Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

Watertight Ray/Triangle Intersection

Sven Woop Carsten Benthin Ingo Wald
Intel Labs

Figure 1. Pliicker coordinates guarantee watertightness along the edges, but edges do not meet
exactly at the vertices. The algorithm described in this paper fixes this issue, and guarantees
watertightness along edges and at the vertices.

Abstract

We propose a novel algorithm for ray/triangle intersection tests that, unlike most other such
algorithms, is watertight at both edges and vertices for adjoining triangles, while also main-
taining the same performance as simpler algorithms that are not watertight. Our algorithm is
straightforward to implement, and is, in particular, robust for all triangle configurations in-
cluding extreme cases, such as small and needle-like triangles. We achieve this robustness by
transforming the intersection problem using a translation, shear, and scale transformation into
a coordinate space where the ray starts at the origin and is directed, with unit length, along one
coordinate axis. This simplifies the remaining intersection problem to a 2D problem where
edge tests can be done conservatively using single-precision floating-point arithmetic. Using
our algorithm, numerically challenging cases, where single precision is insufficient, can be
detected with almost no overhead and can be accurately handled through a (rare) fallback to
double precision. Because our algorithm is conservative but not exact, we must dynamically

enlarge bounds during BVH traversal to conservatively bound the triangles intersected.

65

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

1. Introduction

While performance implications of ray-tracing large and complex scenes are well
investigated, there is less research that covers the accuracy and consistency of ray-
triangle intersection calculations under those conditions. Specifically, in large and
complex scenes, many triangles are small and far away from the camera and finely
tessellating thin objects such as pipes, wires, and hair often produces needle-shaped
triangles. Unless carefully handled, ray tracing such triangles can leave microscopic
“cracks” between objects from missed intersections. When a ray incorrectly passes
through a crack, it erroneously enters or leaves an object that was intended to be
modeled as closed. This may corrupt the final radiance calculation along the ray and
appear in the final image as an incorrect pixel value. While these errors may arise
from correct tracing of an incorrect model, in this paper, we assume correct geome-
try and consider the case of errors arising from limited accuracy in the floating-point
calculations of the ray-triangle intersection test. These typically arise in the case of
triangles whose perimeter is small compared to the magnitude of their coordinates as
well as for the needle-shaped triangles, because both of those situations lead to calcu-
lations that mix very large and very small values. Those are particularly problematic
for single-precision (32-bit) floating-point representations common in rendering ap-
plications. Increasing precision to 64- or 80-bit floating-point representations both
incurs a disproportional performance reduction on many architectures and does not
solve the underlying numerical problem. Furthermore, higher tessellation rates will
generally lead to ever smaller and thinner triangles and, thus, increase the severity of
such accuracy-based issues.

The computational geometry literature includes algorithms that are more numer-
ically stable than naive ray-triangle implementations common in computer graphics.
However, these are also substantially more expensive, and, thus, are often not used in
rendering. In this paper, we present a novel algorithm that has the efficiency of tra-
ditional single-precision ray-triangle intersection algorithms and is watertight at both
edges and vertices, even in numerically challenging cases.

2. Previous Work

Approaches from computational geometry, such as traditional floating-point filters
using interval arithmetic [Fortune and Van Wyk 1993] with a fallback to arbitrary
precision calculations [Shewchuk 1996; Karamcheti et al. 1999] can solve the wa-
tertightness problem, but they are slow and complex. In particular, conservatively
implementing interval arithmetic typically requires frequent switching of rounding
modes, which on most modern architectures significantly reduces instruction through-
put. This makes these approaches hard to use for rendering and, in particular, chal-
lenging to implement on GPUs.

66

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

For rendering, the main focus is typically performance, and very few watertight
ray-triangle intersection algorithms have been proposed so far. The only ray-triangle
intersection algorithm we are aware of that has been designed explicitly for guaran-
teeing watertightness is the work by Dammertz and Keller [2006] who describe a
recursive refinement approach for watertight intersection of free-form surfaces with
the application to triangles as a special case. Like our approach, their approach is sta-
ble for all triangle configurations, but their deep subdivision (down to epsilon-sized
bounds) significantly diminishes performance.

Badouel [1990] calculates the ray-triangle intersection by first calculating the
world space hit location and then projecting this hit location into the xy, xz, or yz
plane where a 2D edge test is performed. Shevtsov et al. [2007] and Wald [2004]
take a similar approach with slightly modified precalculations. None of these ap-
proaches achieves watertightness of adjoining triangles: since the calculation of the
world space hit location is dependent on the entire triangle surface (i.e., not just the
shared edge between two triangles), two triangles sharing the same edge will end up
with slightly different calculations for the shared edge’s edge test.

Moller and Trumbore [1997] solve the ray-triangle intersection by directly solving
a linear system of equations using Cramer’s rule and by evaluating determinants using
scalar triple products. Kensler and Shirley [2006] propose a similar ray-triangle in-
tersection algorithm that re-factors the scalar triple products differently, which allows
pre-calculation of the geometry normal in addition to the two edges.

To save computations, virtually all of the above-mentioned tests replace the third
edge test with a simplified u + v < 1 test. Though cheaper than a full edge test, no
algorithm using this trick can guarantee watertightness along the edges, as the same
shared edge could be computed in one way in one triangle, but with a different test in
the neighboring triangle. This inconsistency in how the edge value is computed will
then, in floating-point arithmetic, lead to slightly different and inconsistent results.

Yet another source of inconsistency in computing an edge test is that neighboring
triangles might span the same edge in opposing directions, again leading to slightly
inconsistent ways of computing the “same” edge test in neighboring triangles. To
guarantee watertightness along an edge, the edge tests have to be anti-commutative
under floating-point operations, as done, for example, in [Benthin 2006; Kin and
Choi 1995; Davidovi¢ et al. 2012]. While this makes the edge decision consistent
along shared triangle edges, watertightness at the vertices cannot be achieved this
way, since the edges can still fail to meet exactly at the vertex; see Figure 1.

A well-known method to perform these edge tests are Pliicker coordinates [Erick-
son 1997; Jones 2000], which can even be precalculated for the ray and each edge
to improve performance [Kin and Choi 1995]. We have found Pliicker coordinates to
be numerically problematic in large scenes where the errors around the vertices can
become very noticeable. A numerically very stable approach of calculating the edge

67

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

test is presented by Davidovic et al. [2012], who use the center of the edge to obtain
anti-commutativity and builds on the Chirkov test [Chirkov 2005].

Hanika [2011] describes a fixed point ray-triangle intersection test also based on
the Chirkov test [Chirkov 2005]. By representing the cross products of this test with
sufficient precision and properly rounding the dot products, the algorithm becomes
provably watertight. This fixed-point approach cannot be applied directly to floating-
point calculations, since their intermediate results require additional precision. How-
ever, one basic idea of their approach is to guarantee that the intersected triangle is
larger than the original one. This approach of enlarging the triangle is a very common
workaround for watertightness problems, for example, by testing the edge equations
not against zero but against a small positive epsilon. However, we don’t know of any
approach that calculates such an epsilon in order to guarantee watertightness under all
circumstances. Further, a large constant epsilon can cause issues with self-shadowing
of the surface along the edges.

For rasterization, the watertight and robust handling of triangles is a solved prob-
lem. Hardware implementations of rasterization project triangles onto a 2D domain
and snap their vertices to fixed-point numbers. The use of sufficient precision for the
edge tests makes robust and watertight handling of meshes possible. However, in a
ray tracer, rays are not always starting at the same origin and aligned inside a bounded
frustum, which makes a direct adoption of this technique not possible in general for
ray tracing.

3. Watertight Ray-Triangle Intersection

Our watertight ray-triangle intersection algorithm operates in two stages. In the first
stage, an affine transformation is applied to the ray and the vertices of the triangle to
simplify the intersection problem. Similar to the setup stages of rasterization, floating-
point rounding errors in this first stage do not destroy the watertightness of an input
mesh, as long as the mesh contains no T-vertices. In the second stage, the simplified
intersection problem is accurately solved using 2D edge tests with a fallback to double
precision.

As affine transformation, we choose a transformation that simplifies the ray R to
the unit ray R’ with origin P’ = (0,0,0) and direction D’ = (0,0, 1). While there are
different options for choosing this transformation, we will use a translation followed
by a shear and scale. Compared to the alternative approach of using rotations, the
shear introduces smaller rounding errors and is more efficient to calculate. Note,
in particular, that this transformation is only dependent on the ray (i.e., it does not
depend on whatever triangle is being intersected) and will thus be identical for each
ray-triangle intersection this ray performs.

Without loss of generality, we assume for the rest of this section that the z-

68

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

component of the ray direction D has the largest absolute value. This can be achieved
by renaming the x-,y-, and z-dimensions in a winding preserving way. If D, is nega-
tive, the winding direction of the triangle would get inverted by the pre-transformation
described in the following. To compensate for this, we additionally swap the x- and
y-coordinates of all calculations in this case (see the pseudocode in Appendix A for
details on how to implement this efficiently). After these coordinate changes, the fol-
lowing transformation M is precalculated at ray-generation time and reused for all
successive ray-triangle intersections:

1 0 —-D,/D,
M=10 1 -D,/D,
0 0 1/D,
At ray-triangle intersection time, we first calculate the transformed triangle ver-

tices relative to the ray origin P and then transform these translated vertices using the
transformation M:

A'=M-(A-P),
B'=M-(B-P),
C'=M-(C—P)

Note, that we do not have to explicitly transform the ray, as we know by con-
struction of the transformation that the ray is transformed to the unit ray. To finish the
intersection, we will use the test from Benthin [2006] and calculate scaled barycentric
coordinates:

U=D-(C'xB),
V=D (A%,
W=D (B xA).

As we intersect with the unit ray with D’ = (0,0, 1), these formulas simplify signifi-
cantly to 2D edge tests:
U=C,-B,—C;-B,
V=AL C;, —A; -C,
W =B,-A —B,-A,.
IfU <0,V <0, or W <0, the ray misses the triangle. We then calculate the
determinant of the system of equations as det = U +V + W. If this determinant is

zero, the ray is co-planar to the triangle and we assume a miss. This guarantees later
divisions by det to be safe in the algorithm.

69

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

If neither of these tests fails, we calculate the scaled hit distance T by interpolating
the z-values of the transformed vertices:

T=U-A_+V-B.+W-C.

As this distance is calculated using non-normalized barycentric coordinates, the ac-
tual distance still requires division by det. To defer this costly division until actually
required, we first compute a scaled depth test by rejecting the triangle if the hit is
either before the ray 7 < 0 or behind an already-found hit T > det-#,;;. If these tests
pass we know that the ray hits the triangle and calculate the normalized barycentric
coordinates u = U/ det, v ="V /det, w = W/ det and unscaled hit distance r = T'/ det.

While this approach performs backface culling, one can easily intersect two-sided
triangles by reporting a miss if at least one of the barycentric coordinates is smaller
than 0 and at least one is larger than 0: (U <OVV <OVW <0)A(U >0VV >
0V W > 0). When doing so, we have to handle the case of a negative determinant
correctly in the depth test; this is outlined in detail in Appendix B.

To avoid false negatives for rays hitting exactly on the edge, it is important that
the chosen triangle test handles an edge that evaluates to O as being inside the triangle.
Our two-sided triangle test has this property for both sides of the triangle. One often-
used optimization is merely testing whether all three edge tests return the same sign;
this, however, does not guarantee this property for the back-side of the triangle, and
is therefore not being used.

3.1. Watertightness

As the pre-transformation preserves watertightness, we consider the transformed ver-
tices A’, B/, and C’ as accurate inputs to the 2D stage of the algorithm, although they
contain rounding errors.

The IEEE 754 floating-point standard [IEEE 1985] requires calculations (such
as multiplications) to be internally executed with (principally) infinite precision and
finally precisely rounded to a nearby floating-point number. Further, none of the IEEE
rounding modes will destroy the ordering of two real numbers; thus, x > y always
implies round(x) > round(y). Inserting the precise product B, - A} for x and B; - A for
y yields

B.-A}, > B -A, = round(B; -Ay) > round(B; - A’).

For the W edge test as an example, this equation shows that if the edge test classi-
fies a ray as inside the triangle (left side is true), the floating-point algorithm will also
classify the ray as inside the triangle (right side is true).

Conversely, if a ray is classified as outside the triangle using floating-point cal-
culations (right side is false), it would also be classified as outside using infinite-
precision arithmetic (left side is false). This is even true if only a single last-digit bit
distinguishes the two floating-point products.

70

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

However, for the case where the floating-point algorithm calculates two equal
products and, consequently, the edge test evaluates to 0, no definite statement about
the real ordering of the precisely calculated products can be made. As we conserva-
tively treat this case as a hit, the mesh is guaranteed to be watertight and no misses
can occur along the edges and vertices.

One remaining case to discuss is that we classify the triangle as a miss if det =
U +V +W =0, which occurs when the ray is embedded in the plane spanned by the
triangle. Classifying this case as a miss is actually wrong, as the ray could very well
hit the triangle when lying in the plane; however, we decided to avoid introducing
special code for handling this corner-case correctly. Despite this simplification, the
algorithm is still watertight as rays propagating parallel through a triangle will hit one
of the neighboring triangles with our algorithm.

The det = O test further classifies degenerate triangles that form a point or a line
segment as a miss. For these triangles, all three edge equations always evaluate to
exactly O for each ray. Consequently, without this determinant test, each ray would
report a hit with such a degenerate triangle.

3.2. Precision

As just described, our test is conservative since rays whose edge equation evaluates to
0 will be counted as hitting the triangle. This conservativeness is important in order
to guarantee watertightness, but accuracy should be just as important: a test always
returning an intersection would also be watertight, but useless in practice.

The 2D edge tests described above can tolerate large relative errors in the edge
value: only a single least-significant bit distinguishing the products of the form B, -A;
and B; - Al of an edge test is sufficient to accurately resolve the side of the edge the
ray passes. This property makes the test very robust, and, without modification, the
algorithm already passes most of our stress tests, except for cases of extremely small
triangles that the ray misses at a large distance. In these cases, the angle between the
transformed vertices A’ and B’ can become so small that the products B - A} and By, - A}
become equal when evaluated with single precision. Conservatively categorizing the
case of both products being equal as a hit can cause such triangles to report false
positives in areas far away from the triangle. However, these regions are typically
culled by an acceleration structure anyway; thus, ray traversal should not visit such
problematic triangles in the first place. For this reason, the algorithm described so far
works very well in practice.

Nevertheless, an algorithm that works under all circumstances can easily be ob-
tained through a fallback of the 2D edge test to double precision if and only if one of
the single-precision tests evaluates to 0. In this case, the single-precision algorithm
cannot make a definite statement about the side the ray passes. Double-precision
arithmetic is sufficient to accurately store the product of two single-precision floating-

71

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

point values, since 53 bits of mantissa for double precision is more than two times the
24 bits of mantissa for single precision. Thus, this fallback can accurately resolve all
special cases. In our test scenes, this fallback is only required about once per every
million ray-triangle intersections. Note, however, that using double precision for an
entire ray-triangle intersection algorithm would not be a solution to the watertightness
problem; it would only reduce the probability of issues around edges or vertices from
occurring.

3.3. World-Space Bounding

While our approach guarantees watertightness, we do not make the correct edge deci-
sions between the ray and the actual world-space triangle, since round-off errors ob-
viously occur during the pre-transformation stage. These rounding errors have about
the same effect as if the triangle vertices were slightly shifted by a minuscule amount.
Since all vertices are shifted equally, no cracks appear between triangles, but some
shifted triangles may no longer be completely enclosed by the acceleration structure’s
world-space bounding boxes, and may thus not be found by the traversal. Though
very unlikely, for truly extreme cases this does actually happen. To compensate for
this effect, the geometry bounds of the spatial index structure have to get extended by
a ray-dependent epsilon region.

This issue is not unique to our algorithm, since most ray-triangle intersection
algorithms are indeed intersecting slightly shifted or rotated triangle-like shapes that
are not conservatively bounded through their world-space vertices. While these issues
are normally ignored, we present a solution in order to obtain full watertightness
through the entire ray-tracing algorithm.

The rounding errors in the translation of the vertices and, in particular, in the sub-
sequent shear, require us to enlarge bounding boxes slightly to conservatively bound
the intersected triangle shape. In the following we use © and ©® to denote floating-
point subtraction and product and — and - to denote subtraction and product of real
numbers. We will calculate the maximal error when translating and shearing an ar-
bitrary vertex A = (x,y,z) of the bounding box K. The x-coordinate of the translated
and sheared vertex A’ = (x',y,7’) is calculated using floating-point calculations:

¥ = (xOP)O (round(S,)® (zOR,)).

Note that we need to round the correct shear constant Sy = D,/D; to a floating-point
value, while the ray and input vertices are already considered to be present in floating
point. Assuming round-to-nearest mode is active, we use the constant € = 272 in the
following calculations to bound the value x’. We will use interval-arithmetic notation

72

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

to extract the relative error of all floating-point calculations:

X C (x—P)(1£e)o(S:(1+e)o (z—P)(1+e))
C (x—P)(1+e)o(Si(1+e) - (z—P.)(1+¢€))(1+eg)
C (x—P)(1£e)P O (S (z—P))(1+e)?
C ((x=P)(1£e) = (Sc-(z—P))(1£e)’)(1 %)
C (x—P)(1xe)*—(S;-(z—P))(1+e)*.

As € is small, we can bound the interval (1 +¢)* by 1+ 5e:
(x—P)(1£5¢) — (Sy- (z—P;))(1 £ 5¢)

(x—P) —Sy(z—P.) +5e(£(x— P,) £S:(z— P.))
(x —Py) — Sx(z— P) £5¢(|x — Pe| +[Sx(z— P2)]).

N N N

Knowing that |Sy| € [4, 1] we can bound this further to

C (o= P) = Sulz = P) £ 5e(|x — Po| + [z = P2
= ((x£5e(|x—P|+[z—Pf)) = P.) = Sue(z— P.).

The last line shows that accurately translating and shearing a region x=+
5¢(|x — Py| + |z — P;|) bounds the calculated value x’. Inserting for x the Kymin-
coordinate of the box and considering, additionally, all z € [K;min, Kzmax] yields a
conservative extension for the xmin-coordinate of the box:

E€xmin = 58(‘mein _Px| +max(|szin _PZ|7 |szax - PZ|)
And similarly, for the upper bound and y-dimension:
8xmax - 58 : (|meax - Px| +max(|szin _Pz|a |szax - Pz|)7

8ymin = 5¢e- (‘Kymin _Py‘ +maX(|szin _Pz‘v ’szax _PZD)a
8ymax = 5¢e- (‘Kymax _Py| +maX(‘szin _Pz|7 ‘szax _PZD)'

When using a box extended this way, we guarantee enclosing the intersected tri-
angles. The bounds in the z-dimension need no correction as they are not affected by
the shear and the later ray-box intersection will make a distance calculation consistent
with the transformation applied to the z-coordinate of the vertices.

Some care has to be taken when calculating and using the error bounds with
floating-point arithmetic conservatively. Rounding modes would have to be set to
round calculations for lower error bounds towards —oo and calculations for upper er-
ror bounds towards +o00. As switching the rounding modes is not possible on some
hardware architectures and expensive on others, we use a workaround of rounding a

73

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

positive number up by one ulp by multiplying it with 142723 and down by multi-
plying it with 1 — 2723, Care has also to be taken for some other calculations of the
algorithm; some detailed reference source code is given in Appendix B.

The calculated conservative bounds require an exact or conservative ray-box test,
such as the first test described in [Williams et al. 2005]. For optimization, we will
use precalculated reciprocal ray directions 1/Dy, 1/D,, and 1/D, for the ray-plane
distance calculation used in the test. As these reciprocal values have an attached error
of half an ulp (or even higher if not calculated through full-accuracy divisions), we
have to conservatively use values (1/Dyy;) - (1 —272%) to calculate distances to near
planes and values (1/D,y,;) - (1+272%) to calculate distances to far planes.

We further apply two optimizations to improve performance. First, during traver-
sal we do not evaluate the above error estimate for each bounding box since this would
introduce an overhead to the innermost traversal loop. Instead, we pre-calculate the
values €xmin, Exmax, Eymin» Eymax conservatively for the entire scene bounding box once
per ray traversal.

Second, we do not directly extend the bounding boxes by this epsilon region, but
translate the ray origin such that the calculations become conservative. Thus, in the
ray-box test, instead of calculating (Kxmin — €xmin) — Py, We calculate Kymin — (P +
€xmin) (and similarly for other dimensions). This allows us to move the constants of
the form Py + €xmin out of the loop. This optimization results in a traversal loop that
has no more inner loop operations than traditional algorithms; see Appendix B.

4. Results

Table 1 compares the performance of tracing primary rays using our method to the
standard Moller-Trumbore ray-triangle intersection algorithm [Moller and Trumbore
1997], to the algorithm of Davidovic [2012], and to the work of Dammertz [2006].
When using the same traversal approach, the performance of our watertight ray-
triangle intersector is roughly comparable to Moller-Trumbore, slightly faster than
Davidovic, and significantly faster than Dammertz et al.

To guarantee watertightness for the entire ray-casting operation, we have to use
conservative bounds during traversal, which reduces overall performance by about
12%. This performance reduction comes from various sources, such as the per-ray
precalculations required for the conservative traversal, some increased register pres-
sure caused by using two versions of the ray origin and reciprocal direction inside
the traversal, and a number of additional traversal steps and ray-triangle intersections
(about 1% for our scenes) due to conservative traversal.

Compared to the alternative approach of [Dammertz and Keller 2006], our per-
formance is significantly higher for all of our test scenes. While the approach of
Dammertz also guarantees watertightness, it suffers from long subdivision chains of

74

http://jcgt.org

Vol. 2, No. 1, 2013

Journal of Computer Graphics Techniques

Watertight Ray/Triangle Intersection

http://jcgt.org

"90UR)SIP Jef © WIOIJ POMATA SI[SULLI} [[BWS YA SQUQDS J0J doururIofiad 109)je AIUeoyIusIs 10U S0P [BSIOALI} SAT)BAIISUOD A}
9onoeId Ul JeYy) 9JENSUOWP 03 JOPIO UI ‘(WO0Z YIIM) SOURISIP 8] PUB 9OULISIP ISO[O WOIJ [Spowl UOSeI(T SY) PAIOPUI dAN "QIOqUINIT-IS[[QJAl UBY) JOMO[S
ApySys sutioprad oraopiaR(q £q 1591 YL, [€ 10 ZMISWIWE(] Uy} J3Ise) APueoyruSis pue ‘QIoquuini]-IS[[QJA Uy} JOMO[S %()] ISOUW 18 A[Uo ST poyjall Ino
9SBD B UI USAQ JNQ ‘QAISUAA XS 9IOUI ST [BSISART) PAYIPOW 9Y) ‘IOqUINL] ~IS[[QIA St 1S8J st A[YSnol st auofe 159) o[Suewn 1y3nIsiem Y], 198 908] paxapur
ue Sursn so[SueLn 9Y) 9I0]S PUB SINJONIS XIpUI [eneds se HA g opIm- & pue [esIoAr]} AeI-0[SUIS 9sn o\ "ZHD 6 38 Sutuuni ([e10} sa100 papeaty)-1odAy
91) NdD 069Z-SH U0IX 100S [enp & U0 painseaw puodas Jod sAex uorur ur oouewriogrod Aer Arewid Moys om ‘SOUIDS JUAIIHIP IO ‘[esioAen) HA G
QATJBAIOSUOD PUE [eSIoARI) HAF PIEpuess s unprios[e uonoasioyur o[Suern-Aer 1ySniorem Ino pue ‘zuowweq Aq WYIIoS[e uonoasiur o[Suern-Lel

Jy3nIaIEM o) ‘O1A0piae(Aq yoroxdde oy 10309s19)ul 9[FUBLI-ABI QI0QUINL] -IJ[[QJA PIepuUels € uisn [esioAe) AeI JO uosLiedwod 9ouewLIO)dd | d|qeL

(%T6) WO'T1 (%68) 969 (%06) NO'LL (%88) 069 (%L8) WY'€S [BSIOARI], ABAIOSUOD) +
(%001) W6'11 (%66) W6'LL (%66) N9'¥8 (%66) WE'SL (%96) W1°65 UONOASINUL JYSNIANeA
(%8) 60 (%19) WO'0S (%19) WS'SS (%0€) WT¥T (%8€) N9'€T [900T 191193 pue zpowwe(]
(%58) T°01 (%L6) W9'SL (%96) NS'T8 (%T6) WL'TL (%£6) NO'LS [210T "Te 10 Qraopraeq]

(9%001) W6'11

JuR[J 10MOd

(9%001) IN1°8L

Ie,J uodel(

(%001) IN9'S8

(9%001) IN8"8L

QOURIAJUOD)

(%001) W¥'19

1sa110,] K11e

[L661 S10quni], pue I9[[OIN]

75

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

the triangle to achieve floating-point precision. Our implementation of Dammertz’s
algorithm includes their optimization of falling-back into the slow subdivision case
only if a standard ray-triangle test reports a miss. This optimization does not work
very well in the power-plant scene, where intersected triangles are often missed.

Our conservative traversal enlarges the bounds slightly, which can result in a per-
formance penalty for small triangles viewed from a far distance. To show that this is
not an issue in practice, we have rendered the Dragon model a second time, but from
a far distance (10 times larger than normal). For this configuration, the performance
of our algorithm degredates only minimally more relative to Moller-Trumbore.

Table 2 shows the number of false negatives obtained with different ray-triangle
intersection algorithms. For [Moller and Trumbore 1997], Pliicker coordinates [Kin
and Choi 1995], and [Davidovic¢ et al. 2012], we use a traversal algorithm that con-
servatively intersects the bounding boxes. We count the number of false negatives
we obtain by rendering the inside of differently triangulated and shifted spheres. The
table shows [Moller and Trumbore 1997] to fail about three times in a million inter-
sections. It turns out that the failures are mostly caused by the edge tested through
u—+v < 1. Intersection using Pliicker coordinates [Kin and Choi 1995] are numerically
very unstable for the shifted sphere; thus, we recommend not using this algorithm.

The algorithm of [Davidovic et al. 2012] is watertight along the edges and numeri-
cally stable, but nevertheless we measured up to 117 failures per million intersections.
Even though we made sure that ray traversal performs a conservative ray-box test, the
triangle as intersected by that algorithm is not always contained entirely inside its
bounding box; thus, a similar fix as presented in Section 3.3 would be required here,
too. Most of the false negatives are caused by this bounding issue. False negatives
caused by holes around the vertices are rare and only noticeable when zooming onto
them.

As was expected, the algorithm by Dammertz [Dammertz and Keller 2006] shows
no false negatives. Also as expected, our algorithm shows no false negatives when

Sphere40k Shifted40k Sphere4dM Shifted4M

[Moller and Trumbore 1997] 41 21 327 339
[Kin and Choi 1995] 0 77T M 127 85 M
[Davidovic et al. 2012] 0 148 0 11778
[Dammertz and Keller 2006] 0 0 0 0
Watertight Intersection 0 0 0 2
+ Conservative Traversal 0 0 0 0

Table 2. This table shows the number of false negatives for shooting 100 M primary visibility
rays from the interior of different spheres for different algorithms. We render a unit sphere
with about 40 K triangles in the origin (Sphere40k), shifted 1000 units away from the origin
(Shifted40k), and the same configurations with 4 M triangles (Sphere4M and Shifted4M).

76

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

used with our special conservative traversal, but even when using a standard BVH
traversal almost no false negatives occur (about 1 in 50 million). Consequently our
approach performs very well even when used with a standard traversal algorithm.

5. Summary and Conclusion

We have presented a fast single-precision floating-point algorithm for ray-triangle
intersection, with a fallback to double precision that guarantees watertightness and
is numerically stable even for problematic triangles. The algorithm achieves good
performance compared to ray tracing with the standard Moller-Trumbore ray-triangle
intersection algorithm.

We believe that our algorithm will be useful, in particular, for production render-
ing, where robust algorithms are desired and scenes typically have a huge number of
potentially problematic small triangles. A further application we see is for ray-tracing
scenes consisting of subdivision surfaces or NURBs. Approaches that subdivide
these higher-order primitives often end up with very small triangles that need robust
handling.

Appendix A

Pseudo C++ code for the watertight ray-triangle intersection. For each ray, we pre-
calculate once the maximum dimension kz (and orthogonal dimensions kx and ky) as
well as the shear constants.

/% calculate dimension where the ray
direction is maximal x/

int kz = max_dim(abs (dir));
int kx = kz+1l; if (kx == 3) kx = 0;
int ky = kx+1; if (ky == 3) ky = 0;

/+ swap kx and ky dimension to preserve
winding direction of triangles =/
if (dir[kz] < 0.0f) swap(kx,ky);

/* calculate shear constants x/
float Sx = dir[kx]/dir([kz];
float Sy = dir([kyl/dirlkz];
float Sz = 1.0f/dir([kz];

77

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

The second part is the intersection code invoked for each ray-triangle intersection.
This version of the code supports backface culling, both enabled and disabled.

/% calculate vertices relative to ray origin x/
const Vec3f A = tri.A-org;
const Vec3f B = tri.B-org;
const Vec3f C = tri.C-org;

/% perform shear and scale of vertices x/

const float Ax = Af[kx] - SxxAlkz];
const float Ay = Al[ky] - SyxAlkz];
const float Bx = B[kx] - Sx*B[kz];
const float By = Blky] - Sy*Bl[kz];
const float Cx = Clkx] - SxxCl[kz];
const float Cy = Clky] - SyxClkz];

/% calculate scaled barycentric coordinates x/
float U = Cx*By - Cy=Bx;
float V = Ax*Cy - Ayx*Cx;
float W = Bx*Ay — By=xAXx;

/% fallback to test against edges
using double precision x*/

if (U == 0.0f || V== 0.0f || W == 0.0£f) {

double CxBy = (double)Cxx (double)By;
double CyBx = (double)Cyx* (double)Bx;
U = (float) (CxBy - CyBx);

double AxCy = (double)Axx (double)Cy;
double AyCx = (double)Ayx (double)Cx;
V = (float) (AxCy - AyCx);

double BxAy = (double)Bxx (double)Ay;
double ByAx = (double)Byx (double)Ax;
W = (float) (BxAy — BYAX);

/+ Perform edge tests. Moving this test before
and at the end of the previous conditional
gives higher performance. =/

#ifdef BACKFACE_CULLING

if (U<0.0f || V<0.0f || W<0.0f) return;
#else
if ((U<0.0f || V<0.0f || W<0.0f) &&
(U>0.0f || v>0.0f || W>0.0f)) return;
#endif

/+* calculate determinant x/
float det = U+V+W;

78

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

if (det == 0.0f) return;

/« Calculate scaled z—coordinates of vertices
and use them to calculate the hit distance. x/
const float Az SzxAl[kz];
const float Bz = SzxB[kz];
SzxClkz];
const float T = UxAz + V+Bz + WxCz;

const float Cz

#ifdef BACKFACE_CULLING

if (T < 0.0f || T > hit.t = det)
return;
#else
int det_sign = sign_mask (det);

if (xorf(T,det_sign) < 0.0f) ||
xorf (T,det_sign) > hit.t x xorf (det, det_sign))
return;
#endif

/* normalize U, V, W, and T x/
const float rcpDet = 1.0f/det;
hit.u = UxrcpDet;

hit.v = VxrcpDet;
hit.w = WxrcpDet;
hit.t = TxrcpDet;
Appendix B

Pseudo C++ code for the modified version of the ray-box test used during ray traver-
sal. At the beginning of ray-traversal we do some precalculations.

/+* Calculate the offset to the near and far planes for
the kx, ky, and kz dimension for a box stored in the
order lower_x, lower_y, lower_z, upper_x, upper_y,
upper_z in memory. x/

Vec3i nearID(0,1,2), farID(3,4,5);

int nearX = nearID[kx], farX = farID[kx];
int nearY = nearID[ky], farY = farID[ky];
int nearZ = nearID[kz], farZ farID[kz];
if (dir[kx] < 0.0f) swap (nearX, farX);

if (dirf[ky] < 0.0f) swap(nearY, farY);

if (dir[kz] < 0.0f) swap(nearZz, farz);

/% conservative up and down rounding x/
float p = 1.0f + 27-23;

79

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013

Watertight Ray/Triangle Intersection

http://jcgt.org

float m = 1.0f - 2"-23;
float up(float a) { return a>0.0f ? axp : axm; }
float dn(float a) { return a>0.0f ? axm : axp; }

/+ fast rounding for positive numbers x/
float Up(float a) { return axp; }
float Dn(float a) { return axm; }

/* Calculate corrected origin for near— and far—plane
distance calculations. Each floating —point operation
is forced to be rounded into the correct direction. x/

const float eps = 5.0f % 27-24;
Vec3f lower = Dn(abs(org-box.lower)

)
Vec3f upper = Up(abs (org-box.upper));
float max_z = max(lower([kz],upper(kz]);

float err_near_x = lower [kx]+max_z) ;

float err_near_y = lower [ky]l+max_z);

float org_near_x
float org_near_y = orglky]+Up (epsxerr_near_vy));

Up (
Up (
up (org[kx]+Up (eps*err_near_x));
up (
orglkz];

float org_near_z =

float err_far_x = Up (upper[kx]+max_z);

float err_far_y = Up(upperl[ky]+max_z);

float org_far_x = dn(orglkx]-Up(eps*err_far_x));
float org_far_y = dn(orglky]-Up(eps*err_far_y));
float org_far_z = orglkz];

if (dir[kx] < 0.0f) swap(org_near_x,org_far_ x);
if (dir[ky] < 0.0f) swap(org_near_y,org_~far_y);

/* Calculate corrected reciprocal direction for near—
and far—plane distance calculations. We correct
with one additional ulp to also correctly round
the subtraction inside the traversal loop. This
works only because the ray is only allowed to
hit geometry in front of it. =x/

float rdir_near_x = Dn(Dn(rdir[kx]));
float rdir_near_y = Dn(Dn(rdir[kyl));
float rdir_near_z = Dn(Dn(rdir[kz]))

float rdir_far _x = Up(Up(rdirlkx]));
float rdir_far_ y = Up(Up(rdirlkyl));
float rdir_far_z = Up(Up(rdir[kz]));

80

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

During ray traversal, the ray-box intersection code has the same complexity as
traditional algorithms, but we are using the corrected ray origin and reciprocal ray
direction calculated above.

float tNearX = (box[nearX] - org_near_x) +* rdir_near_x;

float tNearY = (box[nearY] - org_near_y) +* rdir_near_y;
float tNearz = _
float tFarX = (box[farX] - org_far x * rdir_far_x;

(
(
(
(
(
(

)
)
box[nearZ] - org_near_z) * rdir_near_z;
)
)
)

float tFarY = (box[farY] - org_far_y x rdir_far_y;
float tFarZz = (box[farZ] - org_far_z * rdir_far_z;
float tNear = max(tNearX, tNearY,tNearZ, rayNear);
float tFar = min (tFarX ,tFarY ,tFarZ ,rayFar);
bool hit = tNear <= tFar;

References

BADOUEL, D. 1990. An Efficient Ray-Polygon Intersection. In Graphics Gems, A. S.
Glassner, Ed. Academic Press Professional, Inc., San Diego, CA, USA, 390-393. 67

BENTHIN, C. 2006. Realtime Ray Tracing on Current CPU Architectures. PhD thesis,
Saarldndische Universitits- und Landesbibliothek, Postfach 151141, 66041 Saarbriicken.
67, 69

CHIRKOV, N. 2005. Fast 3D Line Segment-Triangle Intersection Test. J. Graphics Tools 10,
3,13-18. 68

DAMMERTZ, H., AND KELLER, A. 2006. Improving Ray Tracing Precision by Object Space
Intersection Computation. In IEEE Symposium on Interactive Ray Tracing 2006, 1EEE,
Los Alamitos, CA, 25-31. 67, 74,75, 76

DAVIDOVIC, T., ENGELHARDT, T., GEORGIEV, I., SLUSALLEK, P., AND DACHSBACHER,
C. 2012. 3D Rasterization: A Bridge Between Rasterization and Ray Casting. In Proceed-
ings of the 2012 Graphics Interface Conference, Canadian Information Processing Society,
Toronto, Ont., Canada, 201-208. 67, 68, 74, 75, 76

ERICKSON, J. 1997. Pliicker Coordinates. Ray Tracing News 10, 3. 67

FORTUNE, S., AND VAN WYK, C. J. 1993. Efficient Exact Arithmetic for Computational

Geometry. In Proceedings of the Ninth Annual Symposium on Computational Geometry
(SCG '93), ACM, New York, NY, 163-172. 66

HANIKA, J. 2011. Spectral Light Transport Simulation Using a Precision-Based Ray Tracing
Architecture. PhD thesis, Universitit Ulm. 68

IEEE. 1985. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-
1985. IEEE Computer Society Press, Silver Spring, MD. 70

JONES, R. 2000. Intersecting a Ray and a Triangle with Pliicker Coordinates. Ray Tracing
News 13, 1. 67

KARAMCHETI, V., LI, C., PECHTCHANSKI, I., AND YAP, C. 1999. A Core Library for
Robust Numeric and Geometric Computation. In ACM Symposium on Computational Ge-
ometry (SCG’99), Applied Track, ACM Press, New York, NY, 351-359. 66

81

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 2, No. 1, 2013
Watertight Ray/Triangle Intersection http://jcgt.org

KENSLER, A., AND SHIRLEY, P. 2006. Optimizing Ray-Triangle Intersection via Automated
Search. In IEEE Symposium on Interactive Ray Tracing 2006, IEEE, Los Alamitos, CA,
33 -38. 67

KN, J. A., AND CHOI, K. 1995. Ray Tracing Triangular Meshes. Tech. rep., York Univer-
sity, Dept. of Computer Science. http://http://www.cse.yorku.ca/~amana/
research/mesh.pdf. 67,76

MOLLER, T., AND TRUMBORE, B. 1997. Fast, minimum storage ray/triangle intersection.
Jjournal of graphics tools (jgt) 2, 1,21-28. 67,74,75,76
SHEVTSOV, M., SOUPIKOV, A., KAPUSTIN, A., AND NOVOROD, N. 2007. Ray-Triangle

Intersection Algorithm for Modern CPU Architectures. In Procedings of GraphiCon 2007,
Moscow State University, Moscow, Russia. 67

SHEWCHUK, J. R. 1996. Robust Adaptive Floating-Point Geometric Predicates. In Proceed-
ings of the Twelfth Annual Symposium on Computational Geometry (SCG 96), ACM, New
York, NY, 141-150. 66

WALD, I. 2004. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,
Saarland University. 67

WILLIAMS, A., BARRUS, S., MORLEY, R. K., AND SHIRLEY, P. 2005. An Efficient and
Robust Ray-Box Intersection Algorithm. In ACM SIGGRAPH 2005 Courses, ACM, New
York, NY, SIGGRAPH ’05. 74

Author Contact Information

Sven Woop Carsten Benthin Ingo Wald
Intel Corporation Intel Corporation Intel Corporation
sven.woop @intel.com carsten.benthin @intel.com ingo.wald @intel.com

Sven Woop, Carsten Benthin, Ingo Wald, Watertight Ray/Triangle Intersection, Journal of
Computer Graphics Techniques (JCGT), vol. 2, no. 1, 65-82, 2013
http://jcgt.org/published/0002/01/05/

Received: 2013-01-24
Recommended: 2013-03-29 Corresponding Editor: Carsten Dachsbacher
Published: 2013-06-28 Editor-in-Chief: Morgan McGuire

(© 2013 Sven Woop, Carsten Benthin, Ingo Wald (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

This paper was updated on 2013-07-09 to reference Moller and Trumbore’s original 1997 paper in place
of their 2005 talk; thanks to Stephen Hill for this suggestion.
82

http://jcgt.org
http://http://www.cse.yorku.ca/~amana/research/mesh.pdf
http://http://www.cse.yorku.ca/~amana/research/mesh.pdf
mailto:sven.woop@intel.com
mailto:carsten.benthin@intel.com
mailto:ingo.wald@intel.com
http://jcgt.org/published/0002/01/05/
http://creativecommons.org/licenses/by-nd/3.0/

