
Journal of Computer Graphics Techniques Vol. 10, No. 1, 2021 http://jcgt.org

Incremental Ray Traversal through
OpenVDB Frustum Grids

Manuel N. Gamito
Framestore

Figure 1. One frame from the film ”The Midnight Sun” (Copyright Netflix 2020), showing
several volumes stored as OpenVDB frustum grids.

Abstract

The rendering of volumes with modern path-tracing techniques requires the sampling of col-
lision distances within the media to determine where scattering events occur. For collision
sampling, delta-tracking algorithms traverse a ray through clusters of voxels, while querying
the minimum and maximum extinction values within each cluster. Such ray traversals can
be performed easily on uniform grids but face difficulties due to the non-linearity of frustum
grids. Frustum grids, however, can be very useful to distribute voxels efficiently, relative to
a perspective camera, while keeping memory requirements low. We present an incremental
technique for traversing frustum grids in OpenVDB—a widely adopted format for volume
storage in production path tracing. Our technique is a generalization of the digital differential
analyser algorithm that is the standard for ray traversal in uniform grids.

49 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

1. Introduction

Path tracing in the presence of scattering media employs a technique, called delta
tracking, that samples the free path distance in a medium before a scattering or ab-
sorption collision occurs. A companion tracking technique, called ratio tracking, is
used to estimate transmittance within the medium, for next event estimation from
light sources. Although the delta-tracking algorithm and its variants are beyond the
scope of this paper, we address here the issue of efficiently traversing voxel grids dur-
ing tracking. For more details on the tracking algorithms themselves, we refer to the
survey by Novák et al. [2018].

A required feature for ray tracking is that voxels must be grouped into clusters,
and the maximum extinction coefficient within each cluster must be recorded. Some
versions of the tracking algorithm also employ the minimum extinction within a clus-
ter and so it is useful to store these extinction extrema as part of the metadata of a
voxel grid. For OpenVDB, this partitioning of voxels corresponds naturally to the
leaf nodes of a grid hierarchy [Museth 2013]. An OpenVDB grid is a lightweight hi-
erarchy of nodes, commonly four levels deep, and the leaf nodes hold the actual voxel
data that is loaded into memory on request. A leaf node stores an array of 8×8×8

voxels, although leaf arrays with other powers of two in size can also be configured.
The ray traversal through the leaf nodes of a uniform OpenVDB grid is done with

a 3D digital differential analyzer [Amanatides and Woo 1987], which efficiently finds
all successive ray intersections with the leaf boundaries. We call this procedure ray
traversal with respect to a grid to differentiate it from ray marching, which is the
increment of the ray distance by constant steps, irrespective of any grid boundaries.
The 3D DDA is an extension of the old 2D line drawing DDA algorithm of Bresen-
ham [1965]. OpenVDB offers a DDA implementation, and we routinely employ it for
ray tracking in our uniform grids.

Frustum grids offer significant advantages, compared to uniform grids, in placing
voxels where they matter most relative to the camera [Wrenninge 2012]. They have
been used successfully to render cloudscapes with OpenVDB [Miller et al. 2012].
We present a generalization of the DDA ray-traversal algorithm that accounts for the
non-linearity of the perspective transform in OpenVDB frustum grids.

2. Previous Work

Tracing camera rays through camera-aligned frustum grids can be done with fixed
distance increments—a technique that amounts to a one-dimensional DDA over the
depth axis [Wrenninge 2012]. For shadow rays or indirect rays, this is no longer
possible and different approaches are needed.

Wrenninge et al [2013] store the volume data in a sparse kd-tree format in frustum
space, and the ray is traversed through this kd-tree. During ray traversal, each suc-

50

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

cessive kd-tree separating plane is mapped from frustum space to world space, and an
explicit ray-plane intersection is performed to yield the correct world-space distance.

Museth [2014] proposes using an auxiliary uniform grid, superimposed over an
OpenVDB frustum grid. This auxiliary grid stores binary information that acts as a
mask for the presence of the frustum. The DDA is performed over the uniform grid,
and the frustum grid is sampled for points where the mask indicates that it is present.

As we will show, our technique requires neither a dedicated volume format nor
an auxiliary grid and can perform a fully incremental 3D DDA traversal over an
OpenVDB frustum grid for any ray.

3. OpenVDB Frustum Grids

A frustum grid, in OpenVDB, is a voxel grid that is mapped to 3D world space through
a transform that creates a rectangular frustum. This frustum is intended to be aligned
exactly with the view frustum of a perspective camera. The transform proceeds in two
steps. First, a non-linear mapping f : R3 7→ R3 takes the index space of the voxel
grid into a canonical frustum space, shown in Figure 2. This step is then followed by
an affine transform, represented by a 4 × 4 homogeneous matrix M, which adds the
final mapping into world space.

The grid is initially defined over a region [I0, I1] × [J0, J1] × [K0,K1] of the
{(i, j, k) : R3} index space. The grid can be indexed at any continuous location
within this region by interpolation from the nearest integer grid points. The grid
is then mapped to the rectangle [−1/2,+1/2] × [−a/2,+a/2] on the near plane at
coordinate z = 0 in frustum space, with the aspect ratio a = (J1 − J0)/(I1 − I0).
The i- and j-grid indices map to the x- and y-frustum axes, respectively, while the
k-index is mapped along the z-depth axis. The frustum transform f is parameterized
by a taper τ and a depth d. The far plane is set at z = d and contains the rectangle

f

z

x

y

d

1/τ

a/τ

1

a M

Figure 2. The OpenVDB frustum space is the middle stage of the index space to world space
transform. The non-linear map f and the matrix M move points into and out of this space.

51

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

[−1/(2τ),+1/(2τ)] × [−a/(2τ),+a/(2τ)]. The taper parameter τ is therefore the
ratio between the sizes of the near rectangle and the far rectangle. The matrix M

can be any general affine transform. Usually, it will contain scaling components that
change the size of the near rectangle to match the image-sensor size of the camera. A
translational component can also move the near plane z = 0 toward the camera’s near
clipping-plane distance.

4. Ray Traversal in Index Space

For ray traversal of the grid, we seek to go in the opposite direction of the transform in
Figure 2. Given a ray ~r(t) = ~r0 + ω̂t in world space, parameterized by distance t > 0

and with unit direction vector ω̂, we first transform it linearly into frustum space and
obtain an equivalent frustum ray ~s(t) = ~s0 + ~δt such that

[~s0 1]> = M−1[~r0 1]>,

[~δ 0]> = M−1[ω̂ 0]>.
(1)

The direction vector ~δ is not renormalized after the inverse matrix multiplication.
In this way, values of t found during traversal can be directly applied in world space.

Expressing the frustum ray in its three coordinates ~s(t) := (sx(t), sy(t), sz(t)),
we can now invert the frustum map f and obtain parametric expressions for the coor-
dinates of the ray in index space. Based on the definition of f−1 from OpenVDB, the
ray indices are given in Equations (2):

i(t) =
I1 − I0

γsz(t) + 1
sx(t) +

I1 + I0
2

,

j(t) =
I1 − I0

γsz(t) + 1
sy(t) +

J1 + J0
2

,

k(t) =
K1 −K0

d
sz(t) + K0,

γ = (1/τ − 1)/d.

(2)

The dependence of j(t) on I1 − I0 is not an error. It accounts for the aspect ratio
of the y-axis, relative to the x-axis. For illustration, when sz(t) = 0 and with sy(t)

in the range [−a/2,+a/2], we get the correct index range j(t) ∈ [J0, J1]. Given
that all three components of ~s(t) are binomials, the i(t) and j(t) indices are rational
functions, while k(t) is a linear remapping: [0, d] 7→ [K0,K1]. A ray in frustum
space, therefore, becomes a rational curve in index space, after the inverse map f−1

has been applied. It is this curve that will be tested against all intersections with the
internal voxel boundaries of the grid, for increasing t.

52

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

4.1. Ray-Frustum Clipping

The ray must be clipped against the frustum to determine the range of distances [t0, t1]

over which the traversal will proceed. For that purpose, we invert the index functions
of Equations (2) relative to t, writing out the full expressions for the ray components
and obtain three possible distance functions, depending on which index is used:

tI(i) =
x′(γs0z + 1)− s0x

δx − x′γδz
, x′ =

i− (I1 + I0)/2

I1 − I0
,

tJ(j) =
y′(γs0z + 1)− s0y

δy − y′γδz
, y′ =

j − (J1 + J0)/2

I1 − I0
,

tK(k) = (z − s0z)/δz, z = d(k −K0)/(K1 −K0).

(3)

The coordinates (x′, y′, z) result from the partial projection of ~s(t) in frustum
space onto the z = 0 plane, leaving the depth z = sz(t) unchanged.

Clipping is done by testing all distance functions against the boundaries of the
grid. We first intersect with the slab of vertical planes k = K0 to k = K1 (corre-
spondingly, z = 0 to z = d) to produce an initial range [t0, t1], obtained with

t0 = tK(0),

t1 = tK(d).

The other four separating planes are then tested in turn. Considering the right
frustum plane first, for which i = I1 and x′ = 1/2, the outward orthogonal vector to
the plane is ~n = (1, 0,−γ/2) and one of the points on the plane is ~p0 = (1/2, 0, 0).
The distance to the plane is

tR =
(~p0 − ~s0) · ~n

~δ · ~n
=

(γs0z + 1)/2− s0x
δx − γδz/2

= tI(1/2).

The dot product ~δ · ~n tells us if the ray is entering or leaving the frustum through
this plane. If δx < γδz/2, the dot product is negative, the ray is entering, and we up-
date t0 = max{t0, tR}; otherwise the ray is leaving, and we update t1 = min{t1, tR}.

The left frustum plane has ~n = (−1, 0,−γ/2) and ~p0 = (−1/2, 0, 0), leading to

tL =
(γs0z + 1)/2 + s0x
−(δx + γδz/2)

=
−(γs0z + 1)/2− s0x

δx + γδz/2
= tI(−1/2).

The ray enters the left plane when −(δx + γδz/2) < 0, or δx > −γδz/2, and we
update t0 with tL if that condition is true; otherwise we update t1. The top and bottom
frustum planes are clipped similarly but using the factor a/2 instead of 1/2.

By checking if t1 > t0, after all six planes have been tested, we know when a
valid distance range for traversal was found. Otherwise the ray does not enter the
frustum, and the ray traversal routine returns immediately.

53

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

4.2. An Iterative Formulation for Ray Traversal

For ray traversal of a frustum grid, we need to find the distances corresponding to the
intersections with the internal boundaries of the OpenVDB leaf nodes. Assuming an
infinite grid, the leaf boundaries are defined by the index coordinates {(iN, jN, kN) :

i, j, k ∈ Z}, where N is the number of voxels across each dimension of a leaf. In
practice, this infinite space is restricted to the grid-boundary coordinates, which will
also be multiples of N . We insert these coordinates in Equations (3) and introduce
four auxiliary binomials that define the two rational functions for i, and j:

tI(iN) =
P I(iN)

QI(iN)
,

{
P I(i) = x′(γs0z + 1)− s0x
QI(i) = δx − x′γδz

, x′ as in (3)

tJ(jN) =
PJ(jN)

QJ(jN)
,

{
PJ(j) = y′(γs0z + 1)− s0y
QJ(j) = δy − y′γδz

, y′ as in (3)

tK(kN) = (z − s0z)/δz, z = d(kN −K0)/(K1 −K0).

(4)

It is now possible to establish iterative rules to update all three distances during
traversal. The index coordinates of the leaf being traversed are updated with fixed
integer deltas {∆A = ±N : A = I, J,K}. The signs of the deltas control if coordi-
nates are incremented or decremented. We defer the determination of these signs to
the following section. Given the three distances at iteration n, each can be updated in
the next iteration according to a subset of the following rules:

I :

(P I)n+1 = (P I)n + ∆P I, ∆P I = (γs0z + 1)∆′I

(QI)n+1 = (QI)n −∆QI, ∆QI = γδz∆
′
I

}
∆′I =

∆I

I1 − I0

(tI)n+1 = (P I/QI)n+1

J :

(PJ)n+1 = (PJ)n + ∆PJ, ∆PJ = (γs0z + 1)∆′J

(QJ)n+1 = (QJ)n −∆QJ, ∆QJ = γδz∆
′
J

}
∆′J =

∆J

I1 − I0

(tJ)n+1 = (PJ/QJ)n+1

K :

{
(tK)n+1 = (tK)n + ∆′K, ∆′K =

d

δz

∆K

K1 −K0

(5)

For each iteration, the ray distance to the next leaf-crossing is the nearest of the
three distances: (t)n = min{(tI)n, (tJ)n, (tK)n}. This distance is then iterated ac-
cording to its own set of rules, as stated in Equations (5), while the other two distances
stay unchanged. Note that the iteration for tK follows the same rule that is normally
employed in the 3D DDA algorithm of Amanatides and Woo [1987]. This is a natural
consequence of the frustum map preserving linearity along the depth. If the frustum
map has no tapering effect, so that τ = 1 and γ = 0, the entire set of Equations (5)
reverts to a 3D DDA.

54

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

4.3. Asymptotic Behavior of Rays in Index Space

To determine the direction of travel of the curved ray in the grid index space, we
analyze the derivatives of ~s(t), with respect to the parameter t. From Equations 2,
and using simple calculus rules, we obtain the following set of ray derivatives for the
indices (i, j, k) in the grid as a function of the ray distance:

di

dt
(t) =

I1 − I0
(γsz(t) + 1)2

(
δx + γ(δxs0z − δzs0x)

)
,

dj

dt
(t) =

I1 − I0
(γsz(t) + 1)2

(
δy + γ(δys0z − δzs0y)

)
,

dk

dt
(t) =

K1 −K0

d
δz.

(6)

The sign of these derivatives then indicates when indices should be incremented
or decremented during traversal. Since the squared denominators are always positive,
the signs never change along the trajectory, and the ray has fixed directions of travel,
with no inflection points along the way. The grid increments are given by

∆I = sgn
{
δx + γ(δxs0z − δzs0x)

}
N,

∆J = sgn
{
δy + γ(δys0z − δzs0y)

}
N,

∆K = sgn
{
δz
}
N,

(7)

where the sign function is understood to return 0 for zero arguments.
Asymptotically, the derivatives converge to a value proportional to (0, 0, δz) as

t increases. This means that, provided a ray travels for a sufficiently long distance
inside the frustum, it will progressively align itself with two orthogonal planes of
constant i and j, respectively. This then creates a type of situation that is illustrated in
Figure 3. There, a ray has crossed a voxel boundary with coordinate jN , at a distance
tJ(jN), but it will never cross the next boundary with coordinate (j + 1)N because
its vertical rate of increase dj/dt has become too small from that point onward. If
one were to solve for the intersection with the next boundary, the distance would
be tJ((j + 1)N) < tJ(jN) and it would actually be negative, corresponding to an

(j + 1)N

jN

k

tJ(jN)

Figure 3. A ray that crosses an internal voxel boundary but does not cross the next one.

55

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

intersection point behind the ray. This is not a valid distance so we set (tJ)n =

+∞, for the nth iteration where it happens, to signal to the algorithm that no further
intersections along the J-axis will occur in the following iterations. Unlike the other
two axes, we always have (tK)n+1 > (tK)n, for all n, because

(tK)n+1 − (tK)n =
d

δz

∆K

K1 −K0
=

d

δz

sgn{δz}N
K1 −K0

=
d

|δz|
N

K1 −K0
> 0

and (tK)0 > 0 by construction. In the event of both I and J becoming invalid
for traversal, the depth axis K will be valid and the algorithm will always progress
through the frustum.

Camera rays have the characteristic that they all start from ~s0 = (0, 0,−1/γ) in
frustum space. If this origin is inserted in the derivatives of Equations (6), we obtain
di/dt = dj/dt = 0. The consequence is that camera rays only progress along the
K-axis in index space, while keeping their i and j grid coordinates constant.

4.4. Initialization of the Stepping Variables

The initial states (PI)0, (QI)0, (PJ)0 and (QJ)0 are obtained from Equations (4),
using the entry grid coordinates:

i0 =

{
(bi(t0)/Nc+ 1)N if ∆I > 0,

bi(t0)/NcN otherwise.

j0 =

{
(bj(t0)/Nc+ 1)N if ∆J > 0,

bj(t0)/NcN otherwise.

with t0 being the ray entry distance into the frustum that feeds the coordinate func-
tions in Equations (2). The increments ∆I and ∆J come from Equations (7). The
corresponding increments ∆PI, ∆QI, ∆PJ and ∆QJ are obtained from Equations (5)
and (7).

If we find that the initial per-axis intersection distances are less than the entry
distance and, specifically for the I axis, if (tI)0 = (PI/QI)0 < t0 then (tI)0 must be
set to +∞. This corresponds to a situation where the very first iteration will already
fail to reach the next leaf boundary crossing, due to the non-linearity of the frustum
mapping. A similar procedure is used for (tJ)0. The previous considerations also
apply to a camera ray because in that case

(PI)0 = x′(γs0z + 1)− s0x = x′(−γ/γ + 1)− 0 = 0. (8)

This then implies (tI)0 = 0, which is certainly less than the positive distance t0
the camera ray must travel from the apex of the frustum to the z = 0 plane. The J-axis
also obeys its own version of Equation (8), and we start with (tI)0 = (tJ)0 = +∞,

56

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

which effectively means that the traversal algorithm will only ever take steps along
the depth axis.

For axis K, we would like to recast its uniform DDA steps into an iterative pro-
cedure that is consistent with the other two axes. This can be achieved simply by
introducing (QK)0 = 1 and ∆QK = 0. The ray trajectory along the depth axis is,
therefore, a degenerate case of a rational curve with a binomial denominator that is
always unity. We can then define (PK)0 = (d(k0−K0)/(K1−K0)− s0z)/δz , using
the entry coordinate

k0 =

{
(bk(t0)/Nc+ 1)N if δz > 0,

bk(t0)/NcN, otherwise.

Finally, ∆PK is the ∆′K term from Equations (5). It is always true that (tK)0 =

(PK/QK)0 = (PK)0 > t0, unlike the I and J case where the inequality may not
always hold. This is a property inherited from the original DDA algorithm, where the
distance toward the first intersection after t0, for any axis, is never negative.

class FrustumDDA

{

public:

// Constructor

FrustumDDA(const openvdb::math::NonlinearFrustumMap& map)

: m_map(map) {}

// Initialise traversal

bool init(openvdb::math::Ray& ray, double tmax);

// Take step

bool step(double& t, openvdb::Coord& ijk);

private:

double m_tn; // Distance traversed so far

double m_tM; // Maximum traversal distance

openvdb::Coord m_ijk; // Current leaf coordinates

openvdb::Vec3i m_dijk; // Coordinate updates per step

openvdb::Vec3d m_t; // Per-axis intersection distances

openvdb::Vec3d m_p, m_q, m_dp, m_dq; // Stepping variables

const openvdb::math::NonlinearFrustumMap& m_map; // The frustum

};

Listing 1. The definition of our FrustumDDA class.

57

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

bool FrustumDDA::step(double& t, openvdb::Coord& ijk)

{

// Check end of traversal

if (m_tn < m_tM)

{

// Find axis with nearest intersection

size_t a = openvdb::math::MinIndex(m_t);

// Pass current traversal state to the outside,

// also updating the distance travelled so far

t = m_tn = std::min(m_t[a], m_tM);

ijk = m_ijk;

// Take step along axis ’a’

// To avoid branching in the K axis case,

// init() sets m q[2] = 1.0 and m dq[2] = 0.0

m_p[a] += m_dp[a];

m_q[a] -= m_dq[a];

double ta = m_p[a]/m_q[a];

// An invalid increment, to occur,

// will only be on the I or J axes

assert(ta > 0.0 || a < 2);

m_t[a] = (ta > 0.0) ?

ta : std::numeric_limits<double>::infinity();

// Update leaf coordinates with increments from eqs. 7

m_ijk[a] += m_dijk[a];

return true;

}

return false;

}

Listing 2. The implementation of the stepping function.

58

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

5. Source Code

Listing 1 shows the C++ definition of the FrustumDDA class we implemented. It is
lightweight, which allows each render thread to maintain a separate object of the
class at no significant cost. This also removes any concerns about thread-safety of the
code. An init() function initializes the traversal of a new ray. A step() function
provides the stepping functionality during the traversal.

The listing for the init() function is not given. This function first transforms
the ray from world space to frustum space, according to Equation (1). It then clips
the ray against the frustum, as explained in Section 4.1 and returns false if no
intersection exists. Otherwise, the clipping range is stored in the ray object with
ray.setTimes(t0,t1). This allows calling code to query the limits of the traversal
range by invoking ray.t0() and ray.t1() after return from init().

The function then initializes the necessary stepping variables of Section 4.4, to-
gether with the initial distances (tI)0, (tJ)0 and (tK)0. Traversal is done up to a user-
specified maximum distance tmax, which could be the distance to the nearest surface
intersection, if it exists. Internally, this distance is clipped against the frustum exit
distance so that m_tM = std::min(tmax, t1). The init() function finally returns
true to signal a successful initialization.

The stepping function is shown in Listing 2. It returns true while the traversal is
ongoing and false when there are no more steps. This allows the function to be used
as the control logic for a while loop. The distance to the next grid leaf is returned by
argument. The integer ijk-coordinates of the OpenVDB leaf currently being traversed
are also returned in the same way. These are, in fact, the coordinates of the lower-left
back voxel of the leaf, which uniquely identify it, and will always be divisible by N .

The implementation of step() contains the main results of this paper. The sim-
plicity of step() is noteworthy. It is scarcely more complex than the original 3D
DDA algorithm, the only difference being the update rule for the per-axis ray dis-
tances. All the remaining bookkeeping code is the same. Once all internal member
variables are properly set in init(), the step() function has very little work to do.

6. Results and Discussion

Figure 4 shows two renders of one of several volume assets that were used in the scene
shown in Figure 1. All volumes were composited together in Nuke to produce the fi-
nal shot. The top render shows the volume as seen from its intended view point. The
bottom render shows clearly the geometry of the frustum grid that was used. This ren-
der demonstrates the ability of our frustum-traversal technique to handle rays coming
from any direction, using solely the information that is stored in the OpenVDB grid.
The frustum grid in Figure 4 has 31 million active voxels. By comparison, a uniform
grid that covers the same spatial extent requires 110 million voxels. The uniform grid

59

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

Figure 4. An OpenVDB volume asset, used in the rendering of the scene shown in Figure 1.
The volume is stored in a frustum grid and seen from the point of view of the render camera
(top) and a camera outside the intended view frustum (bottom).

uses a voxel size that matches the voxel size at the front of the frustum grid so that no
visible sampling degradation occurs. This illustrates the memory advantages of frus-
tum grids over uniform grids, when working with volumes that span large distances
relative to the camera.

Figure 5 shows a close up of the Disney cloud data set, resampled onto a frus-
tum grid. This render shows how light leaks can occur along the image boundaries
when the frustum grid matches exactly the view frustum of the camera [Wrenninge
2012]. The frustum grid clips out-of-view data that would have otherwise contributed
to internal scattering and shadowing from the light sources. The effect of the missing
volume data is to create an artificial brightening around the image edges due to insuf-
ficient shadowing. This effect is not restricted to the image edges, as Figure 5 shows,
but can also affect internal shadow terminators. Boundary artefacts can be minimized
by padding the grid with a voxel layer of sufficient thickness to allow lighting contri-
butions originating outside the view frustum to be propagated inside. If the frustum
grid is sufficiently wide to encompass the entire extent of volume then no artefacts
will result. Figure 6 shows the same padded volume of Figure 5, visualized from a
view point outside the intended view frustum. The red lines indicate the frustum that
was previously used. The padding of the volume relative to this frustum is evident.

60

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

Figure 5. A frustum grid that exactly matches the view frustum (left), showing light leaks
around the edges. The same grid with a 16-voxel-wide padding (middle) removes this artefact.
The difference image (right) also highlights changes in internal shadowing.

Figure 6. The frustum grid of Figure 5, visualized with a camera that is not aligned with the
grid. The red lines indicate the frustum of the camera that was originally used.

7. Future Work

The OpenVDB frustum transform features a linear mapping along the depth axis. By
contrast, the OpenGL perspective transform adds a non-linear mapping along this di-
mension as well, with the intention of improving the numerical precision of depth
values [Kessenich et al. 2016]. In OpenGL, geometric elements are compressed to-
wards the near clipping plane, after a perspective transform, and, conversely, they
are placed more sparsely towards the far clipping plane. It could be useful to have a
traversal algorithm that works with OpenGL perspective matrices. This is outside the
scope of our path-tracing work but, nevertheless, we consider it to be an interesting
extension of the current algorithm.

61

http://jcgt.org

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

Another possible development could lead to a hierarchical frustum-traversal algo-
rithm that exploits the full configuration of an OpenVDB grid hierarchy, analogous to
the hierarchical DDA of Museth [2014] for uniform grids. Such an algorithm would
not be restricted to traversing leaf nodes only and could take advantage of grid spar-
sity to quickly step through regions that are either empty or hold a constant value.
This could be achieved by managing several traversal states simultaneously, one for
each level of the grid hierarchy. The algorithm would then transition between traver-
sal states in the same way that the ray would move upwards or downwards through
the hierarchy during traversal.

Acknowledgements

The author would like to thank Daniel Jenkins, Nicolas Sauval and Ruben Villoria Serrano
for preparing the cloud datasets, and Laurianne Proud’hon for helping with the complexities
of Nuke.

References

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal algorithm for ray tracing. In
Proceedings of Eurographics 87. Eurographics, Air-la-Ville, Switzerland, 3–10. 50, 54

BRESENHAM, J. E. 1965. Algorithm for computer control of a digital plotter. IBM Syst. J.
4, 1 (Mar.), 2530. URL: https://doi.org/10.1147/sj.41.0025. 50

KESSENICH, J., SELLERS, G., AND SHREINER, D. 2016. OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 4.5 with SPIR-V, 9 ed. Addison-Wesley
Professional, Hoboken, NJ. 61

MILLER, B., MUSETH, K., PENNEY, D., AND ZAFAR, N. B., 2012. Cloud modelling and
rendering for ”Puss In Boots”. ACM SIGGRAPH Talk. URL: http://www.museth.
org/Ken/Publications_files/Miller-etal_SIG12.pdf. 50

MUSETH, K. 2013. VDB: High-resolution sparse volumes with dynamic topology.
ACM Trans. Graph. 32, 3 (July). URL: https://doi.org/10.1145/2487228.
2487235. 50

MUSETH, K. 2014. Hierarchical digital differential analyzer for efficient ray-marching in
OpenVDB. In ACM SIGGRAPH 2014 Talks. ACM, New York, NY. URL: https://
doi.org/10.1145/2614106.2614136. 51, 62

NOVÁK, J., GEORGIEV, I., HANIKA, J., AND JAROSZ, W. 2018. Monte Carlo meth-
ods for volumetric light transport simulation. Computer Graphics Forum (Proceedings
of Eurographics - State of the Art Reports) 37, 2 (May), 551–576. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13383. 50

WRENNINGE, M., KULLA, C. D., AND LUNDQVIST, V. 2013. Oz: the great and volumetric.
In ACM SIGGRAPH 2013 Talks. ACM, New York, NY. URL: https://doi.org/10.
1145/2504459.2504518. 50

62

http://jcgt.org
https://doi.org/10.1147/sj.41.0025
http://www.museth.org/Ken/Publications_files/Miller-etal_SIG12.pdf
http://www.museth.org/Ken/Publications_files/Miller-etal_SIG12.pdf
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2614106.2614136
https://doi.org/10.1145/2614106.2614136
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13383
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13383
https://doi.org/10.1145/2504459.2504518
https://doi.org/10.1145/2504459.2504518

Journal of Computer Graphics Techniques
Incremental Ray Traversal through OpenVDB Frustum Grids

Vol. 10, No. 1, 2021
http://jcgt.org

WRENNINGE, M. 2012. Production volume rendering: Design and implementation. A K
Peters/CRC Press, Natick, MA. 50, 60

Author Contact Information
Manuel N. Gamito
Framestore
28 Chancery Lane
London WC2A 1LB
Manuel.Gamito@framestore.com

Manuel N. Gamito, Incremental Ray Traversal through OpenVDB Frustum Grids, Journal of
Computer Graphics Techniques (JCGT), vol. 10, no. 1, 49–63, 2021
http://jcgt.org/published/0010/01/03/

Received: 2020-03-05
Recommended: 2020-10-30 Corresponding Editor: Christophe Hery
Published: 2021-03-05 Editor-in-Chief: Marc Olano

c© 2021 Manuel N. Gamito (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

63

http://jcgt.org
mailto:Manuel.Gamito@framestore.com
http://jcgt.org/published/0010/01/03/
http://creativecommons.org/licenses/by-nd/3.0/

