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Figure 1. Left: Typical VICTAR setup in action, running our implementation with two haptic

devices providing model interaction. Right: SensAble PHANTOM Omni haptic device with

a custom tool extension.

Abstract

Virtual surgery simulators are emerging as a training method for medical specialists and are

expected to provide a virtual environment that is realistic and responsive enough to be able to

physically simulate a wide variety of medical scenarios. Haptic interaction with the environ-

ment requires an underlying physical model that is dynamic, deformable, and computable in

real-time at very high frame rates.

By harnessing the GPU, we are able to simulate an environment with soft volumetric

tissue that supports real-time deformation and two-way haptic interaction. In particular, we

present a parallel algorithm that uses a volumetric mass-spring model to simulate this envi-

ronment, implemented using NVIDIA CUDA. Our algorithm is implemented and used as an

integral part of Virtual Competence Training Area (VICTAR), an extendable virtual surgery

simulation software framework by Vrest Medical. We show that our method is capable of

simulating a model with over 100 K masses at 1000 Hz on NVIDIA Tesla C2050. We also

discuss the scalability and potential future applications of the algorithm.
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1. Introduction

Virtual surgery simulators are expected to create a virtual environment containing a

representation of human anatomy (e.g., a patient) and supporting an extensive degree

of user interaction. For a medical training scenario that is simulated, the environ-

ment must be accurate enough in order to be used for extensive practice by medical

specialists.

In our opinion, the ideal virtual surgery simulator accepts user input in the form

of a tactile sensor, such as a haptic feedback device, which represents a controllable

virtual surgical tool within the simulator. It has virtual tools available that range

from simple probes to scalpels and that are able to interact and physically deform the

virtual environment. Output of the system is provided visually and through the haptic

feedback device by means of forces that correspond to the calculated forces acting on

the virtual tool. The user can feel varying degrees of physical resistance, depending

on the type of tissue or tool, as the virtual tool collides with the environment. Haptic

perception of the virtual environment and corresponding visual cues in response to the

interaction of the tool are important. They serve as the main factor in the simulator’s

perceived realism and are expected to face close scrutiny from field experts.

Figure 2. Practical examples of a volumetric lung model as part of a surgery training scenario

in VICTAR.

In order to translate the above idea of the ideal simulator into practice, the vir-

tual environment has to be represented by an underlying dynamic physical model that

supports this kind of interaction, while its computation must be fast enough to sup-

port real-time I/O with haptic feedback devices. By using a volumetric model that

defines the surface, as well as the internal structure of any simulated object, realistic

interaction can be achieved.

Physical models with these characteristics can be found in the field of soft body

dynamics, and there exists a variety of different models with accompanying algo-

rithms. Our research focuses on the volumetric mass-spring model, where the vol-

umes of objects are modeled as a set of point masses and interconnected by many

elastic springs that follow general physical laws. The theory behind the model is
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Figure 3. Example of the four steps involved in endoscopy training with VICTAR where

an artery is pulled and subsequently cut. The model shown is rendered by means of sphere

particles with deferred bilateral filtering.

explained in Section 3. It essentially uses a straightforward algorithm that does not

require any complex mathematical operations. In practice, however, the serial imple-

mentation is far from being fast enough due to the large amount of masses and springs

involved in volumetric models.

On the one hand, the model used in the simulation must be of high resolution so

that the user can clearly distinguish visual and haptic features and can perform opera-

tions as defined in the medical training scenario. One such example is given in Figure

3. On the other hand, the simulation must run at a fast-enough rate to support real-time

I/O with haptic feedback devices and allow smooth haptic interaction. These haptic

devices contain actuators that apply a set of forces to the user’s hand and generally

require a force to be streamed real-time at a minimum rate of 1000 Hz, with lower

data streaming rates resulting in uncontrollable oscillation and irregular actuation. As

a consequence, the simulation must be capable of processing haptic input, calculating

a new state of the physical model given the input, and returning corresponding haptic

output all within a maximum time span of 1 ms (1000 Hz).

In summary, this paper provides a parallel CUDA algorithm that computes a vol-

umetric mass-spring model at a real-time haptic interaction rate and describes how it

is implemented as part of the VICTAR surgery simulation framework, which is cur-

rently being developed by Vrest Medical. This is an extendable software framework

designed for virtual surgical training, featuring haptic device handling and a scripting

engine that allows for easy prototyping of various simulation scenarios. The work

described in this paper is made in cooperation with Vrest Medical and is ultimately

used to provide physics interaction as part of the aforementioned product.

2. Related Work

For the past two decades, physical modeling of deformable objects has been an area of

extensive research within the field of computer graphics and medical technology. In

1987, Terzopoulos et al.’s paper [1987] was the first to incorporate physical properties

into a graphical object, creating volumetric and elastically deformable models capable
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of responding to external forces and constraints. The underlying mechanics of these

models were initially used with the finite-element method (FEM), such as in papers

by Chadwick et al. [1989] and Chen et al. [1992] for animating muscle deformations

in anatomically based characters.

FEM however comes at a high computational expense. For a more balanced trade-

off between accuracy and (interactive) performance, we adopted the mass-spring

model, which is an approximated model where the environment or object is subdi-

vided into discrete masses that are interconnected by springs with attributes based

upon the physical properties of the object. Though the model may be more limited in

accuracy, it has shown to have a relatively good performance and is therefore already

widely used in various areas, such as virtual surgery [Kühnapfel et al. 1993], rigid

cloth simulation [Provot 1996], muscle deformation [Nedel and Thalmann 1998], and

others.

Research into more realistic virtual surgery simulation is ongoing, and improve-

ments have been made resulting in an increasing complexity of the environment as

well as enabling better haptic interaction with the model. These two factors play an

important role in improving the perceived realism, but they also impose severe limits

on the computation time and require significant efforts in improving the performance

of the underlying physical model [Kim et al. 2007].

Previously, deformable objects were successfully implemented on the GPU us-

ing different techniques. Research by Shi et al. [2008] presents a simulation model

for 2D cloth with haptic rendering implemented in CUDA that is considerably faster

than a reference CPU implementation. Although the research provides insight into

FEM-based simulation models, the model is only 2D and not volumetric, and haptic

rendering is still performed on the CPU at a rate far lower than the ideal rate, and

therefore only has limited practical use.

In papers by Mosegaard et al. [2005][2005] and Müller et al. [2007], parallel

GPGPU-based approaches for mass-spring models are presented with significant

speedups when compared to reference CPU implementations. In more recent work

by Rasmusson et al. [2008] and Farias et al. [2008], different CUDA implementations

of the mass-spring model for surgery simulation are proposed and evaluated, showing

potential speedups compared to earlier GPU-based approaches. Unfortunately, none

of the papers implement support for two-way haptic interaction with the mass-spring

model.

The lack of two-way haptic interaction with the simulated model is a common

problem. Being able to properly feel the surface of a model through a haptic device

requires a constant high-frequency (e.g., 1000 Hz) output of forces from the simula-

tion model into the haptic device. As in the previous papers, the problem of providing

a proper high-frequency force output is often intentionally left open, because it typi-

cally implies that the model must be simulated with very high performance.
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However, research by Courtecuisse [2010] and Zhang [2010] goes into further

detail on the use of two-way haptic interaction. The two papers implement similar

FEM-based models with complex topology in order to simulate soft-tissue deforma-

tion and (haptic) needle insertion. As mentioned before, these FEM models have

the potential to provide very accurate and stable model simulation, but at the cost of

significant performance decrease. In both cases, the high haptic rate of 1000 Hz is ac-

knowledged, but the final simulation performance that is presented remains far below

this rate, at 25 Hz and 40 Hz. These output forces are then upsampled to the hap-

tic rate using a clever multi-rate technique or interpolation filter. As a consequence,

the high-frequency characteristics of the force output (and thus haptic interaction) are

lost. Practical use is therefore limited, since the high-frequency characteristic allows

the user to perceive (feel) clear and detailed distinctions between smooth and non-

smooth or highly frictional model surfaces, as well as oscillation in the model (such

as a heartbeat), which are essential for virtual surgery.

In a nutshell, this research instead focuses on achieving model simulation per-

formance that allows for true high-frequency force output, making practical use of

two-way haptic interaction and virtual surgery possible.

3. Background

3.1. Mass-spring Model

The basic fundamentals of the mass-spring algorithm are not very difficult. A mass-

spring model consists of a set of mass points Mi with i= [0,N−1] where N represents

the number of total masses. The model is interconnected with springs Si j connecting

any two arbitrary mass points Mi and M j.

Figure 4 represents the simple one-dimensional case of a mass-spring model [Ah-

mad et al. 2007]. This particular case contains masses M0, M1, M2, M3, M4 and

springs S01, S12, S23, S34. In the mass-spring model, forces that are exerted on the

connected masses are summed according to Newton’s second law of motion:

mi~ai = ~Fi, (1)

where mi is the mass, ~ai is the acceleration, and ~Fi is the total force on mass Mi.

M0

S01

M1

S12

M2

S23

M3

S34

M4

Figure 4. A one-dimensional case of a mass-spring system.
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The total spring force ~Fi is determined by summing all forces exerted by springs:

~Fi = ∑
j∈Si

~Fi j, (2)

where Si is the set of connected masses for mass Mi. The variable ~Fi j is the force

exerted by the spring connecting the two masses Mi and M j that is obtained from

Hooke’s law:
~Fi j = ki j(yi j− y0

i j)
yi j

|yi j|
, (3)

where ki j is the spring stiffness, yi j is the current spring length or distance between

masses Mi and M j, and y0
i j is the spring rest-length in equilibrium.

3.2. Integration Methods

In order for the mass-spring system to exhibit movement, it is necessary to translate

these forces into positions. Considering Equation (1), a naive method to derive a

position is to take the acceleration ~ai and assume a non-existing velocity:

xi(t +∆t) = xi(t)+
1

2
~ai∆t2, (4)

where t is the time, ∆t is the fixed time step, and ~ai is acceleration of mass Mi. The

acceleration ~ai is determined from the total force ~Fi on mass Mi by using Equation (1).

Obviously, a formula like this is incomplete as it does not take any velocity in the

system into account.

To obtain a set of useful results instead, a numerical integration method can be

used to approximate the velocities and positions in the system based on current and

previous data. Obtained accuracy directly corresponds to the order of the numerical

integration method, where lower-order methods yield more error but also decrease

complexity. Examples of such methods are Euler (first-order), Verlet (second-order)

and Runge–Kutta (e.g., fourth-order). First-order explicit Euler integration is defined

as follows:

xi(t +∆t) = xi(t)+~vi∆t,

vi(t +∆t) = vi(t)+~ai∆t,

where ~vi is the velocity of mass Mi. When looking at the Euler method, it can be seen

that the velocity term always lags one step behind. When dealing with mass-spring

systems, this can potentially lead to springs overshooting their positions resulting in

unwanted oscillation of the system. For a better balance between error and complex-

ity, Verlet integration in second-order is a better choice for our mass-spring system:

xi(t +∆t) = 2xi(t)− xi(t−∆t)+
1

2
~ai∆t2. (5)
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Albeit slightly more complex than Euler, the two last positions of the mass Mi

are used to determine velocity (saving performance), while the error of the outcome

stays second-order. It is possible to reduce the error even further by using the higher-

order Runge-Kutta integration method, though at the cost of significantly more mem-

ory space and reduced performance [Zhang et al. 2010]. Runge-Kutta is generally

considered to be a good choice when accuracy is preferred above performance. Since

performance is our foremost concern, we opt to use Verlet integration

instead.

Additionally, other factors such as universal gravity can be added by further ex-

tending the Verlet equation with additional forces:

mi~ai = ~Fi +mi~g, (6)

where~g is the universal gravity vector. For simplicity, the variable mi is further omit-

ted by assuming that mi = 1.

3.2.1. Limitations

To make the results of the Verlet (and similar) integration methods as exact as possi-

ble, two important criteria have to be met: ideally, the acceleration vector ~ai and the

time step ∆t have to be kept constant.

It is not difficult to see that keeping the acceleration constant is virtually impossi-

ble, considering that the integration is applied to a mass-spring model. This imposes

a considerable limitation on the integration’s output-precision, which in turn poses

restrictions on the acceleration vector and implies various upper bounds for any vari-

ables that affect the acceleration. This practically means that variables such as ki j

(spring stiffness) must have a limited range (depending on the time step), to prevent

catastrophic structural failure of the model.

As mentioned before, the time step is also to be kept constant. It may prove to

be difficult to control the time difference between iterations, and given that frame

rate in software is not very easy to control, it is possible to pass in a constant time

step anyway. Then, regardless of the frame rate at which the software runs, the cal-

culation of the model advances by a constant time step every frame. The down-

side of this approach is that the model does not advance at constant speed in rela-

tion to the software, e.g., it will seem to advance slower when the frame rate drops

considerably.

In practice, using a time step that approximates the software’s (ideal) update rate

provides sufficient model stability, assuming a single integration iteration-step per

frame. Note that the ideal update rate and, thus, time step has to be “small enough”

to ensure a stable model. We find that a rate equal to the haptic update rate (1000 Hz)

with a single iteration-step per frame is sufficient.
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4. Mass-spring Algorithm

The mass-spring algorithm calculates all variables within the model by using the

physics equations of Section 3.1. Each time the algorithm is invoked on the model,

the result is a new physical state of the model containing the masses and springs with

new positions and other variables adjusted according to all applied forces (e.g., by

springs, or by interaction with a virtual tool) within the predefined time step ∆t.

4.1. Model Layout

The basic layout for our mass-spring model in the three-dimensional case is repre-

sented by a uniform grid consisting of masses connected by springs as shown in Fig-

ure 5.

(a) (b) (c)

Figure 5. Three-dimensional uniform grid layout connecting the center mass to at most 26

neighboring masses (in grey) at Euclidean distance (a) 1, (b)
√

2, and (c)
√

3. (Image courtesy

of [2008].)

The uniform grid is chosen purely for simplicity and structural integrity of the

model. Every mass within the grid is connected to all of its neighboring masses,

forming springs, all of which are within a 3× 3× 3 grid surrounding the mass. The

rest length ri j of each spring is defined as the initial Euclidian (or ordinary) distance

between a mass Mi and any of its neighboring masses M j forming the spring. Because

of the discrete grid layout, this distance is either 1,
√

2, or
√

3. For every mass, we

can define at most 3∗3∗3−1 = 26 neighboring masses (and thus springs); however,

for example, masses at the outer surface of the grid will have fewer neighbors.

4.2. Model Limitations

The physically approximative nature of the mass-spring model introduces practical

limitations in the behavior of the model. Partly due to the uniform grid structure of

the model, the most significant limitation is spring inversion: a situation where a mass,

in (normal) equilibrium, is displaced beyond a certain point until a new equilibrium

is formed where one or more springs now have a direction that is inverse to the earlier

equilibrium. This problem manifests itself as irreversible “collapse” or “tangling” of

masses, especially at the surface of the volumetric model and becomes very apparent

with frequent mass displacement (e.g., by means of collision tools).
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To alleviate the issue of spring inversion, different workarounds with varying de-

grees of effectiveness are available:

Shape-preserving springs

This solution proposed by Choi et al. [2005] introduces a shape-preserving

spring that reduces the collapsing by restoring the model to the original shape.

It is a zero-length spring, located at the initial position of the corresponding

mass and prevents excessive displacement by exerting a force that pushes the

mass back to its initial position. This is an elegant solution, but less effective

for models that are to be pushed around and manipulated, as is often the case in

virtual surgery.

Torsion springs

By rewriting Hooke’s law in Equation (3) in angular form, it is possible to

simulate a spring that exerts a force proportional to an angle instead of a length.

The result is a torsion spring (e.g., as used in mousetraps), and it can be added

in between every connected mass in the model. Shearing of the model can now

be resisted by the torsion springs and, as a result, spring inversion is further

reduced.

Increased surface stiffness

As spring inversion occurs mostly at the surface of the model due to the interac-

tion with virtual tools, the stiffness of the springs that form (or are connected to)

the surface of the model is doubled. As stiffer springs are harder to invert, this

typically reduces the occurrence of the problem without modifying the majority

of the model.

Increased model resolution

While increasing the resolution of the model itself does not solve the issue of

spring inversion, it does make its effect significantly less apparent. As more

masses are available and their springs are inherently smaller and stiffer, it be-

comes more difficult to push the well-connected masses beyond their equilib-

rium.

As our proposed design allows for ever-increasing model resolution, we find that

the two last options are the most straightforward and non-invasive workarounds.

4.3. Collision Handling

As mentioned in previous sections, the mass-spring model must be capable of being

manipulated by external factors such as a virtual surgical tool. The position and orien-

tation of this virtual tool is typically controlled by corresponding input from a haptic
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feedback device, and collision handling is used to exert forces on any masses where

the tool touches the model.

As the collision handling is very straightforward, we only consider the simple

case of a probe tool (e.g., a hand) that is capable of pushing masses away. A capsule

(or sphere) with predefined geometry is placed at the exact virtual position of the

haptic device, and any masses within the radius of the shape are placed on the closest

surface point of the geometry, in a constraint-based manner. Equally important, all

masses that are displaced as a result of this collision interaction are marked and their

total spring force ~Fi is summed and provided as output to the haptic feedback device,

completing the haptic feedback cycle.

4.4. Straightforward Serial Algorithm

The most straightforward variant of the mass-spring algorithm simply iterates over

every spring Si j (connecting arbitrary masses Mi and M j where 0 ≤ i, j < N) within

the model and applies Equations (2) and (3), as can be seen in Algorithm 1.

Algorithm 1 Straightforward serial implementation.

1: for all springs Si j do

2: get mass positions ~x j(t) and ~xi(t)

3: determine spring length {yi j← ~x j(t)−~xi(t)}

4: calculate spring force {~Fi j← ki j(yi j− y0
i j)

yi j

|yi j|
}

5: calculate spring force on Mi {~Fi = ~Fi j}

6: calculate spring force on M j {~Fj = ~Fji =−~Fi j}

7: update ∑~Fi and ∑~Fj

8: end for

9: for all masses Mi do

10: ~Fi← ∑~Fi

11: integrate {~xi
′(t +∆t)← 2~xi(t)−~xi

′′(t−∆t)+ 1
2
~Fi∆t2}

12: set mass position ~xi
′(t +∆t)

13: end for

For each mass Mi, forces exerted by the connected springs are first accumulated

in ∑~Fi. Given the total force ~Fi and using Equations (5) and (6), Verlet integration is

used to determine the new position xi of mass Mi.

4.5. Initial Parallel Algorithm

The first trivial step towards parallelizing Algorithm 1 is to process the existing for-

loops in parallel, instead of doing sequential iterations. When each of the iterations

is processed by a different thread in parallel, the accumulation of variables ∑~Fi and
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∑~Fj will, however, lead to race conditions due to different threads trying to read and

write the variables at the same time. This poses a serious threat to the stability of the

model.

The problem could be mitigated by using synchronization and, thus, making the

accumulation atomic so that only one thread at a time can modify its value. This

would however degrade performance due to excessive locking. Instead, it is also

possible to rewrite the algorithm and avoid any synchronization at all.

Algorithm 2 Initial parallel implementation.

1: for all masses Mi do

2: get mass position ~xi(t)

3: for all neighbouring masses M j do

4: get mass position ~x j(t)

5: determine spring length {yi j← ~x j(t)−~xi(t)}

6: calculate spring force {~Fi j← ki j(yi j− y0
i j)

yi j

|yi j|
}

7: calculate spring force on Mi {~Fi← ~Fi j}

8: update ∑~Fi

9: end for

10: ~Fi← ∑~Fi

11: integrate {~xi
′(t +∆t)← 2~xi(t)−~xi

′′(t−∆t)+ 1
2
~Fi∆t2}

12: set mass position ~xi
′(t +∆t)

13: end for

In Algorithm 2, there is an iteration over every mass Mi instead of every spring Si j

as in the previous algorithm. The combination of a particular mass Mi and any of its

neighboring masses M j represents the spring Si j. Since every possible combination

is iterated, all springs in the model are guaranteed to be iterated. The for-loop is

parallelized, and race conditions are eliminated because the only data that is updated

(~xi
′(t +∆t)) is unique to every iteration and not accessed by any other thread within

the same time step.

Note that the algorithm has a number of implicit memory accesses, e.g., the list of

neighboring masses at line 3 and variables ki j and y0
i j at line 6, which will be further

explained in the next section.

4.6. Extended CUDA Implementation

In this section, we extend the initial parallel algorithm from the previous section to

target the CUDA platform. Algorithm 3 shows the extended algorithm with all mem-

ory access transactions explicitly stated, containing predictable coalesced transactions

as well as unpredictable random transactions.
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Algorithm 3 Extended CUDA implementation.

1: for all masses Mi do

2: get mass position ~xi(t)

3: get mass properties pi

4: synchronize threads

5: for k = 0→ 26 do

6: get neighbour mass at k {M j← Ni(k)}

7: if M j exists then

8: get mass properties p j

9: get mass position ~x j(t)

10: get spring properties ki j and y0
i j

11: determine spring length {yi j← ~x j(t)−~xi(t)}

12: calculate spring force {~Fi j← ki j(yi j− y0
i j)

yi j

|yi j|
}

13: calculate spring force on Mi {~Fi← ~Fi j}

14: update ∑~Fi

15: end if

16: end for

17: get mass position ~xi
′′(t−∆t)

18: synchronize threads

19: perform collision handling

20: ~Fi← ∑~Fi

21: integrate {~xi
′(t +∆t)← 2~xi(t)−~xi

′′(t−∆t)+ 1
2
~Fi∆t2}

22: set mass position ~xi
′(t +∆t)

23: end for

Every iteration runs in a separate thread and requires multiple memory access

transactions with different memory access characteristics. At line 2, variable ~xi(t) is

retrieved by thread Mi. As index i is always known in advance, the memory trans-

actions for variables ~xi(t), pi, ~xi
′′(t −∆t), and ~xi

′(t +∆t) at respectively, lines 2, 3,

17, and 22 are thread-unique and can be predicted and optimized for data coalesc-

ing by CUDA. By using thread synchronization at lines 4 and 18, these memory

transactions—performed by threads in parallel—are coalesced into single transac-

tions by CUDA, saving considerable memory bandwidth. Transactions for variables

p j and ~x j(t) at lines 8 and 9 are costly random memory accesses as index j can rep-

resent any arbitrary neighboring mass connected to Mi.

At line 6 function Ni(k) retrieves the index j for the neighboring mass M j, repre-

sented by a particular 0≤ k < 26 for Mi; Ni thus represents a data structure containing

at most 26 indices for every mass Mi. At line 19, the algorithm performs the necessary

collision handling for haptic interaction, as further explained in Section 5.1.
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vertex data (position vectors)

0    1    ... N

mass data (flags)

0    1    ... N

spring data (neighbour indices, rest lengths)

N * 26...

0 1

activated
surface
persistent
...
material #

material data (stiffness)

0    1    ... M

Figure 6. Layout overview of aligned data arrays, from top to bottom: vertex data, spring

data, mass data and, material data.

4.7. Data Structure

Data in memory that is accessed by predictable transactions should be structured in

such a way that allows for coalescence optimization. As a general rule for CUDA,

data elements should preferably be aligned to 32-bit, 64-bit, or 128-bit words so that

multiple parallel transactions at sequential addresses are coalesced into single trans-

actions.

The data structures used in the CUDA algorithm are organized as simple one-

dimensional arrays of aligned data. Figure 6 gives an overview of how these structures

are positioned in memory. The vertex data array contains the new and old positions of

~x as accessed by Algorithm 3 at lines 2, 9, 17, and 22. The spring data array contains

the indices for Ni(k) at line 6 as well as unique spring properties such as y0
i j at line 10.

The mass data array contains the mass properties p j at line 8.

4.8. Additional Optimization

Since the number of springs (at most N× 26) quickly increases with more complex

models, additional optimizations are added to decrease memory resources and band-

width. Since spring properties, such as stiffness ki j, are often similar in local regions

of springs, we reduce memory resources by classifying every spring Si j by a prede-

fined mass material Mat(l), where l = pi.material is defined by mass Mi. Spring

properties, such as ki j, are therefore defined by material Mat(l), and, thus, implicitly

shared with all springs connected to mass Mi as well as all other springs sharing the

same material. The material data array in Figure 6 contains the predefined spring

properties defined for every material Mat(l) where l = [0,L− 1], while the mate-
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rial index pi.material for every mass Mi is encoded in the mass data array. Since a

model usually only contains a few materials (e.g., L = 16, with the encoded index

pi.material only requiring 4 bits), considerable memory resources are saved: now

only L, instead of at most N ∗ 26 spring properties are required, excluding the over-

head of the encoded index pi.material.

Total computation time can be even further reduced by skipping the computation

of masses with negligible movement. If the total force |~Fi| of a mass Mi does not

exceed a predefined threshold ε, its force calculations are skipped and its position~xi is

left unchanged, preventing time and resources being spent on masses with negligible

impact on the model.

5. System Design

Given the extended CUDA implementation of the algorithm in the previous section,

we now have the means to accurately calculate the physical state of the model at given

time t. At this point, our algorithm is implemented as an integral part of the existing

VICTAR surgery simulation framework. Figure 7 shows the multi-threaded system

diagram of VICTAR containing all of the relevant subsystems in their own threads

and contexts. To properly integrate the CUDA mass-spring model algorithm, it is

necessary to employ a thread-safe, but fast data synchronization strategy to ensure

that the model data is kept up-to-date and synchronized in all subsystems. The fig-

ure provides a diagram of the complete data flow for the system and also describes

whether the data is residing on the CPU or GPU.

User input is provided by a haptic device representing a virtual tool for manipu-

lating and deforming the mass-spring physics model. Any subsequent force response

from the physics model acting on the virtual tool is then delivered back to the device

as haptic feedback output, providing the user with full two-way haptic interaction

with the model.

The visual representation of the model is generated by the system’s graphics

subsystem, implemented using Microsoft DirectX 10 and the shader capabilities of

Shader Model 4.0. A specialized volumetric multi-pass shader-rendering technique is

used to render the visual representation of the mass-spring model. While details of the

renderer fall beyond the scope of this paper, the synchronization between the graph-

ics subsystem and CUDA is especially important, as will be explained later in this

section. Needless to say, while we have chosen to use DirectX, alternative graphics

API’s such as OpenGL are also an option.

5.1. Haptic Device Interaction

The framework implements two-way haptic interaction by means of a haptic device

and the SensAble OpenHaptics programming interface. The device has tactile sensors
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CUDA physics kernel

Haptic device

double buffer

double buffer

vertex input

material data (stiffness, displacement)

mass data (neighbour indices, flags)

spring data (rest length)

collision input 

vertex output

collision output

DirectX renderer

sensor input

feedback output

video output

>1000 Hz

1000 Hz

force feedback vectorposition/velocity vectors

vertex buffervertex buffer

60 Hz

data in GPU RAM

rarely updated data

data in CPU RAM

Figure 7. Detailed overview of data flow within the system as implemented by VICTAR con-

sisting of various subsystems (and threads) as defined by the white boxes. Squares represent

the memory copies required to move the data between RAM regions in CPU and GPU. A

variant of double buffering is used for data synchronization.

in six degrees of freedom to register the current stylus orientation and velocity while

built-in actuators provide the ability to apply force feedback to the device in three

degrees of freedom. It is controlled through a real-time priority haptic device I/O

thread scheduled to run at a constant rate of 1000 Hz in which the sensors are read

out and an actuator force is applied. The minimum I/O streaming rate of 1000 Hz is

necessary, as lower rates will result in uncontrollable oscillation and irregularities in

the actuators that may cause a negative user experience.

In Figure 7, the vector representing the position of the virtual tool is acquired

from the device sensors in the haptic device I/O thread and is immediately transferred

to the CUDA host thread, where it is subsequently copied into GPU RAM where it

is eventually read by the CUDA physics kernel. At the same time, another vector

containing the force on the virtual tool is calculated by the kernel and copied back to

CPU RAM, where it is immediately transferred to the haptic device I/O thread and

written to the device actuators. To prevent read-while-write situations, where either

of the threads is reading a value that is currently being written to by the other thread,

locking can normally be applied. However, in this case, locking would introduce
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unacceptable execution stalling in either of the real-time priority threads. Instead,

we employ a variant of the double buffering strategy usually found in the field of

computer graphics. Our case consists of a single-reader single-writer situation where

buffer A is used for reading while B is used for writing. At any point in time, when

there are no threads reading or writing at all, buffers A and B are flipped so that the

reader is able to read the updated data in B while the writer can overwrite outdated

data in A. This strategy requires very little synchronization and lowers execution

stalling in the CUDA thread hosting the mass-spring algorithm.

Both vectors can now be quickly synchronized in a thread-safe manner. The

CUDA physics kernel uses the virtual tool position vector to perform collision de-

tection and deformation of the model as it interacts with the model, generating a force

by summing the spring forces ~Fi j acting on the masses that are currently within the

bounding geometry of the virtual tool, as explained in Section 4.3. The user is there-

fore able to interact with the mass-spring model by feeling the resistance of the model

acting on the virtual tool as it touches the surface.

5.2. Graphics Rendering

Visual output is accomplished by close cooperation of the CUDA host thread and

the DirectX graphics renderer. The renderer takes a vertex data buffer as input and

presents this buffer to the GPU through DirectX, where it is rendered onto the mon-

itor. Without going into too much detail, specialized HLSL shaders for geometry

processing and filtering are used to make sense of the volumetric vertex data (mass

positions) in combination with the available data of neighboring masses to turn the

model into a visual representation that can be rendered on the screen. The renderer

typically runs in sync with the monitor’s vertical refresh rate, which we assume to be

at a constant 60 Hz.

The shaders accept a vertex data structure (and an accompanying neighbor data

structure) that is identical to the structure used by the CUDA physics kernel. The ver-

tex data structure is simply an aligned one-dimensional array of floating-point vectors

of size N. As both CUDA and DirectX will only access data that is residing on the

GPU, the vertex data never has to leave the GPU by using the CUDA graphics inter-

operability API, saving unnecessary memory copies between GPU and CPU.

5.2.1. Single Device

Up to this point, it can be assumed that the CUDA physics kernel and graphics ren-

derer are executed on the same GPU device. In this single device configuration, it is

important to notice that the renderer and physics kernel typically run at vastly differ-

ent rates and in different threads. The CUDA DirectX interoperability API ensures

that all buffers that are to be mapped in CUDA are thread-safe, and thus free from

data corruption. This is done by stalling execution while waiting for buffers that are
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already in use by DirectX and, subsequently, holding a lock while the buffers are

mapped and used by any CUDA kernels.

As a consequence, the vertex data structure is locked by both the DirectX thread

(during rendering) and CUDA thead (during physics calculation) and, given the differ-

ent rates of these threads, frequent stalling may occur. As frequent stalling will incur

a serious performance penalty, we apply the double buffering strategy as described in

Section 5.1 and Figure 7 on the vertex data structure.

5.2.2. Multi-device

In a more ideal situation, the physics kernel is allowed to run exclusively on a ded-

icated GPU device, unhampered by any other (graphical) GPU activity and any re-

sulting locking. This multi-device configuration consists of at least two GPU devices,

one of which functions as the primary DirectX display device, while the other is used

exclusively to run the CUDA physics kernel.

Needless to say, it is still necessary to provide some sort of synchronization be-

tween the GPU device running the CUDA physics kernel and the primary GPU graph-

ics device; this presents a challenge similar to that in the single device configuration.

Again, the double buffering strategy can be used to avoid unnecessary locks and stalls.

6. Results and Discussion

We have implemented the parallel mass-spring model as described in the previous

sections as part of the VICTAR surgery simulator framework. More specifically, the

physics engine of VICTAR is now composed of our mass-spring model implemen-

tation with the required buffering and is able to interface with one or more haptic

devices and an existing graphics renderer.

In order to test our implementation within the framework, we use a minimal

general-purpose scripted scenario that generates a simple cubical mass-spring model

at increasing resolutions and interfaces the model with a single haptic device. A sin-

gle virtual probe tool is added to verify the model’s haptic response. The increasing

resolution of the model will provide a set of measurements at increasing algorithmic

workload and will allow us to observe and quantify effects such as CPU overhead.

Our proposed system design allows for two configurations, namely single and

multi-device, with two buffering strategies—single and double buffering. Note that

single buffering merely consists of a single buffer that is locked during either a read

or a write. To investigate the advantage of double buffering, all combinations of

configuration and buffering are implemented and tested with the above models.

Note that for the implementation of the multi-device synchronization, it is neces-

sary to copy buffers (peer-to-peer) between two different GPU devices. Unfortunately,

at the time of writing, CUDA does not allow peer-to-peer copies for GPU devices in-

volved with DirectX, so it is necessary to perform two additional copies to and from
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Figure 8. Simple cubical mass-spring model being tested in VICTAR with visible debugging

tools and virtual haptic probe (hand).

CPU host memory. Since copies between CPU and GPU have limited memory band-

width, this introduces an additional memory bottleneck. It is therefore not currently

possible to implement and test the single buffer locking strategy in the multi-device

configuration.

6.1. Test Setup

The configuration of our hardware is a workstation with an Intel Core i7-860 CPU,

6 GB of RAM with Windows 7 x64 and two NVIDIA Tesla C2050 GPU devices with

Compute capability 2.0. Each of our Tesla C2050 GPU devices contains 15 stream-

ing multiprocessors (SMs) with a maximum of 1536 threads each at 100% kernel

occupancy. For the single device configuration, the non-primary graphics card is left

unused. Haptic interaction is provided by SensAble PHANTOM Omni device as can

be seen in Figure 1, supported by the SensAble OpenHaptics programming interface

and operating at 1000 Hz. The CUDA Visual profiler is used to perform profiled runs

of our implementation, providing GPU kernel timing data, register usage, and occu-

pancy results. Our implementation uses CUDA 4.2 and is profiled by running the

complete framework (with above script and scenarios) inside the profiler, allowing

it to capture measured data of each iteration of the physics engine. Practical timing

measurements are provided through the framework, as explained below.

Note that the CUDA Visual profiler can be set to capture a set of specific measure-

ments and requires more separate runs of the application when more detailed infor-
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mation (such as branch divergence, coalesced global memory reads and writes, etc.)

is required. As our implementation is only available as part of a bigger application,

and not as a stand-alone executable, it is very difficult to perform multiple profiler

runs: the application behavior may differ between runs (e.g., due to varying loading

times) causing issues whenever the profiler can no longer compare the results. As

we are solely interested in production performance of this initial implementation, we

have chosen specifically not to create a stand-alone version, and instead performed

our tests with a single profiler run, capturing only the necessary performance mea-

surements (kernel time, kernel occupancy, and register usage) thus, leaving in-depth

CUDA optimization as a later exercise. These measurements represent the actual

on-chip GPU performance of the implementation.

Additionally, we have added high-precision timing functionality (typically in

nanoseconds) to the VICTAR framework by using the available timing APIs of the

operating system (QueryPerformanceCounter). This second class of time measure-

ments represents the actual time that passes between calls inside the framework (e.g.,

one iteration of the physics engine using our implementation) including all overhead

such as CUDA API calls and other blocking calls and represents the real practical

performance of the physics engine or of our implementation as it is integrated in the

framework. These measurements give insight in the amount of (CPU) overhead, as

measured on the CPU or host, that is used in the framework and outside the GPU

kernel.

With regard to the model, we have chosen not to implement the force threshold op-

timization described in Section 4.8, in order to allow for full consistent testing where

no mass is assumed to have negligible movement; thus, all possible computations

within the model are implicitly performed. Furthermore, we found that the proposed

two workarounds presented in Section 4.2 reduced the spring inversion problem to

such an extent, that it was no longer a significant issue in our tests when performing

typical surgery model interaction.

6.2. Performance Characteristics

Table 1 shows the total performance rate of the implementations for both single- and

multi-device configurations and single and double buffering strategies, where the total

framework performance consists of GPU kernel performance, as measured on the

GPU device, and any CPU overhead, as measured on the CPU or host. The rates from

this table are also visualized in Figure 9.

The most important variable to consider when looking at the performance is the

total number of springs, as it dictates the amount of spring computations and is there-

fore closely related to the overall performance of the CUDA kernel, while the total

number of masses provides better insight on the parallel scalability as will be ex-

plained in Section 6.4.
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springs masses frequency; single device (Hz) frequency; multi-device (Hz)

single buffer double buffer single buffer double buffer

3614788 146476 53 183 901 902

2336252 95487 72 271 1246 1246

1638652 67477 96 362 1564 1564

1004416 41851 128 492 2137 2138

499364 21276 162 694 3102 3103

395772 17000 175 771 3167 3167

349844 15096 184 805 3205 3205

268944 11726 192 943 3840 3838

251700 11000 195 1012 4057 4057

233660 10248 196 1025 4064 4063

202068 8876 211 1043 4089 4090

146588 6569 220 1151 4584 4584

102660 4688 222 1164 4574 4574

54282 2575 223 1272 4584 4585

24024 1210 227 1348 4853 4853

5142 307 235 1382 5000 5000

Table 1. Total framework performance rate for implementations with single and multi device

configurations and single and double buffering, tested on models with increasing resolution

in terms of springs and masses.

It is evident that the multi-device configuration provides the fastest available im-

plementation. Allowing the CUDA physics kernel to run on its own dedicated GPU

device, where it is unhampered by any other GPU activity, significantly increases the

overall practical performance. This can be seen in Figure 9, where the multi-device

implementation performs four to eight times faster than the fastest single-device im-

plementation.

Differences between single and double buffering on the multi-device configura-

tion are virtually non-existent, due to the fact that peer-to-peer copies are currently not

supported by CUDA. This makes it impossible to implement a proper single-buffer

implementation with locking, as a second CPU host buffer is always present to act

as a bridge between the two GPU devices and effectively cancels out any effects of

single buffering. Both cases for multi-device are therefore combined into a single set

of measurements.

The advantage of double buffering (over single buffering) on a single device is

immediately clear when looking at the figures. The significantly lower performance

of single buffering is found to be caused by internal command queues and resulting

“greedy” locking in DirectX. In this case, performance is hampered by execution

stalls triggered by the CUDA interoperability API waiting for the release of buffer
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Figure 9. Framework frequency for all tested implementations.

locks by DirectX. In other words, DirectX keeps a lock on any buffer used in the

graphics pipeline until all render commands involving that buffer (which have been

internally queued up) have been processed. As a result, it is very difficult to control the

locking, and locks will be held far longer than necessary, typically until a command

buffer flush or back-buffer swap occurs. Double buffering proves to be an effective

solution to this issue.

6.3. GPU Overhead

Table 2 and Figure 10 show the detailed performance results of the multi-device con-

figuration with double buffering, currently the fastest implementation of our algo-

rithm. The total framework time, or practical performance of our implementation in-

side the software, is the sum of the GPU kernel time and any time caused by overhead

on the CPU. This overhead primarily consists of delays induced by other operations

that are executed in between subsequent launches of the CUDA kernel. This includes

unavoidable operations such as CUDA kernel argument setup, thread synchroniza-

tion, device management, and implementation-specific memory copies of collision

and vertex data and provides only little room for further optimization.

The CPU overhead is very visible in Figure 10 as a variable that is mostly constant

regardless of the total number of springs (or model resolution). This implies that as

the GPU kernel time is increased, e.g., when the model resolution is increased, the

effect of the overhead becomes less and less apparent. Note that the CPU overhead

may also vary for different GPU architectures.
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springs masses time (ms) time/spring (ns)

GPU CPU-Ov Total GPU Total

3614788 146476 0.886 0.224 1.110 0.245 0.307

2336252 95487 0.589 0.214 0.803 0.252 0.344

1638652 67477 0.433 0.206 0.639 0.264 0.390

1004416 41851 0.281 0.187 0.468 0.280 0.466

499364 21276 0.148 0.174 0.322 0.296 0.646

395772 17000 0.142 0.174 0.316 0.359 0.798

349844 15096 0.137 0.174 0.312 0.392 0.892

268944 11726 0.0888 0.172 0.260 0.330 0.968

251700 11000 0.0766 0.170 0.246 0.302 0.979

233660 10248 0.0755 0.171 0.246 0.321 1.05

202068 8876 0.0732 0.172 0.245 0.361 1.21

146588 6569 0.0553 0.163 0.218 0.375 1.49

102660 4688 0.0543 0.164 0.219 0.529 2.13

54282 2575 0.0551 0.163 0.218 1.01 4.02

24024 1210 0.0433 0.163 0.206 1.80 8.58

5142 307 0.0423 0.158 0.200 8.23 38.9

Table 2. Performance average of fastest implementation (multi-device with double buffering)

in terms of pure GPU kernel, CPU overhead (CPU-Ov), and total framework time.

Figure 10. Relevant times for our fastest (multi-device) implementation. Note the linearity

of the GPU time and total time, the constant CPU overhead (as the difference of the former

two), and the horizontally asymptotic GPU time per spring.
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Measurement unit or property Profiler output

Kernel block size 256

Kernel occupancy 50%

Shared memory usage 0 KB

Register count 39

Table 3. Analysis of our CUDA implementation as provided by the CUDA Visual profiler.

6.4. Parallelization and Scalability

Our performance results show that our algorithm and its implementations scale al-

most linearly with the total number of springs, which is an overall satisfactory result.

This, however, does not tell much about the algorithm’s parallel scalability: the ef-

ficiency of the algorithm when using increasing numbers of parallel processing ele-

ments (threads).

To quantify the parallel scalability, we first have to look at the CUDA kernel pro-

filing results in Table 3. Our particular Tesla C2050 GPU devices are capable of

running a maximum of 1536× 15 = 23040 parallel threads with all 15 SMs 100%

occupied. Our profile results show an occupancy of 50%, mainly due to the high reg-

ister usage of the kernel. The maximum amount of parallel threads at any time for our

CUDA kernel is thus 23040∗0.50 = 11520. Since our kernel requires a thread for ev-

ery mass, the relevant performance range to inspect is that between 0 and the parallel

maximum of 11520, after which the device is saturated, as visualized in Figure 11.

When looking at the typical model resolutions (e.g., 95487) in comparison to the par-

allel maximum of 11520 masses, one can observe that the device is quickly saturated,

emphasizing the relevance of the overall performance over parallel scalability.

An ideal parallel kernel will achieve linear scaling when performance stays con-

stant while the workload is increased in direct proportion to the number of threads.

Note that the kernel is not computation-bound, but memory-bound, due to its fre-

quent accesses in global GPU memory. This creates a memory access bottleneck that

causes a certain degree of serialization to occur during execution. Parallel scalability

can therefore not be ideally linear, and, thus, the performance pattern cannot be fully

constant.

Figure 11 shows a significant stepped pattern that alternates between near-constant

sustained performance and sudden decrease and confirms that the kernel is indeed

parallelized. The stepping can be explained by the internal mechanisms (e.g., warp

scheduling, memory access handling) of the GPU device that are involved with schedul-

ing the kernel’s threads on the available SMs and may continue in a similar pattern

beyond the point of device saturation. As this typically varies with different GPU ar-

chitectures, it provides an opportunity for improvement by taking advantage of more

recent, more efficient CUDA hardware. Together with the suboptimal distribution of
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Figure 11. GPU kernel time of our fastest (multi-device) implementation for threads up to

(and exceeding) the CUDA parallel maximum of 11520.

our CUDA kernel on the SMs, this leaves enough room for future kernel optimization

in terms of parallel scalability.

7. Future Work

In future work, we would like to further investigate the scalability of our parallel

algorithm and perform in-depth optimization of our CUDA implementation. If we

consider future GPU architectures with improved resources in computational power

and increased memory bandwidth, we would like to achieve better parallel scalability.

Additionally, we would like to find out if other platforms such as OpenCL, provide

any benefits in terms of practical use and performance. The algorithm may also be

suitable for distributed setups with multiple GPUs or clusters, but this would require

a new level of synchronization and smart resource management.

In this paper, we chose to fully focus on the performance analysis of our algorithm

and its implementations. A detailed haptic response analysis, in which the haptic

correctness (e.g., no oscillation, stable output) can be quantified, requires a larger

scale assessment and is therefore considered as future work.

It is nevertheless important for us to focus on the addition of new features to our

existing algorithm in the context of virtual surgery. Virtual tools such as scalpels,

tweezers, and staplers would allow an even higher level of model interaction and

more extensive scenarios. We believe that such tools could easily be added to

our current algorithm by extending the existing properties and force
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calculations.

We would also like to investigate the application of our algorithm in other fields

that utilize soft-body dynamics, such as computer games. Without haptic feedback,

we can afford to run the algorithm at far lower rates, opening up opportunities for

even more complex data sets.
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