
Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021 http://jcgt.org

A Polarizing Filter Function for
Real-Time Rendering

Viktor Enfeldt
Blekinge Institute of Technology

Prashant Goswami
Blekinge Institute of Technology

unfiltered ω = 160◦ ω = 90◦

Figure 1. Our polarizing filter function is capable of simulating the reflection-altering abilities
of real polarizing filters. From left to right: the Sun Temple scene rendered without a polarizing
filter, with a polarizing filter oriented to reduce reflections in the low wall, and with a polarizing
filter oriented to reduce reflections in the floor.

Abstract

We present a function that can be used in conventional non-polarizing renderers to simulate the
reflection-altering visual effects of real polarizing filters, without having to replace the existing
light and surface representations. The relevant Stokes-Mueller polarization calculations are
simplified so that neither Stokes vectors nor Mueller matrices are needed in the finished
implementation. Our function approximates the surface’s complex refractive index with its
specular color, and the accuracy of this approximation is demonstrated with some common
conductor materials; no approximation needs to be made for dielectric materials. As our
function only affects specularly reflected light, it cannot simulate all the visual effects produced
by real polarizing filters, only the reflection-reducing ones. We show the visual effects of our
filter function and measure its execution time in a real-time rendered application. The function’s
correctness is verified by comparing it with a filter implemented in a polarizing offline renderer.
HLSL source code is provided for the real-time implementation.

59 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

1. Introduction

When placed in front of a camera lens, a polarizing filter can have a significant visual
impact on the light that reaches the image sensor: it can reduce glare and reflections,
make glass and water appear more see-through, make foliage appear more vibrant, and
darken the sky. As these filters are used by many photographers, a real-time simulation
of them for computer graphics would likely be a welcome addition to the photo modes
that have become commonplace in modern video games. Such an implementation
might also be useful in driving simulators, as it would reduce glare from reflections in
the road and other vehicles just as polarized sunglasses do. The effects of a polarizing
filter are difficult to replicate once a photo has been taken, as their simulation re-
quires information about the incoming light’s polarization state. Therefore, a computer
graphics simulation of the effects needs to simulate this polarization information as
well.

Polarization itself has no significant impact on how our eyes perceive light. It has
therefore, to the best of the authors’ knowledge, not yet been included in the lighting
equations of any commercially used real-time renderer. However, it has previously
been modeled in some research-focused ray-traced and beam-traced renderers [Wolff
and Kurlander 1990; Weidlich and Wilkie 2008; Vlker and Hamann 2013; Nimier-
David et al. 2019], and several mathematical models have been developed over the
years to analyze and describe polarized light and its interactions with various materials
and optical filters [Chipman 1995].

In this paper, we use the Stokes-Mueller calculus to develop a polarizing filter
function that can be used to control specular reflections from direct and image-based
light sources in conventional non-polarizing real-time renderers. Our function requires
minimal changes to existing rendering implementations and relies on the material’s
specular color instead of its complex index of refraction (IOR), as the former informa-
tion is commonly available in real-time renderers while the latter is not.

2. Theory

Some background information about Fresnel reflectance, specular color, polarizing
filters, and the Stokes-Mueller polarization calculus is needed to understand how we
arrived at our polarizing filter function.

2.1. Fresnel Reflectance

The Fresnel equations are a central part of realistic physically-based rendering (PBR),
as they model both how reflections appear more mirror-like at grazing angles as well
as the distinct visual appearance of conductors (i.e., metals). They describe the ratio
of incoming light that is reflected in the angle of incidence θ ∈ [0◦,90◦), and they are
split into two polarized parts: F⊥ is linearly polarized perpendicular to the plane of

60

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

P

ĥ
l̂

v̂

θB θB

Figure 2. Light from the light source direction l̂ that is reflected towards the view direction v̂ in
a dielectric surface at Brewster’s angle θB becomes completely linearly polarized (in an angle
perpendicular to the plane of incidence P ). The halfway vector ĥ is the normalized vector at
the half angle between l̂ and v̂; it can be thought of as the normal vector of the participating
surface microfacets.

incidence and F‖ is linearly polarized parallel to the plane of incidence. They are both
defined using the surface’s complex relative IOR, η = n+ iκ as

F⊥(η ,θ) =
a2 +b2 −2acosθ + cos2 θ
a2 +b2 +2acosθ + cos2 θ

,

F‖(η ,θ) =
a2 +b2 −2asinθ tanθ + sin2 θ tan2 θ
a2 +b2 +2asinθ tanθ + sin2 θ tan2 θ

F⊥(θ ,η) ,

(1)

with a and b defined by the equations

2a2 =

√
(n2 −κ2 − sin2 θ)2 +4n2κ2 + (n2 −κ2 − sin2 θ) ,

2b2 =

√
(n2 −κ2 − sin2 θ)2 +4n2κ2 − (n2 −κ2 − sin2 θ) ,

(2)

where n is the real refractive index and κ is the extinction coefficient [Wilkie and
Weidlich 2012]. For dielectric (i.e., non-metallic) materials, n > 1 and κ = 0.

Brewster’s angle. When light is specularly reflected in a dielectric surface at the
incident angle θB, known as Brewster’s angle, F‖ becomes zero and all of the reflected
light becomes linearly polarized in the direction perpendicular to the plane of incidence.
A visualization of this interaction is shown in Figure 2. It is due to this phenomena
that a polarizing filter, which blocks light that is linearly polarized perpendicular to
the filter’s alignment, can be used to filter out1 reflections in dielectric surfaces.

2.2. Specular Color and Schlick’s Approximation

In real-time renderers, the Fresnel reflectance behavior of a material is typically defined
by its specular color R0 (i.e., the intensity-reflection coefficient at normal incidence)

1or highlight, depending on the alignment of the filter

61

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

instead of by its complex refractive index. If the reflecting surface is surrounded by air,
R0 can be calculated from the wavelength-dependent complex IOR [Bennett 1995]:

R0 =
(n−1)2 +κ2

(n+1)2 +κ2 . (3)

Refractive index and specular color values of some common conductor and di-
electric materials are listed in Section 2.2. Dielectrics all have κ = 0 and, with the
exception of diamond, n = 1.5±0.2 throughout the visible spectrum. Conductors have
much more varied n and κ values, both from material to material and throughout the
visible spectrum for the same material. Since the real refractive indexes are spectrally
varying and can not be modeled in a conventional RGB renderer, the approximated
values listed here will introduce some error into our method.

Schlick’s approximation. As only the intensity of reflected light tends to be of interest
in conventional renderers, the Fresnel functions used only need to calculate the average
value of the terms F⊥ and F‖ from Equation (1). A commonly used function for this

Material n [RGB] κ [RGB] R0 [RGB]

Aluminum 1.346, 0.965, 0.617 7.475, 6.400, 5.303 0.91, 0.91, 0.92
Brass 0.444, 0.527, 1.094 3.695, 2.765, 1.829 0.89, 0.79, 0.43
Copper 0.271, 0.677, 1.316 3.609, 2.625, 2.292 0.93, 0.72, 0.50
Gold 0.183, 0.421, 1.373 3.424, 2.346, 1.770 0.94, 0.78, 0.37
Iron 2.911, 2.950, 2.585 3.089, 2.932, 2.767 0.53, 0.51, 0.50
Lead 1.910, 1.830, 1.440 3.510, 3.400, 3.180 0.63, 0.63, 0.64
Platinum 2.376, 2.085, 1.845 4.266, 3.715, 3.137 0.68, 0.64, 0.59
Silver 0.159, 0.145, 0.135 3.929, 3.190, 2.381 0.96, 0.95, 0.92
Titanium 2.741, 2.542, 2.267 3.814, 3.435, 3.039 0.62, 0.58, 0.54
Diamond 2.409, 2.423, 2.539 0.000, 0.000, 0.000 0.17, 0.17, 0.19
Glass∗ 1.521, 1.525, 1.532 0.000, 0.000, 0.000 0.04, 0.04, 0.04
Ice 1.308, 1.311, 1.316 0.000, 0.000, 0.000 0.02, 0.02, 0.02
Plastic† 1.579, 1.589, 1.608 0.000, 0.000, 0.000 0.05, 0.05, 0.05
Quartz 1.457, 1.460, 1.466 0.000, 0.000, 0.000 0.03, 0.04, 0.04
Water 1.331, 1.333, 1.337 0.000, 0.000, 0.000 0.02, 0.02, 0.02

∗ Soda-lime glass – Clear.
† PC – Polycarbonate.

Table 1. The complex IOR and specular color of some common materials. Refractive index
values are taken from https://refractiveindex.info/’s [Polyanskiy (n.d.)] “selected data for 3D
artists” section, with red, green, and blue defined as 650 nm, 550 nm, and 450 nm wavelengths,
respectively. Subsequent graphs and renders use these material values unless stated otherwise.

62

http://jcgt.org
https://refractiveindex.info/


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

calculation is the following approximation by Schlick [1994]:

F =
F⊥+F‖

2
≈ FSchlick(R0,θ) = R0 + (1−R0)(1− cosθ)5 . (4)

2.3. Polarizing Filters

Linear polarizing filters only let light waves through if they are linearly polarized in
the same orientation as the filter. They can, therefore, be used to filter out specularly
reflected light from dielectric surfaces; how much of the reflected light is filtered out
depends on how close the incident angle is to Brewster’s angle.

Malus’ law. The intensity I that passes through a perfect linear polarizing filter is

I = I0 cos2 ϕ ,

where I0 is the intensity of the incoming linearly polarized light and ϕ is the angle
between the filter’s polarization orientation and the incoming light’s angle of polariza-
tion. As unpolarized light consists of light that is randomly polarized in all angles and
the average value of cos2 ϕ is 1/2, a polarizing filter will, on average, block half of the
incoming light.

2.4. The Stokes-Mueller Calculus

Several mathematical models of polarized light and its interactions with various media
have been developed over the years. To develop our polarizing filter function, we have
chosen to work with the Stokes-Mueller calculus.

Only the parts necessary to understand the development of our polarizing filter
function will be covered in this article. For a more comprehensive introduction to
polarization and the Stokes-Mueller calculus, we refer the reader to literature on
optics, such as Shurcliff’s book [1962]. For an implementation-focused overview of
polarization rendering, see the course notes by Wilkie and Weidlich [2012].

2.4.1. Stokes Vectors

The Stokes parameters describe the polarization state of a quasi-monochromatic2 light
ray. The parameters consist of four real numbers in the form of a Stokes vector:

~S =

I

Q

U

V

=

↔ + ↕
↔ − ↕
⤡ −⤢
⟳ −⟲

, (5)

2i.e., light which has a very narrow wavelength spectrum

63

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

where I ∈ [0,∞) is identical to the intensity value used for RGB color components
in conventional renderers, Q ∈ [−I, I] is the difference between the amplitude of po-
larization in the horizontal and vertical axis, U ∈ [−I, I] is the difference between the
amplitude of polarization in the two vertical axes, and V ∈ [−I, I] describes the handed-
ness of the elliptical polarization. The arrow notation in Equation (5) is a visualization
of how these terms are calculated (from the perspective of an observer looking towards
the light source). For linearly polarized light, the combination of Q and U defines the
angle of linear polarization with respect to a reference vector in the Stokes vector’s
local coordinate system.

Degree of polarization (DOP). The ratio of polarized light to unpolarized light is
described by the degree of polarization. It is calculated from the Stokes parameters as

p =

√
Q2 +U2 +V 2

I
, (6)

with p = 1 describing completely polarized light and p = 0 describing completely
unpolarized light. With this definition, it follows that completely unpolarized quasi-
monochromatic light is represented by the Stokes vector ~S = (I,0,0,0).

2.4.2. Mueller Matrices

Mueller matrices are real-valued four-by-four matrices that can describe how various
optical filters and surfaces affect the polarization and intensity of light [Chipman
1995]. The resulting Stokes vector from light interacting with a surface or optical filter,
described by the Mueller matrix M, is calculated as

~S ′ = M~S .

For the purposes of this article, only the Mueller matrices for Fresnel reflectance and
linear polarizing filters are of interest.

Fresnel reflectance. The Mueller matrix for Fresnel reflectance is defined as

MFresnel =

A B 0 0

B A 0 0

0 0 C S

0 0 −S C

,

with

A =
F⊥+F‖

2
, C = cos(δ )

√
F⊥F‖ ,

B =
F⊥−F‖

2
, S = sin(δ )

√
F⊥F‖ ,

(7)

where F⊥ and F‖ are the Fresnel terms from Equation (1), and δ is the difference in
phase shift between the light that is polarized along the perpendicular and parallel axes.
Note that A here is identical to the averaged Fresnel function F from Equation (3).

64

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

The formulas listed in Section 2.4.2 and Equations (7) and (8) are from Wilkie
and Weidlich [2012]. Formulas for δ are omitted from this paper, as the terms C and S
have no effect on the unpolarized Stokes vectors used in our method.

Linear polarizing filters. A perfect horizontal linear polarizing filter that, from the
perspective of an observer looking towards the light source, has been rotated counter-
clockwise by an angle ϕ is described by the Mueller matrix

Mpfϕ =
1
2

1 cos(2ϕ) sin(2ϕ) 0

cos(2ϕ) cos2(2ϕ) cos(2ϕ)sin(2ϕ) 0

sin(2ϕ) cos(2ϕ)sin(2ϕ) sin2(2ϕ) 0

0 0 0 0

. (8)

3. Our Method

Although we utilize the Stokes-Mueller calculus to develop our approximate polarizing
filter function, called Ω, no Stokes vectors or Mueller matrices are needed in the
implementation of Ω thanks to simplifications permitted by the following assumptions:

A1. All incident light is unpolarized. Although the Sun is generally a source of
unpolarized light [Goldstein 2011], the blue of a clear sky, and some light
sources, such as LCD panels, produce various degrees of linearly polarized
light. The polarizing filter’s impact on reflections from polarized light sources
and previous reflections is not accurately simulated by our method, as we only
simulate the closest reflection point’s polarization contribution.

A2. Only specularly reflected light can be polarized. Just as in Wolff and Kurlan-
der’s early work on polarization rendering [1990], we assume that all diffusely
reflected light is completely unpolarized. Light from diffuse reflections in thin
materials can show a notable degree of polarization [Collin et al. 2014], which
might have a noticeable impact on the filtered appearance of painted conductor
surfaces and coated materials; however, the visual impact this diffusely reflected
light has on polarizing filters can generally be assumed to be much less signifi-
cant than the impact from polarized light caused by specular reflections.

A3. The specular material color is available. To accurately model how polarizing
filters affect reflected light from conductor surfaces, information about both
terms of the material’s per–color channel complex IOR would be needed. As
this information is rarely available in renderers, our approximate implementation
instead relies on the more commonly available specular color R0.

65

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

3.1. Developing the Polarizing Filter Function

Our approximate polarizing filter function Ω is the result of combining these five steps:

1. Calculate the result of a Fresnel reflection with unpolarized incident light.

2. Apply a polarizing filter to the resulting Stokes vector to get an expression of
how the filter affects the light’s intensity.

3. Convert the result of the previous step to a function that can be used on light
which has already been affected by a Fresnel factor (e.g., image-based lighting
which includes a pre-computed Fresnel term in one of the split-sum textures
[Karis 2013]). The resulting function ΩIOR is our exact IOR-based polarizing
filter function.

4. In order to simplify things further in Step 5, introduce a function ψ that repre-
sents the degree of horizontal linear polarization.

5. Approximate ψ with a function called ψ̃ that uses the the specular color R0

instead of the complex refractive index η in its calculations.

3.2. Step 1: Unpolarized Light After Fresnel Reflectance

Multiplying a Stokes vector representing unpolarized light of the wavelength λ with
the Mueller matrix for Fresnel reflectance from Section 2.4.2 produces the Stokes
vector

~S ′λ = MFresnel~Sλ =

A B 0 0

B A 0 0

0 0 C S

0 0 −S C

Iλ

0

0

0

= Iλ

A

B

0

0

. (9)

Thus, the C and S terms from Equation (7) do not need to be calculated when unpolar-
ized incident light is reflected in a surface, as they do not affect the reflected result. As
per Equation (6), the resulting Stokes vector’s degree of polarization is equal to B

A .

3.3. Step 2: Filtering the Result With a Polarizing Filter

Next, we apply a linear polarizing filter Mpfϕ from Equation (8) to the reflected result
from Equation (9), divide the result with the incident light’s intensity Iλ , and double
the intensity in accordance with Malus’ law to match the intensity of the light that
is not processed with the filter function (e.g., diffuse reflections). This results in the

66

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

Stokes vector

~S ′′λ =
2Mpfϕ~S ′λ

Iλ
=

A+Bcos(2ϕ)

Acos(2ϕ)+Bcos2(2ϕ)

Asin(2ϕ)+Bcos(2ϕ)sin(2ϕ)

0

,

which can be seen as the polarizing factor of the reflected light that passed through a
polarizing filter oriented at an angle ϕ +90◦ relative to the plane of incidence.

As we are only interested in how the polarizing filter affects the intensity of the
light, we discard all but the first parameter and express it as a Fresnel factor with an
included polarizing filter:

Fϕ = A+Bcos(2ϕ) .

3.4. Step 3: The Exact Polarizing Filter Function ΩIOR

Although we can now describe how polarizing filters affect the intensity of light
without having to use Stokes vectors and Mueller matrices, we would prefer to have
a polarizing filter factor Ω ∈ [0,2] that can be applied to light which has already been
multiplied with a Fresnel term, as that would be more widely applicable.

We recall from Equation (7) that A is equivalent to the exact Fresnel factor from
Equation (4); therefore, assuming that the light has already been multiplied with the
Fresnel factor F , the exact IOR-based polarizing filter factor is defined as

ΩIOR(η ,θ ,ϕ) =
Fϕ

F
=

A+Bcos(2ϕ)
A

=
B
A

cos(2ϕ)+1 .

3.5. Step 4: The Horizontal Linear Polarizing Factor ψ

To be able to simplify this further, we define a function ψ(η ,θ) = B
A that is equal to

the DOP of the unfiltered reflected light in Step 1. It can be thought of as the linear
polarizing factor of the surface at the given incident angle.

By substituting A and B with their definitions from Equation (7) and, subsequently,
F‖ and F⊥with their definitions from Equation (1), the polarizing factor simplifies to

ψ(η ,θ) =

√
2

√√
(n2 −κ2 − sin2 θ)2 +4n2κ2 +n2 −κ2 − sin2 θ cosθ sin2 θ
√

(n2 −κ2 − sin2 θ)2 +4n2κ2 cos2 θ + sin4 θ
,

which can be expressed in a more compact form as

ψ(η ,θ) =
gcosθ sin2 θ

hcos2 θ + sin4 θ
, (10)

67

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

where
g =
√

2 2a =
√

2
√

h+ c ,

h = a2 +b2 =
√

c2 +4n2κ2 ,

c = n2 −κ2 − sin2 θ .

(11)

Note that a and b here are the same as the a and b terms used in Equations (1) and (2).

The shape of ψ . From the graphs in Figure 3, it is apparent that dielectric materials
can polarize light more strongly than conductors can, with the reflected light becoming
completely linearly polarized when ψ = 1 (which occurs at Brewster’s angle).

Although reflections in conductor surfaces never become completely linearly po-
larized and can thus never be fully blocked by a polarizing filter, there is a notable
variance among conductors in how polarized the reflected light becomes. Reflections
in silver surfaces (the pink lines in the top graph) remain almost completely unpolar-
ized at all incident angles, while reflections in iron surfaces (the dark gray lines in
the bottom graph) can reach a DOP of over 50% at incident angles around 70◦. For
some conductors (brass, copper, gold), there is also a large variance in how polarized
the reflected light’s three color components become, with blue becoming the most
polarized of the three and red the least polarized.

0.2

0.4

0.6

0.8

0

1

10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

0.2

0.4

0.6

0.8

0◦ 90◦
0

1

Angle of incidence, θ

Po
la

riz
in

g
fa

ct
or

,
ψ
(η

,θ
)

Aluminum Brass Copper Gold Iron
Lead Platinum Silver Titanium Diamond
Glass Ice Plastic Quartz Water

Figure 3. The shape of the polarizing factor ψ for some common materials. Individual lines
for the red, green, and blue results are shown for conductors, as their polarizing factor can vary
significantly throughout the visible spectrum.

68

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

3.6. Step 5: The Approximate Polarizing Factor ψ̃

If the values of the complex IOR are known, then the exact polarizing filter function

ΩIOR(η ,θ ,ϕ) = ψ(η ,θ)cos(2ϕ)+1 (12)

can be used. However, as complex IOR information is rarely available in real-time ren-
derers, a polarizing filter function based on the specular color R0 would be preferable.
To accomplish this, we replace ψ with two separate functions: one exact polarizing fac-
tor ψD, for dielectric surfaces; and one approximate polarizing factor ψ̃C, for conductor
surfaces.

Dielectrics. For dielectric surfaces, we use the correct function ψ with the specular
color R0 as the input parameter instead of η ; since n > 1 and κ = 0 for dielectrics, the
polarizing factor ψ from Section 3.5 can be simplified to

ψD(R0,θ) =
2
√

n2 − sin2 θ cosθ sin2 θ
(n2 − sin2 θ)cos2 θ + sin4 θ

, (13)

where, as per the definition of R0 in Equation (3), n is given by the equation

n =
1+√R0

1−√R0
. (14)

Some renderers (e.g., Unreal Engine 4 [Karis 2013]) hard-code the R0 values of
dielectrics to 0.04 (i.e., n = 1.5), so in those cases, n in Equation (13) can be replaced
by the constant value 1.5. A HLSL implementation of the dielectric polarization
function ψD, which uses Equation (14) to calculate n, is shown in Listing 1.

1 // R0: specular color, ct: cos(theta), st2: sin^2(theta)
2 float psiDielectricExact(float R0, float ct, float st2) {
3 float n = (1.0 + sqrt(R0))/(1.0 - sqrt(R0));
4 float c = n*n - st2;
5
6 float psi = (2.0*sqrt(c)*ct*st2)/(c*ct*ct + st2*st2);
7 return saturate(psi);
8 }

Listing 1. HLSL implementation of the polarizing factor for dielectrics.

Conductors. For conductor surfaces, we unfortunately cannot extract the exact values
of n and κ from the specular color and have to resort to an approximate function called
ψ̃C. We note from Equation (11) that only the g and h terms in the equation are
dependent on η ; and we rewrite the exact function ψ from Equation (10) with the
terms β = h

g and γ = 1
g :

ψC(η ,θ) =
cosθ sin2 θ(

h
g

)
cos2 θ +(1

g

)
sin4 θ

=
cosθ sin2 θ

β cos2 θ + γ sin4 θ
.

69

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

y = β̃ (R0)

y = β (η ,90°)
y = β (η ,45°)
y = β (η ,0°)

Specular RGB values, R0

y

y = γ̃ (R0)

y = γ (η ,90°)
y = γ (η ,45°)
y = γ (η ,0°)

Specular RGB values, R0

y

Aluminum Brass Copper Gold Iron
Lead Platinum Silver Titanium

0.2 0.4 0.6 0.8

10

20

30

40

50

0 1
0

0.2 0.4 0.6 0.8

1

2

3

4

0 1
0

Figure 4. The approximation functions β̃ and γ̃ , shown behind the correct β and γ values
of some conductors’ red, green, and blue wavelengths. The correct values are plotted for the
incident angles θ = 90◦, 45◦, and 0◦.

The correct values of β and γ for some common conductors are plotted against
those materials’ specular colors R0 in Figure 4. From the correct values we develop
two approximate functions, β̃ and γ̃ , that attempt to map the specular color values to
the correct values of β and γ :

β (η ,θ) =
h
g
≈ β̃ (R0) =

0.1
(1.095−R0)3 +5.4R2

0 +1 , (15)

γ (η ,θ) =
1
g
≈ γ̃ (R0) =

0.16R2
0

(1.18−R0)2 +0.35(1.18−R0) . (16)

As can be seen in Figure 4, there is a clear pattern to β and our approximation β̃
follows it fairly well. Our approximation γ̃ , on the other hand, does not follow the
correct values as closely, as it does not appear to be possible to accurately map R0

to γ without having more information about the material. Our approximations do not
take the incident angle θ into account, as changes in θ have a negligible impact on the
values of both β and γ .

With these two functions, the approximation ψ̃C of the exact conductor polarizing
factor from Equation (15) is written as

ψC(η ,θ) ≈ ψ̃C(R0,θ) =
cosθ sin2 θ

β̃ cos2 θ + γ̃ sin4 θ
.

A HLSL implementation of ψ̃C is shown in Listing 2.

70

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

1 // R0: specular color, ct: cos(theta), st2: sin^2(theta)
2 float3 psiConductorApprox(float3 R0, float ct, float st2) {
3 float3 Rb = float3(1.095) - R0;
4 float3 Rg = float3(1.18) - R0;
5 float3 beta = float3(0.1)/(Rb*Rb*Rb) + 5.4*R0*R0 + float3(1.0);
6 float3 gamma = (0.16*R0*R0)/(Rg*Rg) + 0.35*Rg;
7
8 float3 psi = (ct*st2)/(beta*ct*ct + gamma*st2*st2);
9 return saturate(psi);

10 }

Listing 2. HLSL implementation of the approximate polarizing filter function for conductors.

Combining the two functions. Finally, the approximate polarization function ψ̃ is
defined as either ψD or ψ̃C depending on the material’s metalness value at the reflection
point:

ψ̃(R0,θ) =

{
ψ̃C(R0,θ) if metalness > 0.5

ψD(R0,θ) , otherwise.

The metalness value is almost always a binary value (0.0 for dielectrics, 1.0 for
conductors); however, values in between are sometimes used when there is a thin layer
of dielectric material (such as dirt) on top of a conductor surface. As those in-between
values are rare, we choose to use a step function instead of an interpolation function to
avoid redundant calculations.

The shape of ψ̃ . The two top graphs in Figure 5 show the shape of our approximate
polarizing factor, and the two bottom graphs show how much it differs from the exact
polarizing factor shown in Figure 3. For dielectrics, the lines exactly match the correct
values as no approximations had to be made for them. For conductors, the values match
the correct function closely up until around θ = 60◦ where they begin to diverge. At
incident angles around 80◦, most conductors (aluminum, iron, lead, platinum, and
titanium) become slightly less polarized by our approximation than by the correct
function; however, for some color channels of brass, copper, and gold the polarizing
effect is instead stronger with our approximation than with the correct function. The
consistently low polarizing factor of silver (the pink lines) remains mostly unaffected
by our approximation.

3.7. Our Polarizing Filter Function Ω

With the approximate function ψ̃ now defined, the polarizing filter function Ω can
finally be expressed using the specular color R0 instead of the complex IOR η :

ΩIOR(η ,θ ,ϕ) ≈ Ω(R0,θ ,ϕ) = ψ̃(R0,θ)cos(2ϕ)+1 . (17)

This approximate polarizing filter function Ω is compatible with existing approxi-
mate Fresnel functions (e.g., Schlick’s approximation), it does not require information
about the complex IOR, and it does not require the inclusion of any Stokes vectors or
Mueller matrices in the light transport calculations. For dielectric materials, its output

71

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

0.2

0.4

0.6

0.8

0

1

10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

0.2

0.4

0.6

0.8

0◦ 90◦
0

1

Angle of incidence, θ

−0.2

0

0.2

10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦
−0.2

0

0.2

0◦ 90◦

Angle of incidence, θ

A
pp

ro
xi

m
at

e
po

la
riz

in
g

fa
ct

or
,

ψ̃
(R

0,
θ)

A
pp

ro
xi

m
at

io
n

er
ro

r,
ψ̃
−ψ

Aluminum Brass Copper Gold Iron
Lead Platinum Silver Titanium Diamond
Glass Ice Plastic Quartz Water

Figure 5. The shape of the approximate polarizing factor ψ̃ and the approximation error, which
is calculated as the signed difference between the the approximate polarizing factor ψ̃ (shown
above) and the exact polarizing factor ψ (shown in Figure 3).

is identical to ΩIOR if matching specular color and IOR values are used. A HLSL
implementation of Ω is shown in Listing 3.

1 float3 polarizingFilter(ShadingData sd, LightSample ls, float3 cameraX) {
2 float3 H = normalize(sd.V + ls.L);
3 float angle = calcRelativeAngle(cameraX, H, sd.V);
4 float st = length(cross(ls.L, H)); // sin(theta)
5 float st2 = st*st; // sin^2(theta)
6
7 float3 psi;
8 if (sd.metalness > 0.5) {
9 psi = psiConductorApprox(sd.specular, ls.LdotH, st2);

10 } else {
11 psi = float3(psiDielectricExact(sd.specular.r, ls.LdotH, st2));
12 }
13
14 return (cos(2.0*angle)*psi + float3(1.0));
15 }

Listing 3. HLSL implementation of the polarizing filter function Ω.

72

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

x̂

ŷcam

ω

α
x̂

x̂′

l̂

v̂

x̂′

ĥ

θθ

P

Figure 6. The relation between the vectors and angles used in our calculations. The white
double-ended arrow represents the orientation of the linear polarizing filter, ŷcam is the camera’s
up vector, and P is the plane of incidence (which contains v̂, ĥ, and l̂).

The adjusted filter rotation angle ϕ . The polarizing filter function Ω depends on a
rotation angle ϕ that expresses the alignment of the filter in relation to the reflection
surface (more specifically, in relation to a vector orthogonal to the plane of incidence).
The angle is calculated as ϕ = ω +α , where ω is the counterclockwise orientation
angle of the polarizing filter in relation to the viewer’s horizontal axis, and α is
analogous to the reference frames that are used to keep track of a Stokes vectors’ local
coordinate systems in polarizing renderers. The adjustment angle α is calculated as

α = atan2(v̂ · (x̂′× x̂), x̂′· x̂) , (18)

where x̂ is the viewer’s reference vector, x̂′ is the surface’s reference vector, and
atan2(y,x) ∈ [−π,π] computes a signed angle in radians between the positive x-axis
and the ray to the point (x,y).

A visualization of the angles α and ω , as well as the vectors involved in Equa-
tion (18), is shown in Figure 6, and our HLSL implementation of ϕ is shown in
Listing 4. As a consequence of the viewer’s reference vector x̂ being defined to be
orthogonal to the view direction, the simulated polarizing filter is not perfectly flat,
as real polarizing filters typically are, it is instead convex in a shape that allows all
incoming light to reach it at normal incidence.

1 float calcRelativeAngle(float3 cameraX, float3 H, float3 V) {
2 float3 surfaceX = normalize(cross(H, V));
3 float dotX = dot(surfaceX, cameraX);
4 float detX = dot(V, cross(surfaceX, cameraX));
5
6 return gPolarizingFilterAngle + atan2(detX, dotX);
7 }

Listing 4. Calculating the relative polarizing filter angle.

73

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

4. Results

To evaluate our polarizing filter function Ω, we implemented it in a modified version
of the Falcor rendering framework’s ForwardRenderer sample [Benty et al. 2019]. Our
polarizing filter is applied to the specular term of reflected light contribution from both
direct lights3 and image-based lights (IBL): Falcor’s specular term for direct lights
uses a microfacet-based Cook-Torrance BRDF with Schlick’s Fresnel approximation,
Smith’s geometric term, and the GGX normal distribution function; Falcor’s specular
term for IBL uses Karis’ [2013] split-sum approximation. The modifications that were
made to the material evaluation functions are shown in Listing 5.

1 // cameraX the same for all light source and is calculated as
2 // cameraX = normalize(cross(cameraUp, sd.V))
3 ShadingResult evalMaterial(ShadingData sd, Light light, float3 cameraX) {

.

.

.
14 if (gEnablePolarizingFilter) {
15 sr.specular *= polarizingFilter(sd, ls, cameraX);
16 }
17 sr.color.rgb += sr.specular;

.

.

.
21 return sr;
22 }

Listing 5. Excerpts from the modified evalMaterial shading function which is executed
once per light source. The parameter cameraX represents the x̂ vector from Figure 6.

Although our function was implemented and tested in a forward renderer, it is
fully compatible with deferred renderers as well (if the same surface and light source
information is made available in the deferred renderer’s lighting pass).

4.1. Visual Impact of the Polarizing Filter

The example images in Figures 1 and 7 show the impact that our polarizing filter
function can have when used in the Sun Temple [Epic Games 2017] and Bistro Exte-
rior [Amazon Lumberyard 2017] test scenes.

The top row in Figure 7 shows how a polarizing filter can make vegetation appear
more green by altering the brightness of the white specular reflections from sunlight:
in the middle image the filter is oriented to reduce the brightness of reflected light in
the bush and the tree, while in the right image it is oriented to increase it. Notice also
the significant visual impact this has on the red awning over the window.

To highlight the filter’s ability to reduce, or increase, the relative brightness of
reflections based on the surface orientation, a sphere made of opaque black glass was
added to the scene in the bottom row of Figure 7. With the filter oriented at 122◦, the
reflections near the top and bottom of the sphere and in the table are reduced while
reflections near the left and right sides of the sphere and the window are brightened.
With the filter oriented at 0◦, the effect is instead reversed, and most of the reflected
light from the window is blocked while the reflection in the table is brightened.

3i.e., point and directional lights

74

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

unfiltered ω = 120◦ ω = 30◦

unfiltered ω = 112◦ ω = 0◦

Figure 7. Two areas of the Bistro Exterior scene rendered without a polarizing filter (left
column) and with one (middle and right columns). The white double-ended arrow represents
the orientation of the polarizing filter. Notice the visual impact the filter has on the vegetation
and the red awning in the top row, and on the sphere and the table in the bottom row.

The three images in Figure 1 similarly demonstrate the orientation-dependent
effects of the filter. Compared to the unfiltered image, the reflections in the floor (from
an orange point light) become brighter and darker in the middle and right images,
respectively. Likewise, reflections in the low wall on the right (from a directional white
light) become darker and brighter in middle and right images, respectively.

A video demonstration of how enabling and rotating the filter affects these test
scenes is included in the supplemental material.

4.2. Comparison With the Exact Filter Function

In Figure 8, the effect our approximate polarizing filter function Ω, from Equation (17),
has on spheres of various materials is compared to the effect the exact IOR-based filter
function ΩIOR, from Equation (12), has on them. The rightmost column shows the RGB
difference between the two functions (exaggerated by a factor of ten) and corresponds
to the approximation error shown in Figure 5.

The top and bottom sides of the opaque glass sphere become noticeably darkened
by the filter (and the left and right side noticeably brightened). As no approximations

75

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

Unfiltered Filtered ↕ Difference
ΩIOR Ω Ω vs. ΩIOR

A
lu

m
in

um
C

op
pe

r
Iro

n
P

la
tin

um
Ti

ta
ni

um

Unfiltered Filtered ↕ Difference
ΩIOR Ω Ω vs. ΩIOR

B
ra

ss
G

ol
d

Le
ad

S
ilv

er
G

la
ss

Figure 8. A comparison between the exact IOR-based polarizing filter function ΩIOR and our
approximate specular color–based polarizing function Ω when using a vertically aligned filter.
The linear roughness is set to 0.08 for all materials and an environment map is the only light
source. The exaggerated difference (rightmost column) is caused by the approximation error
shown in Figure 5: it is calculated in linear color space as cgray +10× (cΩ − cΩIOR), where cΩ is
our approximate filtered result, and cΩIOR is the exact filtered result.

had to be made for ψD, our approximate filter function produces identical results as
the exact filter function when used on glass or any other dielectric material (visualized
by the completely gray difference image in the bottom right).

For conductors, the effect of a polarizing filter are much more subtle, and some-
times mostly noticeable by its color-tinting effects (e.g., compare the top and bottom
of the filtered images for brass and gold with their unfiltered versions). For silver,
the polarizing factor is very small for all angles of incidence, and our approximation
is able to match this behavior well. However, as was also shown in Figure 5, our
approximate filter function is not able to fully match the exact function for the other
conductor materials. For aluminum, iron, lead, platinum, and titanium, the brightening
effect (top and bottom sides) and darkening effect (left and right sides) of the filter are
more significant with our approximation than with the exact filter function.

Our approximation also results in a slight colored tint for some materials when
compared with the exact version. Copper and gold both produce a slightly more pink

76

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

filtered result at near-grazing angles when the plane of incidence is parallel to the
filter’s alignment (top and bottom sides), and slightly more cyan results when the plane
of incidence is orthogonal to the filter’s alignment (left and right sides).

4.3. Performance

Performance tests were run at a resolution of 1920×1080 px with an Nvidia GeForce
RTX 2070 Super 8GB GPU and an AMD Ryzen 5 1600 CPU.

The unmodified ForwardRenderer sample was used as the baseline and the per-
formance impact was calculated as the average increase in the GPU-side computation
time of the lighting pass (as reported by the Falcor application). Each test recorded
the execution time of 5 000 consecutive frames as the camera moved along the scene’s
predefined camera path with a fixed time step. The averaged results of these measure-
ments, as well as the average frame rates, are shown in Table 2. It should be noted that
the execution time measurements are more representative of the filter’s performance
impact than is the frame rate, as the impact on the frame rate strongly depends on how
time-consuming the rest of the rendering computations are.

As the filter needs to be individually applied to each light source’s specular contri-
bution, the total performance impact varies depending on how many light sources are
used. Our tests found that for the filter’s per-frame performance impact was less than
0.15 ms for each additional direct light source in the scene.

Baseline With filter Difference
Test scene Dir. lights IBL [FPS] [ms] [FPS] [ms] [FPS] [ms]

Bistro Exterior 1 Yes 88.1 1.40 87.6 1.66 −0.5 +0.26
Bistro Exterior 1 No 88.9 1.09 88.4 1.19 −0.5 +0.10
Sun Temple 14 Yes 139.1 1.99 112.9 3.76 −26.1 +1.77
Sun Temple 9 Yes 151.0 1.40 130.7 2.48 −20.3 +1.08
Sun Temple 4 Yes 161.7 0.96 152.3 1.33 −9.4 +0.37
Sun Temple 1 Yes 165.9 0.77 163.8 0.87 −2.1 +0.10
Sun Temple 1 No 174.2 0.57 172.5 0.63 −1.7 +0.06

Table 2. Average frame rate of the application and average GPU-side execution time of the

lighting pass. All tests were run without anti-aliasing and with Falcor’s “Specialize Material

Shaders” option enabled.

4.4. Comparison With a Reference Polarizing Renderer

The correctness of the aforementioned filter functions was validated by implementing
them in Mitsuba 2 [Nimier-David et al. 2019] and visually comparing them with a
polarizing filter in Mitsuba’s Stokes-Mueller–based polarizing renderer. A comparison
of the three implementations is shown in Figure 9. The scene consists of a perfectly

77

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

Unfiltered Filtered ↕ Difference Filtered ↕ Difference
Ref. ΩIOR ΩIOR vs. Ref. Ref. Ω Ω vs. Ref.

G
la

ss
G

ol
d

Figure 9. A comparison between a reference polarizing renderer implementation in Mitsuba 2

[Nimier-David et al. 2019] and the exact and approximate polarizing filter functions presented in

this paper. The difference images are calculated as in Figure 8 with differences exaggerated by

a factor of 10. The reference render had its scene brightness doubled to match the brightness

of the other images. Note that the materials here use Mitsuba’s default values and not the ones

specified in Section 2.2.

smooth opaque sphere surrounded by white light. In the reference renders there is also
a flat polarizing filter located between the viewer and the sphere.

As is evident by the completely gray difference images in the first row of Figure 9,
our exact and approximate polarizing filter implementations produce the same result
as Mitsuba’s Stokes-Mueller polarization implementation when viewing a dielectric
sphere through a polarizing filter. For conductors, the bottom difference image in
the third column shows that our correct IOR-based filter function ΩIOR matches the
reference implementation, while the bottom-right difference image shows that there is
a slight difference between our approximate filter implementation and the reference
version (just as there was between the approximate and exact version in Figure 8).

5. Limitations

As our polarizing filter is limited by the assumptions listed in Section 3, it is unable to
simulate all of the visual effects of a real polarizing filter.

Multiple-bounce reflections. We only account for the closest reflection point and
assume that all incident light is unpolarized; therefore, if a scene is viewed through a
mirror, then our filter function will only affect the reflection in the mirror and not any
of the previous reflections in objects that are viewed in the mirror. However, as mirrors
generally do not alter the polarization state of light (they just reflect it), our function
could likely be adapted for use with perfect mirrors by incorporating an additional
adjusted rotation angle into the calculations.

78

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

Refractions. Our function does not affect refracted light from bodies of water and
other transparent surfaces. It might be possible to formulate a similar approximate
polarizing filter function for refracted light; however, the assumption that all incoming
light is unpolarized is not as applicable for natural light in water as it is for natural
light in air. Another methodology than the one used in this paper might therefore be
needed to handle refractions.

Diffuse reflections and layered materials. Our approach, just as the one used in
Wolff and Kurlander’s polarization ray tracer [1990], assumes that all diffuse light
is unpolarized; however; when a surface is covered with a thin layer of a material
(e.g., paint on aluminum) then diffuse reflections can produce non-trivial amounts
of polarization [Collin et al. 2014]. Polarimetric BRDF (pBRDF) models capable of
modeling polarization effects from diffuse reflections have been proposed [Baek et al.
2018]; however, it is unclear if they could be used to develop a polarizing filter function
for diffuse reflections in non-polarizing renderers with conventional BRDF models.

Similarly, our polarizing function was developed with the assumption that all
surfaces consist of a single thick layer of the same material; it has not been adapted to,
or tested on, any surfaces modeled with layered BRDFs.

Skylight polarization. Due to atmospheric scattering, the blue light in the daytime has
a noticeable polarization pattern. As a consequence of this, polarizing filters can be
used to darken blue skies in photographs. Our polarizing filter function does not model
this effect; however, a skylight polarization factor ψS could likely be incorporated as a
special skybox texture based on an analytical model of skylight polarization, such as
the one by Wilkie et al. [2004].

6. Conclusion

We have presented a polarizing filter function that can be incorporated in real-time
renderers, such as the ones used in games, without requiring any changes or additions
to existing representations of light and surfaces. Our function is based on the Stokes-
Mueller polarization calculus and can simulate the orientation-dependent brightening
and darkening effects that polarizing filters have on specular reflections. In dielectric
surfaces, it does so with physically-based calculations (provided the material’s specular
color is accurate), and in conductor surfaces, it does so with two specular color–based
approximations. We have demonstrated these effects in a real-time renderer and shown
the accuracy of our approximations for some common conductor materials.

The performance impact of our method is low enough that it can be used in a
real-time rendered application. Developing computationally cheaper approximations
of both our dielectric and conductor functions would further improve the performance.

79

http://jcgt.org


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

Although our polarizing filter function is limited to only simulating the filter’s
effects on specular reflections, it is likely possible to expand our model to also incorpo-
rate the filter’s effects on skylight, real-time reflections in perfect mirrors, refractions,
and diffuse reflections. Despite these shortcomings, our function exhibits the most
recognizable effect of real polarizing filters (i.e., the selective reduction of reflected
light), and we believe that it is the first implementation of a polarizing filter in any
conventional non-polarizing renderer.

References

AMAZON LUMBERYARD, 2017. Amazon Lumberyard Bistro, Open Research Content Archive
(ORCA), July. URL: http://developer.nvidia.com/orca/amazon-lumberyard-
bistro. 74

BAEK, S.-H., JEON, D. S., TONG, X., AND KIM, M. H. 2018. Simultaneous acquisition of
polarimetric SVBRDF and normals. ACM Transactions on Graphics 37, 6 (Dec.), 268:1–
268:15. URL: http://doi.org/10.1145/3272127.3275018. 79

BENNETT, J. M. 1995. Polarization. In Handbook of Optics, M. Bass, Ed., 2nd ed., vol. 1.
McGraw-Hill, New York, NY, 5.1–5.30. 62

BENTY, N., YAO, K.-H., FOLEY, T., OAKES, M., LAVELLE, C., AND WYMAN, C., 2019.
The Falcor rendering framework, Mar. version 3.2.2. URL: https://github.com/
NVIDIAGameWorks/Falcor. 74

CHIPMAN, R. A. 1995. Polarimetry. In Handbook of Optics, M. Bass, Ed., 2nd ed., vol. 2.
McGraw-Hill, New York, NY, 22.21–22.35. 60, 64

COLLIN, C., PATTANAIK, S., LIKAMWA, P., AND BOUATOUCH, K. 2014. Computation
of polarized subsurface BRDF for rendering. In Proceedings of Graphics Interface, GI
2014. Canadian Human-Computer Communications Society, Toronto, Ontario, Canada, 201–
208. URL: https://graphicsinterface.org/proceedings/gi2014/gi2014-26/.
65, 79

EPIC GAMES, 2017. Unreal Engine Sun Temple, Open Research Content Archive (ORCA),
Oct. URL: https://developer.nvidia.com/ue4-sun-temple. 74

GOLDSTEIN, D. H. 2011. Polarized Light, 3rd ed. CRC Press, Boca Raton, FL. 65

KARIS, B. 2013. Real shading in Unreal Engine 4. In ACM SIGGRAPH 2013 Courses,
SIGGRAPH ’13. Association for Computing Machinery, New York, NY, USA, July.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.372.5001.
66, 69, 74

NIMIER-DAVID, M., VICINI, D., ZELTNER, T., AND JAKOB, W. 2019. Mitsuba 2: A
retargetable forward and inverse renderer. ACM Transactions on Graphics 38, 6 (Nov.),
203:1–203:17. URL: https://doi.org/10.1145/3355089.3356498. 60, 77, 78

POLYANSKIY, M. N., (n.d.). Refractive index database. URL: https://refractiveindex.
info. 62

80

http://jcgt.org
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://doi.org/10.1145/3272127.3275018
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://graphicsinterface.org/proceedings/gi2014/gi2014-26/
https://developer.nvidia.com/ue4-sun-temple
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.372.5001
https://doi.org/10.1145/3355089.3356498
https://refractiveindex.info
https://refractiveindex.info


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

SCHLICK, C. 1994. An inexpensive BRDF model for physically-based rendering. Computer
Graphics Forum 13, 3 (Nov.), 233–246. URL: https://doi.org/10.1111/1467-8659.
1330233. 63

SHURCLIFF, W. A. 1962. Polarized Light: Production and Use. Harvard University Press,
Cambridge, MA. 63

VLKER, M., AND HAMANN, B. 2013. Real-time rendering of cut diamonds. Technical
report, University of California, Davis, CA. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.409.2851. 60

WEIDLICH, A., AND WILKIE, A. 2008. Realistic rendering of birefringency in uniaxial
crystals. ACM Transactions on Graphics 27, 1 (Mar.), 6:1–6:12. URL: https://doi.
org/10.1145/1330511.1330517. 60

WILKIE, A., AND WEIDLICH, A. 2012. Polarised light in computer graphics. In SIGGRAPH
Asia 2012 Courses, SA ’12. Association for Computing Machinery, New York, NY, USA,
Nov. URL: https://doi.org/10.1145/2407783.2407791. 61, 63, 65

WILKIE, A., ULBRICHT, C., TOBLER, R. F., ZOTTI, G., AND PURGATHOFER, W. 2004.
An analytical model for skylight polarisation. In Eurographics Workshop on Render-
ing, A. Keller and H. W. Jensen, Eds., EGSR’04. Eurographics Association, Aire-la-Ville,
Switzerland, 387397. URL: http://doi.org/10.2312/EGWR/EGSR04/387-397. 79

WOLFF, L. B., AND KURLANDER, D. J. 1990. Ray tracing with polarization parameters.
IEEE Computer Graphics and Applications 10, 6 (Nov.), 44–55. URL: https://doi.org/
10.1109/38.62695. 60, 65, 79

Index of Supplemental Materials

http://jcgt.org/published/0010/02/03/PolarizingFilterFunctions.hlsl:
Shader source code of the functions needed to implement the polarizing filter. The
complete source code of the demo application is available at: https://github.com/
viktor4006094/PolarizingFilter.

http://jcgt.org/published/0010/02/03/DemoVideo.mp4: A video showing what
using and rotating the filter looks like.

http://jcgt.org/published/0010/02/03/jpegScreenshots.zip: Rendered spheres
of various materials and full rendered scenes with varying polarization.

Author Contact Information
Viktor Enfeldt
Blekinge Institute of Technology
Department of Computer Science
SE–371 79 Karlskrona, Sweden
viktor.enfeldt@gmail.com

Prashant Goswami
Blekinge Institute of Technology
Department of Computer Science
SE–371 79 Karlskrona, Sweden
prashant.goswami@bth.se

81

http://jcgt.org
https://doi.org/10.1111/1467-8659.1330233
https://doi.org/10.1111/1467-8659.1330233
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.409.2851
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.409.2851
https://doi.org/10.1145/1330511.1330517
https://doi.org/10.1145/1330511.1330517
https://doi.org/10.1145/2407783.2407791
http://doi.org/10.2312/EGWR/EGSR04/387-397
https://doi.org/10.1109/38.62695
https://doi.org/10.1109/38.62695
http://jcgt.org/published/0010/02/03/PolarizingFilterFunctions.hlsl
https://github.com/viktor4006094/PolarizingFilter
https://github.com/viktor4006094/PolarizingFilter
http://jcgt.org/published/0010/02/03/DemoVideo.mp4
http://jcgt.org/published/0010/02/03/jpegScreenshots.zip
mailto:viktor.enfeldt@gmail.com
mailto:prashant.goswami@bth.se


Journal of Computer Graphics Techniques
A Polarizing Filter Function for Real-Time Rendering

Vol. 10, No. 2, 2021
http://jcgt.org

Viktor Enfeldt and Prashant Goswami, A Polarizing Filter Function for Real-Time Rendering,
Journal of Computer Graphics Techniques (JCGT), vol. 10, no. 2, 59–82, 2021
http://jcgt.org/published/0010/02/03/

Received: 2020-10-06
Recommended: 2020-11-30 Corresponding Editor: Alexander Wilkie
Published: 2021-06-17 Editor-in-Chief: Marc Olano

c© 2021 Viktor Enfeldt and Prashant Goswami (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND 3.0
license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors further
grant permission for reuse of images and text from the first page of the Work, provided that
the reuse is for the purpose of promoting and/or summarizing the Work in scholarly venues
and that any reuse is accompanied by a scientific citation to the Work.

82

http://jcgt.org
http://jcgt.org/published/0010/02/03/
http://creativecommons.org/licenses/by-nd/3.0/

	Abstract
	1 Introduction
	2 Theory
	2.1 Fresnel Reflectance
	2.2 Specular Color and Schlick's Approximation
	2.3 Polarizing Filters
	2.4 The Stokes-Mueller Calculus
	2.4.1 Stokes Vectors
	2.4.2 Mueller Matrices


	3 Our Method
	3.1 Developing the Polarizing Filter Function
	3.2 Step 1: Unpolarized Light After Fresnel Reflectance
	3.3 Step 2: Filtering the Result With a Polarizing Filter
	3.4 Step 3: The Exact Polarizing Filter Function Omega IOR
	3.5 Step 4: The Horizontal Linear Polarizing Factor psi
	3.6 Step 5: The Approximate Polarizing Factor psi tilde
	3.7 Our Polarizing Filter Function Omega

	4 Results
	4.1 Visual Impact of the Polarizing Filter
	4.2 Comparison With the Exact Filter Function
	4.3 Performance
	4.4 Comparison With a Reference Polarizing Renderer

	5 Limitations
	6 Conclusion
	References
	Index of Supplemental Materials

