
perturb the surface normal of the virtual surface that we obtained from a previous
iteration of bump mapping. This process, which we refer to as post-resolve bump
mapping, is particularly useful for adding fine detail to a surface, where macro-scale
detail is first established in the initial iteration.

It is common in games to see examples of triplanar projection used to texture
large-scale geometry such as terrain. However, for more complex shapes such as the
rock shown in Figure 7(a), this approach does not produce convincing results, since
the interpolated vertex normal is not a good representation of the tangent plane of
the surface. Fortunately, using our framework, we can achieve significantly improved
results by using post-resolve bump mapping. The initial step is to use a conven-
tional normal map to establish the macro-scale normal of the surface, followed by
a resolve using Listing 1. Once this resolve has been performed, we must replace
nrmBaseNormal with the new resolved normal, which will then be used in the tri-
planar projection as well as in the second resolve that follows. The improved result is
shown in Figure 7(b).

A good use case for our framework is to add fine detail on top of parallax map-
ping (or POM) via post-resolve bump mapping. The reasoning is that after parallax
mapping the original surface is conceptually replaced with a new virtual surface, so
we want to perturb the normal of this new surface rather than composite the detail via
blending. An example is shown in Figure 7(c).

Alternatively, we can use a volumetric bump map to introduce fine detail (such as
in Figure 7(d)), where the surface position of the virtual surface is used as a sampling
point. A traditional vertex-level tangent space represents an orthonormal frame (see
Equation (8)), and so no record is retained for world-space units across the surface
per unit texture along s and t (‖∂P∂s ‖ and ‖∂P∂t ‖). Rather than requiring an artist to dial
in this ratio, we solve the problem by using the approach described in Section 4.3,
where the transformation to texture space is established in the pixel shader.
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(a) Triplanar projection (b) Triplanar after normal mapping

(c) Parallax with details (d) Parallax with volumetric detail

Figure 7. (a) The result of using triplanar projection, where blending is determined using the
interpolated vertex normal. (b) The effect of using a traditional baked normal map followed
by triplanar projection. (c) Fine detail added to the virtual surface resulting from parallax
mapping. (d) Additionally, a procedural bump map, on a volume, used to produce erosion and
dents.

In our example, we use the function turbulence() as described in [Perlin
1985], with a similar frequency clamping method to filter the signal, since MIP map-
ping is not an option for such a procedural approach. Based on the dented() shader
in [Upstill 1989], we use g(x) = xk as a function to composite with turbulence().
We evaluate the volume gradient of the composite function ∇(g ◦ f) by leveraging
that (g ◦ f)′ = g′(f)f ′. Finally, we establish the surface gradient using Listing 8 and
resolve using Listing 1, where nrmBaseNormal is the normal of the virtual surface.

4.7. Bump Mapping from a Height Map

In some scenarios, it is convenient to be able to establish the derivative (∂H∂u ,
∂H
∂v ) di-

rectly from a height map in a shader: for instance, when sculpting a large-scale terrain
either in code or by painting displacements to a texture, in which case maintaining a
corresponding synced normal map is impractical. Another example is a case where
one already uses a height map (such as with POM) but wishes to avoid the additional
memory footprint of a normal map.
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Figure 8. Four different ways to determine (∂H∂u ,
∂H
∂v ) for the normal. In the leftmost image,

forward differencing is used. The second image also uses forward differencing, but with a
minimum step size of one pixel. The third image bilinearly samples from a 2 × 2 block of
derivatives, and the fourth image is a normal map.

(a) Height map (b) Derivative

Figure 9. (a) A piecewise-linear function H(u). (b) The corresponding derivative func-
tion ∂H

∂u .

While we can use the method in Listing 7 to perform bump mapping from a height
map, it produces objectionable faceting under texture magnification, as shown in the
leftmost image of Figure 8. This happens because, during upsampling, the GPU will
bilinearly filter a block of 2 × 2 pixels at the top MIP level, which gives a signal of
piecewise-bilinear patches. This is illustrated in 2D in Figure 9, where we see that the
derivative function of a piecewise-linear function is a piecewise-constant function.

The problem occurs during forward differencing when the adjacent samples are
taken from the same 2 × 2 block as the center sample. A trick for solving this is
to force the adjacent samples to be taken from a minimum distance of one pixel
relative to the top MIP level. We can do this implicitly by using the HLSL intrin-
sic CalculateLevelOfDetail() to determine the adjacent sampling locations,
since it returns a level-of-detail value greater than or equal to zero. An implementa-
tion for this is given in Listing 16; note that the bottom half of the function is skipped
when isUpscaleHQ is set to false. The corresponding result is shown in the
second image in Figure 8.

The result of using an actual normal map is shown in the fourth image of Figure 8.
We can achieve a closer match to this by bilinearly interpolating a 2 × 2 block of
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derivatives ∂H
∂u . A common discrete method to compute derivatives is to use the Sobel

operator, which can be expressed as a matrix multiplication such that we obtain 2× 2

derivatives from 4× 4 height values. The bilinear interpolation is also expressible as
a matrix multiplication. Let Q = [Hij ] be the 4 × 4 matrix of pixels from the top
MIP level such that the sampling location is within the center 2 × 2 submatrix of Q.
The fractional sampling location used in the bilinear interpolation is ~t ∈ [0; 1]2, and
the final transformation sequences to obtain (∂H∂u ,

∂H
∂v ) are given by Equations (20)

and (21), respectively:

D =
1

2

[
−1 0 1 0

0 −1 0 1

]
, B =

1

4

[
1 2 1 0

0 1 2 1

]
,

∂H

∂u
=

[ (
1− ~ty

)
~ty

]
·B ·Q ·DT ·

[ (
1− ~tx

)
~tx

]T
, (20)

∂H

∂v
=

[ (
1− ~ty

)
~ty

]
·D ·Q ·BT ·

[ (
1− ~tx

)
~tx

]T
. (21)

These are used in Listing 16 when isUpscaleHQ is set to true and only during
texture magnification. As an optimization, we fetch the 4 × 4 heights using just four
HLSL Gather() calls. The result is shown in the third image of Figure 8, and as we
can see, it more closely resembles the normal-mapped result shown in the last image.
The corresponding tangent-space normal can be obtained by applying Equation (12)
to the derivative returned by the function in Listing 16.

5. Conclusion

We have presented a comprehensive framework of utility functions for performing
advanced compositing of bump maps, with support for multiple sets of texture coor-
dinates, as well as correct normal perturbation with volumetric bump mapping.

With this framework, we have reconciled with traditional normal mapping by
introducing an alternative yet equivalent surface gradient–based formulation, which
allows us to remain compliant with existing baked normal maps.

Strictly speaking, full compliance is only achieved when a vertex-level tangent
space is provided by the application. In practice, this is primarily a requirement
for low-polygon hard surface modeling, and in our experience the replacement of
a vertex-level tangent space with a procedural approach does not exhibit a loss in
fidelity in the majority of cases. It seems likely that the reliance on a vertex-level
tangent space will lessen over time; until then, our procedural approach provides a
strong alternative for multiple sets of texture coordinates as well as procedural texture
coordinates.
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// Returns dHduv where (u,v) is in pixel units at the top MIP level.

float2 DerivFromHeightMap(Texture2D hmap, SamplerState samp,

float2 texST, bool isUpscaleHQ = false)

{

float lod = hmap.CalculateLevelOfDetail(samp, texST);

uint2 dim; hmap.GetDimensions(dim.x, dim.y);

float2 onePixOffs = float2(1.0/dim.x, 1.0/dim.y);

float eoffs = exp2(lod);

float2 actualOffs = onePixOffs*eoffs;

float2 st_r = texST + float2(actualOffs.x, 0.0);

float2 st_u = texST + float2(0.0, actualOffs.y);

float Hr = hmap.Sample(samp, st_r).x;

float Hu = hmap.Sample(samp, st_u).x;

float Hc = hmap.Sample(samp, texST).x;

float2 dHduv = float2(Hr - Hc, Hu - Hc)/eoffs;

float start = 0.5, end = 0.05; // start-end fade

float mix = saturate((lod - start)/(end - start));

if (isUpscaleHQ && mix > 0.0)

{

float2 f2TexCoord = dim*texST - float2(0.5, 0.5);

float2 f2FlTexCoord = floor(f2TexCoord);

float2 t = saturate(f2TexCoord - f2FlTexCoord);

float2 cenST = (f2FlTexCoord + float2(0.5, 0.5))/dim;

float4 sampUL = hmap.Gather(samp, cenST, int2(-1,-1));

float4 sampUR = hmap.Gather(samp, cenST, int2( 1,-1));

float4 sampLL = hmap.Gather(samp, cenST, int2(-1, 1));

float4 sampLR = hmap.Gather(samp, cenST, int2( 1, 1));

// float4(UL.wz, UR.wz) represents first scanline and so on.

float4x4 H = {sampUL.w, sampUL.z, sampUR.w, sampUR.z,

sampUL.x, sampUL.y, sampUR.x, sampUR.y,

sampLL.w, sampLL.z, sampLR.w, sampLR.z,

sampLL.x, sampLL.y, sampLR.x, sampLR.y};

float2 A = float2(1.0 - t.x, t.x);

float2 B = float2(1.0 - t.y, t.y);

float4 X = 0.25*float4(A.x, 2*A.x + A.y, A.x + 2*A.y, A.y);

float4 Y = 0.25*float4(B.x, 2*B.x + B.y, B.x + 2*B.y, B.y);

float4 dX = 0.5*float4(-A.x, -A.y, A.x, A.y);

float4 dY = 0.5*float4(-B.x, -B.y, B.x, B.y);

float2 dHduv_ups = float2(dot( Y, mul(H, dX)),

dot(dY, mul(H, X)));

dHduv = lerp(dHduv, dHduv_ups, mix);

}

return dHduv;

}

Listing 16. Derivative on the fly from a height map.
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