
Journal of Computer Graphics Techniques Vol. 3, No. 2, 2014 http://jcgt.org

Survey of Texture Mapping Techniques for
Representing and Rendering Volumetric

Mesostructure

Charalampos Koniaris
University of Bath

Darren Cosker
University of Bath

Xiaosong Yang
University of Bournemouth

Kenny Mitchell
Disney Research

Figure 1. Volumetric texture mapping can be used to represent complex surface detail on
parameterised surfaces. Figures from [Policarpo and Oliveira 2006], [Brodersen et al. 2007],
[Decaudin and Neyret 2009] and [Peng et al. 2004].

Abstract

Representation and rendering of volumetric mesostructure using texture mapping can poten-
tially allow the display of highly detailed, animated surfaces at a low performance cost. Given
the need for consistently more detailed and dynamic worlds rendered in real-time, volumetric
texture mapping now becomes an area of great importance.

In this survey, we review the developments of algorithms and techniques for representing
volumetric mesostructure as texture-mapped detail. Our goal is to provide researchers with an
overview of novel contributions to volumetric texture mapping as a starting point for further
research and developers with a comparative review of techniques, giving insight into which
methods would be fitting for particular tasks.

We start by defining the scope of our domain and provide background information re-
garding mesostructure and volumetric texture mapping. Existing techniques are assessed in
terms of content representation and storage as well as quality and performance of parameter-
ization and rendering. Finally, we provide insights to the field and opportunities for research
directions in terms of real-time volumetric texture-mapped surfaces under deformation.

18 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

(a) Sponge (b) Cloth (c) Tree (d) Bread

Figure 2. Examples of volumetric mesostructures that are difficult to represent accurately
with current interactive rendering techniques.

1. Introduction

Rich visual detail in computer-generated imagery has always been a great challenge
in computer graphics. Texture mapping, pioneered by [Catmull 1974], has been one
of the most successful such techniques with a vast number of applications, one of the
most common being mapping mesostructure (fine scale detail) on surfaces using 2D
parameterization.

1.1. Problem Domain and Applications

Volumetric (3D) mesostructure is a class of mesostructure that allows detail of ar-
bitrary complexity on a surface (Figure 1) at the expense of rendering performance,
storage costs, and ease of authoring compared to 2D mesostructure. Examples of vol-
umetric mesostructure include holes (Figures 2(a), 2(d)), cloth (Figure 2(b)) or tree
bark (Figure 2(c)). While alternative representations (voxels, point clouds) can cap-
ture such complexity by treating surface detail as part of the surface, animating or
deforming such representations becomes very difficult, such as tree bark bending in
the wind or a deforming realistic cloth. Even if performance and storage costs are not
a concern, animating models with complex volumetric detail using alternative repre-
sentations is a very difficult and time-consuming task. Volumetric texture mapping
provides abstraction of detail from the animating surface, allowing the use of effi-
cient animation methods for the underlying surface without inducing any extra costs
due to animation in terms of authoring effort or storage. Additionally, volumetric
representation of texture detail allows pre-filtering of the represented shape in mul-
tiple resolutions (e.g., [Crassin et al. 2009]), therefore solving problems of explicit
geometric representations such as level-of-detail and aliasing.

Additional applications which can leverage the advantages of volumetric texture
mapping include volumetric virtual makeup on characters and translucent surface de-
tail on deformable models. (Figure 3).

1.2. Scope

In this survey, we review techniques that contribute to volumetric texture mapping.
Contrary to other surveys in well-established and specialized areas of research in

19

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Figure 3. Fantasy character with volumetric surface detail, courtesy of deviantART artist
Pablo Andreetta.

mesostructure rendering (e.g., GPU displacement mapping [Szirmay-Kalos and Umen-
hoffer 2008], bidirectional texture functions (BTFs) [Filip and Haindl 2009], procedu-
ral noise functions [Lagae et al. 2010]), we set our scope to encompass techniques that
share the goal of representing and rendering volumetric detail using texture mapping.

The gap in the current literature and the reasons for the defined scope become ap-
parent if we look into the intersection of real-time rendering, volumetric mesostruc-
ture and deformable surfaces. Real-time animation of 3D models is typically done
using skeletal animation on polygonal or subdivision surfaces. Such surfaces are
relatively sparse and use texture and displacement mapping for increased visual com-
plexity. Texture detail is typically mapped from a 2D texture to a surface. Similarly,
volumetric detail is mapped from a 3D texture to a volume. As this extension is non-
trivial within the context of real-time performance and the given scope, we split it
into subprocesses and identify in which process each belongs in a volumetric textur-
ing pipeline:

• Detail representation. (Content representation/storage)

• Definition of the volume as a function of the surface (Surface parameterization)

• Mapping of 3D texture detail to the volume (Mapping)

• Rendering of detail in the volume (Rendering)

We structure this survey by reviewing techniques that contribute to content repre-
sentation and storage, mapping, and rendering in the context of volumetric mesostruc-
ture. As animation performance is a major reason for using volumetric texture map-

20

http://jcgt.org
http://andretapol.deviantart.com/


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Technique
3. Storage

4. Mapping
5. Rendering

Procedural
Texture

Raycasting Lookups Slice-
basedDense Compressed

[Wang et al. 2003] (VuDm) X X

[Wang et al. 2004] (GnDm) X X

[Peng et al. 2004] (AvDf) X X

[Hirche et al. 2004] X

[Wang et al. 2005] (MsDf) X X

[Donnelly 2005] (DfDm) X

[Porumbescu et al. 2005] (Sm) X X

[Dufort et al. 2005] (STSm) X X

[Policarpo and Oliveira 2006] (MLRm) X X

[Zhou et al. 2006] (StreMe) X

[Ritsche 2006] (RTSS) X

[Jeschke et al. 2007] (SSm/CSm) X X

[Brodersen et al. 2007] (LaTraP) X

[Decaudin and Neyret 2009] (VolB) X X

[Gilet and Dischler 2009] X

Table 1. Overview of novel contributions of reviewed techniques to a volumetric texture
rendering pipeline. The abbreviations are used in the rest of the paper, mainly Section 6.

ping, techniques are discussed in terms of their characteristics and potential for real-
time rendering and application to deformable surfaces (Table 1).

While many of the techniques support advanced lighting and shading effects in
varying degrees, we choose to only focus on mesostructure geometry rather than ap-
pearance. So, this excludes discussion of effects such as shadows, reflections, global
illumination, and sub-surface scattering, although transparency is included as it has
an effect on the perceived shape. Additionally, this survey is not about general ren-
dering or sampling of volume data, as we choose to focus on contributions specific to
volume data rendering using texture mapping.

1.3. Comparison Measures

Our evaluation of the reviewed techniques is based on implementations (ours or ac-
quired), as well as the original papers. Our implementations were developed for visual
comparison purposes, and, as such, they may not contain all optimizations mentioned
in the papers. We developed the “building blocks" of several techniques, such as shell
rendering using the triangulated shell silhouette (GnDm, SSm, CSm), shell rendering
using tetrahedra (Sm, STSm, RTSS), view-space slice-based rendering (VolB), ray-
casting curved ray paths in texture space (Sm, SSm, CSm), raycasting acceleration
using distance fields (DfDm, RTSS, SSm, CSm) and used an existing implementa-
tion for MLRm. Table 1 lists all the methods we compare in our survey, along with
associated acronyms for readability purposes.

21

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Comparisons of storage requirements do not require actual implementations, while
coarse performance measurements can be derived by the complexity of techniques.
For example, extruding a point towards a normal is a single shader operation and thus
takes microseconds when applied on all points of an average model, while solving
non-linear optimization problems on these points is typically an offline operation. As
such, our unimplemented subjective evaluations are restricted to coarse comparisons
only, to avoid misguiding the reader.

1.4. Overview

We first present essential background information that introduces the problem (Sec-
tion 2). Techniques are then reviewed in terms of their contributions to:

• Content representation and storage (Section 3);

• Mapping of 3D mesostructure space on surfaces (Section 4);

• Rendering of volumetric data (Section 5).

We then discuss and compare rendering techniques in terms of rendering artifacts
and limitations (Section 6). We finally summarize and provide concluding remarks
(Section 7).

2. Background

In this section, we introduce essential concepts regarding volumetric mesostructure
and its mapping on surfaces. Mesostructure is defined first as a range in terms of
geometric scale, followed by a brief introduction to the coordinate spaces used for
mapping the detail on surfaces. We then list common representations of mesostruc-
ture detail, based on the complexity of detail they represent. Finally, base surface
representations that are typically used in texture mapping are briefly introduced.

2.1. Geometric Scale

Geometric detail can be split into three main categories in terms of scale: macro,
meso and micro [Westin et al. 1992; Koenderink and van Doorn 1996]. Macroscopic
geometry (or macrostructure) is considered geometry of large structures and is usu-
ally represented with standard geometric primitives, such as polygons or parametric
patches. Mesoscopic detail (or mesostructure), is high-frequency detail on object sur-
faces, distinguishable from a close distance. Such detail is usually stored separately
in texture space and is mapped on macroscopic surfaces. Microscopic detail (or mi-
crostructure) is invisible to the human eye, so instead of being explicitly represented,
its light scattering properties are typically modeled using bi-directional reflectance
distribution functions (BRDFs) [Glassner 1994].

22

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

2.2. Texture, Tangent, and Shell Space

Let us first define texture space as the coordinate system in which texture data are
expressed. Coordinates usually span the range [0,1], and are typically 1D, 2D, or 3D.
We denote these coordinates by (u,v,w). Let ~S(u,v) be a 2D-parameterised surface,
S : R2 → R3. The tangent space on the surface is defined by the tangent, bitangent,
and normal vectors:

~T (u,v) =
∂S
∂u

~B(u,v) =
∂S
∂v

N̂(u,v) =
~T (u,v)×~B(u,v)∥∥∥~T (u,v)×~B(u,v)

∥∥∥
If we normalize ~T (u,v) and ~B(u,v), we can obtain a matrix that converts points from
texture space to object space:

TBN(u,v) =

~T (u,v)~B(u,v)
~N(u,v)


More information about tangent space can be found in [Szirmay-Kalos and Umenhof-
fer 2008].

Shell space can be defined as a variably thick layer over the base surface:

~G(u,v,w) =~S(u,v)+wH(u,v)d̂(u,v)

where H(u,v) is defined as the shell scalar thickness per surface point and d̂(u,v) is a
point on the unit sphere, typically the surface normal N̂(u,v). In practice, the function
H(u,v) is either per-vertex interpolated or reduced to a single constant value H to
yield simpler computations. Shell space and mapping can be seen in Figure 4.

2.3. Mesostructure Complexity

In terms of appearance, surface mesostructure can be either opaque or translucent.
Opaque detail is more efficient to store and render, but can only represent a subset of
representable materials. In terms of shape and structure, surface mesostructure can be
broken down into three categories, in ascending order of representable complexity:
height fields, vector fields, and density fields.

• Height fields represent shape by “pushing” each point on a base surface towards
the surface normal. Given a height field h(u,v), we can compute the mesostruc-

23

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Figure 4. With shell mapping, 3D texture detail is mapped inside a thick layer over the surface
of a model. Figures from [Porumbescu et al. 2005].

ture point in object space as

~p(u,v) =~S(u,v)+h(u,v)N̂(u,v)

• Vector fields represent shape by “pushing” each point on a base surface towards
an arbitrary direction. Shape and structure representations using height fields
are a subset of the possible representations using vector fields. Given ~d(u,v),
d : R2→R3 as the mesostructure vector displacements in texture space, we can
compute the mesostructure point in object space as

~p(u,v) =~S(u,v)+TBN(u,v)~d(u,v)

Here, the TBN matrix is used to transform the vector displacements from tex-
ture space to object space.

• Density fields represent shape by explicitly assigning densities on points in a
volume around a base surface. Shape and structure representations using vector
fields are a subset of the possible representations using density fields. We can
sample the density of any point on or above the macrostructure surface directly
from a given density field D(u,v,w) mapped on the surface.

24

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

(a) Height field (b) Vector field (c) Density field

Figure 5. Mesostructure representation complexity.

Figure 5 shows examples of these categories.

2.4. Surface Representations for Texture Mapping

Texture mapping is a common application of mesh parameterization algorithms [Hor-
mann et al. 2007]. Commonly used surface representations for such parameterizations
are polygonal meshes, NURBS, and subdivision surfaces. While polygonal meshes
are currently the most widely used format for real-time rendering, subdivision sur-
faces have been a common modelling primitive used by artists, especially for ani-
mation and offline rendering [DeRose et al. 1998]. Support for fine detail on such
primitives allows easily animated complex surfaces [Lee et al. 2000; Nießner and
Loop 2013]. Recent graphics hardware and APIs have added support for dynamic
tessellation among other features and have enabled rendering of subdivision surfaces
in real-time [Loop et al. 2009; Kovacs et al. 2009; Nießner et al. 2012].

Ptex, introduced by [Burley and Lacewell 2008] is a texture-mapping method
for quad-based subdivision surfaces that does not require explicit parameterization.
While it was originally used for production rendering, McDonald and Burley recently
improved its performance to real-time using commodity Direct3D 11 hardware [Mc-
Donald and Burley 2011].

25

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Representation Storage cost Evaluation complexity Sampling cost
Procedural 3.1 FFFF FFF FFF

Textures
Dense 3.2.1 FFFF FFF FFF

Hierarchical 3.2.2 FFFF FFF FFF
Compressed 3.2.3 FFFF FFF FFF

Geometry 3.3 FFFF FFF FFF

Table 2. Relative comparison of representations for storing mesostructure data in terms of
storage, evaluation, and filtering costs. For more details about the categories and the ratings,
refer to Section 3.4

3. Content and Storage

Surface detail can be stored in three forms: as procedural definitions, as texture maps,
or as actual geometry. Each representation has to balance storage, evaluation, and
sampling costs (Table 2). The importance of each of these characteristics for real-
time rendering varies depending on the application, e.g., high storage cost can create
bottlenecks in hardware where video memory bandwidth is limited.

Below, we discuss representations based on the above categorization: procedural,
textures, and geometry, and note their support for level-of-detail (LOD) and filtering.
We summarize the section by providing a relative comparison of techniques.

3.1. Procedural Content

After the introduction of texture mapping and volumetric textures, it became clear that
authoring of complex and highly detailed volumetric mesostructure is tedious to do
manually and is very costly in terms of storage. Procedural techniques can be used for
representing both macrostructure and mesostructure detail, and they have traditionally
been used for both.

Procedural noise functions were originally introduced by [Perlin 1985] as a means
to create controlled stochastic effects. [Ebert et al. 2002] expanded procedural func-
tions to model more natural phenomena and structures. These functions became a
very popular method of generating complex mesostructure detail because of their ef-
ficiency and negligible storage costs.

[Perlin and Hoffert 1989] used such functions in order to generate and display
volumetric mesostructure (hypertexture). Hypertexture rendering requires a volumet-
ric density-based representation of the entire object, and it works by distorting the 3D
space of the object using one or multiple density modulation functions (DMFs), which
are functions that modulate the density of a given point in R3. An object density func-
tion (ODF) is a function that describes the density d of a 3D shape in R3, d ∈ [0,1].
Hypertexture is created by successive application of DMFs to an object’s ODF, using
function primitives such as gain, bias, noise, and turbulence, as well as arithmetic
functions. These primitives are combined using arithmetic expressions, and the re-

26

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

sulting DMFs can be also combined with Boolean set operators. Surface colors are
computed in the end, after the shape and densities have been modeled, using various
techniques such as procedural texturing. Hypertexture was originally developed as an
offline technique, but it has been implemented in GPUs in order to achieve real-time
performance [Miller and Jones 2005].

A recent approach by [Gilet and Dischler 2009] revisits hypertexture modeling
and attempts to improve usability at the cost of generality. Instead of using just a
density function, an additional set of three transfer functions are introduced: shape,
color, and transparency. The density function adjusts points based on a scaled 3D
vector field. The scaling factor is a formula that is based on the shape function indexed
by noise. The vector field and model parameters are used to make the model more
intuitive to users, as fully procedural approaches are always more difficult to use in
order to generate desired results. The technique’s implementation is GPU-compatible
by storing the vector field, as well as density and transfer functions in textures which
are accessed when rendering with shaders.

Procedural functions have also been used to augment low-resolution detail.
[Satherley and Jones 2002] use distance fields to apply hypertexture to complex vol-
umetric data. [Kniss et al. 2002] use procedural functions to perturb existing low
resolution volume data in order to model more interesting high-frequency detail.

Volumetric mesostructure detail can also be generated semi-procedurally using
texture synthesis, which is the process of generating large textures similar to given
(smaller) exemplar textures. Regarding volumetric mesostructure, synthesis algo-
rithms have been developed for solid textures [Pietroni et al. 2010], for geometry
[Bhat et al. 2004; Lai et al. 2005; Zhou et al. 2006], as well as for BTFs [Filip and
Haindl 2009].

In the case of deforming models, standard hypertexture-based noise results in the
undesirable effect of points on the surface corresponding to different noise values at
different frames. To avoid this problem, surface noise can be used instead [Lagae
et al. 2010].

Procedural descriptions of volumetric mesostructure have the benefit of low stor-
age requirements, but they are difficult to control in order to generate specific results.
Evaluation of such procedural definitions can be performance-intensive and is gov-
erned by the evaluation of noise functions, although the latter can be approximated
with precalculated textures for improved performance. As such, they are preferred
in hardware where video-memory bandwidth is low relative to GPU computational
power. Procedural descriptions are better suited for stochastic mesostructure rep-
resentation, or augmenting existing mesostructure with stochastic detail. Also, fil-
tering is difficult for procedurally generated content, and methods need to balance
accuracy (analytic integration of noise function) against performance (global fad-
ing and noise frequency clamping) [Lagae et al. 2010; Bruneton and Neyret 2012].

27

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

[Heitz et al. 2013] present an efficient filtering scheme for the special case of color
mapping noise functions by computing and sampling on-the-fly specialized filtering
distributions.

3.2. Texture Maps

Texture maps are the most common form of mesostructure representation. We can
describe such maps in a generalized sense as discrete scalar or vector-valued functions
in Rn space and categorize them as dense, hierarchical, and compressed, depending
on the sparsity and organization of data.

3.2.1. Dense textures

Volume textures are a direct extension of 2D texture maps; they store values for all
voxels in a uniform 3D grid. While this form is simple, straighforward, and very
efficient to evaluate, it is also very costly in terms of storage. Such textures have
been used in a variety of techniques to render volumetric mesostructure in real-time
[Peng et al. 2004; Donnelly 2005; Dufort et al. 2005; Ritsche 2006; Jeschke et al.
2007; Decaudin and Neyret 2009], but the storage cost restricts mesostructure to re-
peating patterns of small volume textures over the macrostructure surface. The type
of data in such maps can vary, from colors to surface normals, density or distance
fields, etc.

[Wang et al. 2005] introduce the mesostructure distance function (MsDf), a 4D
function that represents the mesostructure distance from the reference plane given a
2D position on the plane and a viewing direction. MsDf data are quantized to 8 bits
per pixel, so they become small enough to store uncompressed in a 3D texture, pack-
ing lighting direction in the third dimension. Their high-dimensional nature makes
higher resolution data prohibitive in terms of storage cost, unless compressed. As
the function is not smooth, it is difficult to employ standard high-dimensional data
reduction techniques such as SVD.

[Policarpo and Oliveira 2006] propose an extension of 2D relief textures [Oliveira
et al. 2000] that can capture non-heightfield details with significantly reduced storage
requirements. Their technique is a generalization of relief mapping that supports
multiple layers (MLRm). As in relief maps, the required data are normal maps and
depth maps, indexable by texture coordinates. The extension requires these maps
for multiple depth layers. For example, for a four-layer relief map, they need three
textures: an RGBA texture storing a depth layer per channel, and two RGBA textures
for the surface normals. Each of the latter two textures stores, for each layer, one of
the x- and y-components of unit-length normal; unit-length normals z-component can
be retrieved by z =

√
1− x2− y2.

The technique relies on surfaces that can be represented with a small number of
layers and performs well under that assumption, as the memory consumption and

28

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

computational costs are not significantly higher than normal relief mapping. The
layer-number restriction makes generalization difficult and increases the cost for com-
plex surfaces that require a large number of layers. Translucent mesostructure is not
supported. Finally, the technique is described in this paper using a single color map,
resulting in all depth layers sharing the same color. In order to avoid this restriction,
additional color maps should be introduced, and the algorithm should be changed so
that it samples the appropriate color map depending on the depth layer that is used.
By taking this into account, for each of the four layers, seven textures are needed: a
depth map, two normal maps, and four color maps.

Filtering for textures depends on the nature of the texture data. The most im-
portant development for both LOD and filtering was the invention of mipmapping by
[Williams 1983], in which a texture is stored in a pyramid along with a number of pre-
filtered versions of it (downscaled by a factor of two at each level), while at runtime
the rendering algorithm switches between mip-levels or applies trilinear/quadrilin-
ear (2D/3D textures) interpolation based on the distance of the viewer to the texture.
Mipmapping works as a very fast sampling method for texture data, and it is also
efficient in the use of texture-cache hardware.

While for linear data (e.g., color, heightfield, and density) averaging (for con-
struction) and bilinear/trilinear filtering (for sampling) are usually good enough; other
types of data cannot use such linear filtering methods. Surface normal maps can-
not be averaged, since averaging of normal vectors changes the apparent roughness
of the surface. A major group of methods that have been developed to overcome
this issue are approximations of the normal distribution function (NDF) [Fournier
1992; Schilling 1997; Olano and North 1997; Tan et al. 2005; Toksvig 2005; Han
et al. 2007; Olano and Baker 2010]. Yet a different method is to switch between
algorithms depending on the required level of detail [Kajiya 1985; Becker and Max
1993]. [Bruneton and Neyret 2012] have recently surveyed pre-filtering methods for
more non-linear data such as normal, horizon, shadow, and procedural maps.

3.2.2. Hierarchical textures

Volumetric texture data often contain a significant amount of uniform space (with
empty or constant material properties). To avoid this redundant storage, hierarchical
data structures such as octrees were employed in order to store detail only where
needed, effectively exploiting them as a form of compression [Neyret 1998].

The concept was later expanded to 3D textured models and was used for 2D tex-
turing of unparameterised 3D models [Benson and Davis 2002; DeBry et al. 2002].
These techniques use the object space position (rest pose for animated models)
to sample from the octree texture. To avoid incorrect averaging of texture color
from opposite-facing points at thin features, normal information is used for
sampling.

29

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Octrees remained a widely-used data structure with the advent of GPU program-
ming, as they can be efficiently implemented on GPUs for 3D data storage and access
[Lefebvre et al. 2005; Lefohn et al. 2006] for use with real-time rendering. In recent
years, octrees have been used as a hierarchical representation of volumetric data for
out-of-core rendering [Gobbetti et al. 2008; Crassin et al. 2009; Iglesias Guitián et al.
2010; Laine and Karras 2010], although, in all such cases, no distinction is made
between macrostructure and mesostructure.

Octrees are natural candidates for a LOD/filtering scheme via their intermediate
nodes, which act as lower mipmap levels, so they share filtering schemes with dense
textures.

3.2.3. Compressed, high-dimensional textures

High-dimensional textures can represent volumetric materials by evaluating appear-
ance or structure as a function of many variables, such as texture coordinates and
view direction. The first such form, bidirectional texture functions (BTF), was intro-
duced by [Dana et al. 1999] to accurately represent real-world surfaces. BTFs are 7D
functions that model material appearance based on a 2D position on a plane (u,v),
illumination (θi, φi) and viewing angles (θv, φv), and spectral index (r):

BTF(u,v,r,θi,φi,θv,φv)

Samples of this function are initially acquired as 2D texture maps from real ma-
terials using specialized hardware. As the volume of data can be overwhelming, they
are typically compressed either by calculating analytical BRDFs per-texel, or by re-
ducing the dimensionality using linear factorization [Filip and Haindl 2009]. During
rendering, at each point on the object’s surface, the viewing and lighting directions
are transformed to tangent space and used for sampling the function.

BTFs can capture volumetric mesostructure with a wide variety of complex light-
ing and shading effects, such as mesostructure interreflections, shadows, translucency,
and subsurface scattering, but they are not suited for texturing animated models in
real-time, because of their acquisition difficulty, storage cost, deformation artifacts,
and lack of silhouettes and depth information.

As the goal of BTFs is to model material appearance, they are optimized for small
patches of stochastic or periodic content that can be efficiently mapped on a bigger
surface by seamless mapping or texture synthesis. This is different than the more gen-
eral case of surface mesostructure that is non-homogeneous on a larger scale; besides
the acquisition difficulty in the case of real-world materials, larger patches result in
slower compression times, bigger storage requirements, and slower evaluation time.

Deformation can modify the local curvature or scale of the surface. Both of these
changes lead to artifacts when sampling BTFs, as the spatial relationship of the vol-
umetric mesostructure elements changes in object space, thus invalidating precalcu-

30

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

lated lighting/shading effects.
So, while BTFs in their original form are inadequate for more general volumetric

mesostructure rendering, other techniques were developed that used the concept of
high-dimensional texture functions to achieve real-time rendering of complex surface
detail.

[Wang et al. 2003] use view-dependent displacement mapping (VuDm) to effi-
ciently render surface mesostructure with silhouettes, using concepts from BTFs.
VuDm stores displacements along the viewing direction using a 5D function. The
function is parameterised on 2D texture coordinates on the reference plane, view di-
rection as polar angles, and local curvature of the base surface. They also use a 4D
maximal view polar angle map (MVM) which is parameterised in terms of the tex-
ture coordinates on the reference plane, the local curvature, and the azimuth angle
of the view direction, and store the maximum polar angle for the given parameters.
For compression, VuDm and MVM are packed into a 2D matrix on which they ap-
ply SVD, resulting in a set of 2D weight maps, a set of 2D eigen maps for VuDm,
and a set of 2D eigen maps for MVM. The MVM is used to improve the SVD-based
compression, as the mesostructure distances display high frequency near silhouettes,
resulting in the need for more eigen maps for a good reconstruction. While, in theory,
this technique can represent non-heightfield surfaces, the authors use it to represent
heightmaps, as it results in calculating the actual 2D texture coordinates, which can
be used to sample any other textures.

[Wang et al. 2004] suggest generalized displacement maps (GnDm) to improve
on two important drawbacks of VuDm: surface curvature coupling to mesostructure
and restriction to heightmap representation. A GnDm is a 5D function that represents
the distance to solid mesostructure from any point within a volumetric texture and is
parameterised on 3D shell texture coordinates and view direction. For compression,
they use SVD to decompose into 2D eigen maps and 3D weight maps.

All the techniques described reduce the storage requirements posed by the orig-
inal BTF formulation by sacrificing lighting and shading precomputations. In terms
of storage, they still rely on mesostructure data that can be easily compressed using
SVD-based methods. This lack of generality in terms of compression, along with the
other drawbacks intrinsic to high-dimensional texture functions, makes these tech-
niques impractical for use in texturing of animated models with complex and varied
mesostructure.

LOD and filtering are more involved in BTF-based techniques, as not all param-
eters can be interpolated in the same way (e.g., linearly). In VuDm and GnDm, the
authors suggest mipmapping the whole function for easy antialiasing, although that
increases the storage cost even more. In MsDf, the 4D data are packed in a volume
texture by flattening the view directions, so filtering is performed using trilinear inter-
polation.

31

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

3.3. Geometry

An alternative volumetric mesostructure representation (to textures and procedural
definitions) is geometric textures, geometric primitives stored as an actual mesh in
texture space and then mapped on the macrostructure surface [Elber 2005]. Similar to
dense textures, such approaches suffer from poor scalability in terms of storage: for
high-complexity mesostructure over a surface, the number of primitives can quickly
become prohibitive for storage and real-time rendering, especially if LOD-ready rep-
resentations are used, such as multi-resolution meshes [Eck et al. 1995].

While straightforward to render, geometric textures inherit the drawbacks of highly-
detailed geometry: difficulty of generating LODs [Hu et al. 2010], inability to repre-
sent fully volumetric data, and inefficient rasterization of micro-geometry in modern
GPU rasterization pipelines [Fatahalian et al. 2009; Fatahalian et al. 2010]. As such,
these approaches are not generally used for real-time rendering.

3.4. Summary

Table 2 summarizes our observations from the reviewed volumetric texture represen-
tations. “Geometry” refers to regular meshes, since multi-resolution meshes have
not been used for geometric texture detail and, as such, a comparison with other
techniques would be hypothetical. The ratings are based on a consensus among the
authors, and while they do not reflect implementation results, they serve as useful,
high-level comparison measures.

Storage. We determine storage cost in terms of the storage required in GPU memory
for visible data. Procedural functions offer the best compression, as they only store
function parameters. Dense textures are the most wasteful in terms of storage, as they
do not use any form of compression and store both useful and non-useful data (e.g.,
fully transparent). Hierarchical textures store only useful data and can be efficiently
used with streaming, in to order to keep in GPU memory, only visible data at the
required LOD. Compressed high-dimensional textures use significantly less memory
compared to their equivalent dense variant, but the compression effectiveness depends
on the complexity and smoothness of data. Geometric representations only store use-
ful data, but have no efficient LOD schemes, so all data need to be in memory.

Evaluation. Evaluation complexity is defined as the computational cost to access,
decompress. or evaluate the mesostructure data depending on their storage format.
Dense textures and geometry are the simplest to evaluate. Hierarchical texture traver-
sal is a quite efficient form of evaluation, while evaluation of SVD-compressed tex-
tures requires large multiplications and evaluation of procedural functions can involve
complex calculations.

32

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Sampling. Sampling cost is defined as the cost (or difficulty) to filter and sample
the evaluated mesostructure data. Dense and hierarchical textures are very efficient in
terms of filtering, using mipmaps and inner nodes, respectively. Compressed textures
can use linear interpolation, but the non-linear nature of some of the parameters can
result in artifacts. Filtering geometry and procedural functions for general cases are
difficult and open problems.

4. Mapping

Volumetric detail defined in texture space can be either mapped on the volume de-
fined by a thick shell over the base surface, or represented by mapping the “ceiling”
of the volumetric detail space on the base surface, with the mesostructure variation
appearing over and under the surface, respectively.

In this section, we first give some definitions for shell space and describe tech-
niques that use thick shells and novel aspects of such mapping for volumetric detail,
since the “ceiling” case above is a 2D mapping that relies on rendering algorithms
to give the appearance of volumetric detail. At the end of the section, we provide a
relative comparison of techniques.

4.1. Mapping Volumetric Detail on Meshes

In traditional GPU-accelerated rasterization, 2D texture coordinates are linearly inter-
polated over triangle surfaces, and the mapping between texture and object spaces is
affine. When using quadrilaterals, patches, or quadrilateral-based subdivision sur-
faces as primitives, the mapping between the spaces needs to be more complex,
such as bilinear or projective, with the former being more natural for these spaces
(Figure 6). These mappings can be extended to 3D using the volume equivalent of
the surface primitives: quadrilaterals extruded to hexahedra and triangles extruded to
prisms. An excellent review for 2D mapping approaches is given by Heckbert [Heck-
bert 1989].

Figure 6. A textured quad rendered as two triangles (top left). Deforming two upper vertices:
while the shape is a quadrilateral, the separate triangles can clearly be seen as a result of the
affine texture mapping (bottom left). Bilinear mapping (top right) and projective mapping
(bottom right) do not exhibit this problem.

33

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

The surface S(u,v) is typically discretized to a triangle mesh. Let us then denote
as T123, a triangle specified at coordinates Ti = (ui,vi), i ∈ [1,3] and its barycentric
coordinates as~b = (s, t,q) where s+ t + q = 1. A discretized shell space, therefore,
replaces triangles with their corresponding prisms:

P(T123) =
∫ 1

w=0
G(T123,w)dw

Triangles become prisms with bilinear patches for fins, as the resulting quadrilat-
eral faces are generally not planar. A point ~q(~b,w) inside a prism can be obtained
as

~q(~b,w) =
3

∑
i=1

G(biTi,w). (1)

This is the equivalent of linearly interpolating by w the points evaluated at~b on
the bottom and top triangles of the prism.

Quadrilaterals and patches are similarly extended in 3D, and the mapping be-
comes trilinear. More details on the mappings can be found in Appendix C.

Most shell-based techniques represent these volumes explicitly using geometric
primitives. But since most real-time rasterizers use triangles as rendering primitives,
the prism/hexahedral fins need to be approximated with triangles (Figure 7). Depend-
ing on the diagonal used for triangulation of each fin, a bilinear patch might not neces-
sarily be fully contained inside the coarse triangular approximation (Figure 7(e)). For
a watertight shell mesh volume, the triangulations of fins shared by adjacent prisms
need to match, although, as seen in Section 4.2, that is not always necessary.

4.2. Shell mapping

[Kajiya and Kay 1989] first described volumetric textures for use with fur. They
mapped texels (3D volumes) on bilinear patches, and inside each texel they stored
densities and reflectance properties per-voxel. This representation was later extended
by [Neyret 1995] by using a multiscale representation for texel data and was later
improved by [Meyer and Neyret 1998] to run at interactive frame rates. A texel vol-
ume is mapped on the volume defined by the extrusion of a bilinear patch towards the
surface normals defined at the bilinear patch corners.

[Peng et al. 2004] improve on the parameterization of the shell space and avoid
self-intersections of the offset suface (AvDf). They use multiple layers with slabs,
and allow the shells to be interior, exterior, or enveloping (with layers over and below
the surface). Each slab is a prism whose vertices are extruded from the base surface
by a specified thickness h towards vectors called line directors. Directors are obtained
as the gradients of a modified distance function (Lp-averaged distance function) that
is continuous and has a gradient field with similar properties to the Euclidean distance

34

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

(a) Triangulation of fins (b) Tetrahedralization of
prism

(c) Surface-aligned
slices

(d) View-aligned slices

(e) Arbitrary fin triangulation (f) Convex fin triangulation (g) Prism tetrahedra

Figure 7. Shell geometry representations for rendering. Bottom parts of subfigures 7e and 7f
show the horizontal slice of the prism from a top view using green color for the original prism
volume silhouette and red for the fin approximation with triangles.

gradient field.
The extrusion amount towards the director lines, as well as the number of layers,

are stored per-vertex. While initially the parameterization is slow to calculate, it can
be updated efficiently for small deformations.

[Wang et al. 2004] use GnDm to apply volumetric detail on triangle meshes. They
map the (extruded to 3D) texture space of a triangle mesh to the corresponding shell
space, so uniform triangular prisms in texture space are mapped to shell-space trian-
gular prisms. The shell-space bilinear prism fins are approximated by two triangles
per fin (Figure 7(a)).

At the same time, [Hirche et al. 2004] use a similar approach for displacement
mapping. They assume a triangle mesh as the base surface and define the offset sur-

35

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

face as the mesh extruded towards the direction of the surface normals. Prisms are
further partitioned into tetrahedra (three tetrahedra per prism, Figures 7(b), 7(g)) to
accelerate rendering, and they use vertex-ordering information to construct tetrahe-
dra such that neighboring prisms match continuously without any T-junctions. The
mapping is a straightforward barycentric mapping between corresponding shell-space
and texture-space tetrahedra. The piecewise-linear nature of the mapping results in
C0 continuity between adjacent tetrahedra or prisms.

[Porumbescu et al. 2005] define shell maps (Sm) as bijective maps between tex-
ture space and shell space and use this concept to map volumetric detail. Similar
to [Hirche et al. 2004], they extrude a triangle mesh and map the resulting shell to
3D texture space and partition each prism to tetrahedra. They additionally avoid self-
intersections in the offset surface by reducing the extrusion distance of the intersecting
primitives. In order to avoid T-junctions from adjacent prism tetrahedra, they use a
floodfill-like algorithm. The mapping is used to apply volumetric mesostructure in
any form (procedural, texture, geometry) to surfaces.

A similar technique was concurrently developed by [Dufort et al. 2005] to render
semi-transparent volumetric detail at interactive frame rates (STSm). They use a tri-
angle mesh for the base surface and generate an offset surface by extruding the mesh
towards the direction of the normals by a fixed amount. The prism is split into three
tetrahedra, similar to [Hirche et al. 2004] and [Porumbescu et al. 2005].

[Jeschke et al. 2007] improve the smoothness of the shell mapping while main-
taining interactive frame rates (SSm). As tetrahedra-based approaches [Hirche et al.
2004; Porumbescu et al. 2005; Dufort et al. 2005; Ritsche 2006] result in artifacts in-
side a prism due to the piece-wise linear nature of the tetrahedral mapping, they avoid
such artifacts by triangulating the prisms so that the fins are convex (Figure 7(f)).
They also introduce a curved mapping (CSm) to improve smoothness across prisms
by maintaining tangent continuity at prism boundaries: For each w-coordinate of
(u,v,w) in a texture space prism, a Coons patch is defined for its corresponding world
space triangle G(T123,w). To avoid the patch protruding from the geometry, w is
compressed to a heuristic value of w′ = w

2 + 1
4 . Even though the distortion when

using the curved mapping is minimised and controllable, the technique adds a perfor-
mance overhead while the space warping alters the perceived macrostructure surface,
which is not desirable on model surfaces on which such mesostructure is partially
covering.

Other techniques that use the basic shell formulation (extrusion of triangular mesh
towards normals) to map volumetric mesostructure have been developed by [Ritsche
2006] and [Decaudin and Neyret 2009]. Shell construction methods are grouped in
Figure 8.

[Zhou et al. 2006] reduce distortions caused by naive parameterizations by min-
imizing a stretch metric (StreMe) on the shells’ tetrahedra, using the fact that the

36

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

OuterDshellDconstruction

ExtrudeDtowardsDnormals

AvoidDself-intersections

ExtrudeDtowardsDdirectorDlines

LagrangianDtrackerDparticles

[WangPetPal.P2004]
[DufortPetPal.P2005]

[JeschkePetPal.P2007]
[DecaudinPandPNeyretP2009]

[PorumbescuPetPal.P2005]
[RitscheP2006]

[PengPetPal.P2004]

[BrodersenPetPal.P2007]

ShellDparameterisation

ExtrudeDUVsDtoD3D

[WangPetPal.P2004]
[PengPetPal.P2004]
[DufortPetPal.P2005]

[PorumbescuPetPal.P2005]
[RitscheP2006]

[JeschkePetPal.P2007]
[DecaudinPandPNeyretP2009]

LagrangianDtrackerDparticleDdistributions

[BrodersenPetPal.P2007]

CurvedDmappingD
usingD

CoonsDpatches
[JeschkePetPal.P2007]

ModifyDoffsetD
surfaceDUVs

[ZhouPetPal.P2006]

Figure 8. Outer shell construction. Figures from [Porumbescu et al. 2005; Peng et al. 2004;
Brodersen et al. 2007]

Jacobian J of the object-space-to-texture-space shell mapping function G−1 is con-
stant over each tetrahedron due to the piecewise linear nature of the mapping. The
eigenvalues of the Cauchy deformation tensor J>J can be used to compute the root-
mean-square stretch. The mapping is optimised using iterative minimization of the
stretch metric, by performing a random line search on the (u,v)-plane, resulting in
modified (u,v)-coordinates for the offset surface vertices.

[Brodersen et al. 2007] use Lagrangian tracker particles (LaTraP) for detail space
parameterization. Such particles can be distributed at unique (u,v,w)-coordinates
over a patch volume and can be optimised to reduce various types of distortions. A
very simple distribution is a surface conforming parameterization, in which particles
are propagated along the gradient field direction until the required offset is reached,
but it is prone to distortions on areas of high curvature. Another distribution is a
reduced distortion level set parameterization, in which a number of particle levels is
used, each with unique parameterization and particle density, while users can specify
offset directions. A different form of parameterization uses a spline advection scheme,
in which particles are propagated along a spline curve originating at the center of each
patch.

In the above schemes, the particles form a 3D lattice composed of multiple layers
of regular 2D grids, each sized differently. They suggest two mapping algorithms,
one targeted for interactive performance (mapping a geometric texture to an implicit
surface), and one for higher-quality, but non-interactive (mapping an implicit surface
texture to an implicit surface). The interactive algorithm obtains the target coordinates
by applying trilinear interpolation on this semi-regular grid. Given a point (u,v,w),
the (u,v) points on the nearest w layers (above and below) are calculated via bilinear
interpolation, and the final value is obtained by linearly interpolating these two points.

37

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

OuterDshellDconstruction

ExtrudeDtowardsDnormals

AvoidDself-intersections

ExtrudeDtowardsDdirectorDlines

LagrangianDtrackerDparticles

[WangPetPal.P2004]
[DufortPetPal.P2005]

[JeschkePetPal.P2007]
[DecaudinPandPNeyretP2009]

[PorumbescuPetPal.P2005]
[RitscheP2006]

[PengPetPal.P2004]

[BrodersenPetPal.P2007]

ShellDparameterisation

ExtrudeDUVsDtoD3D

[WangPetPal.P2004]
[PengPetPal.P2004]
[DufortPetPal.P2005]

[PorumbescuPetPal.P2005]
[RitscheP2006]

[JeschkePetPal.P2007]
[DecaudinPandPNeyretP2009]

LagrangianDtrackerDparticleDdistributions

[BrodersenPetPal.P2007]

CurvedDmappingD
usingD

CoonsDpatches
[JeschkePetPal.P2007]

ModifyDoffsetD
surfaceDUVs

[ZhouPetPal.P2006]

Figure 9. Shell parameterization. Figures from [Zhou et al. 2006; Jeschke et al. 2007; Broder-
sen et al. 2007]

From the above we can observe that the more complex parameterizations which
produce better results [Peng et al. 2004; Zhou et al. 2006; Brodersen et al. 2007] are
too slow to calculate in real-time. Shell parameterizations are grouped in Figure 9.

4.3. Summary

Table 3 summarizes work on offset surface construction and shell parameterization.
For abbreviation, we will refer to simple extrusion towards normals as ETN, self-
intersection checks as ETNSI, the Lagrangian tracker particle grid as LaTraP, the
tetrahedron stretch reduction method as StreMe, and finally the Lp-averaged distance
function as AvDf. Similar to Table 2, the ratings are based on a consensus among the
authors and are intended to serve as useful, high-level comparison measures.

Computation time. ETN is the fastest method since it requires minimal computa-
tions; it is mainly used by interactive volumetric texture-mapping methods. Checking
for self-intersections (ETNSI) and adjusting heights requires extra processing but can
still be interactive, while solving non-linear optimizations (LaTraP, StreMe, AvDf)
requires significantly more processing power and these techniques are mainly used
by offline methods or as a preprocessing step.

Memory. ETN does not require any memory, while ETNSI requires per-vertex height
adjustments to avoid self-intersections. StreMe stores (u,v)-coordinates per-vertex,
while LaTraP requires storing grids per patch, per shell layer, and AvDf requires stor-
ing 3D textures in addition to per-vertex information.

38

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Who
Offset generation and Computation

Memory
Mapping Mapping

parameterization technique time distortion control
[Wang et al. 2004] (VuDm

ETN < msec 0 FFF FFF
[Dufort et al. 2005] (STSm)

[Jeschke et al. 2007] (SSm/CSm)
[Decaudin and Neyret 2009] (VolB)

[Porumbescu et al. 2005] (Sm)
ETNSI < sec 20 KB FFF FFF[Ritsche 2006] (RTSS)

[Brodersen et al. 2007] (LaTraP) LaTraP > sec 48 MB FFF FFF

[Zhou et al. 2006] (StreMe) StreMe > sec 40 KB FFF FFF

[Peng et al. 2004] (AvDf) AvDf > sec 64 MB FFF FFF

Table 3. Comparison of shell-based techniques with regard to shell construction and pa-
rameterization. The numbers are estimated for a mesh of 5K vertices and grid resolution of
1K×1K×4 (LaTraP,AvDf). For more details about the abbreviated methods, categories, and
ratings, refer to Section 4.3.

Mapping distortion. ETN results in the worst mapping, as distortion artifacts are
amplified at areas of high curvature and self-intersections occur at concave areas.
ETNSI just corrects the above self-intersections. LaTraP, StreMe, and AvDf minimize
distortions of the offset surface mapping.

Mapping control. ETN, ETNSI, and StreMe do not provide control over the offset
surface mapping. AvDf allows control over the shape of the gradient field lines, while
LaTraP offers a variety of distortion metrics for the mapping.

5. Rendering

Real-time rendering techniques that can be used to display volumetric mesostructure,
using such storage representations or mappings from the previous sections, can be
split into three groups: raycasting, precomputed texture function lookups and slice-
based rendering. Below, we review techniques in terms of their rendering contri-
butions, and we also note issues related to rendering, such as distortions caused by
rendering or deformations and lack of support for silhouettes.

5.1. Raycasting

Many volumetric texturing techniques render the coarse geometry (base and/or offset
surfaces) and cast rays to it. The rays traverse the mesostructure shell space until they
intersect with the shell again, or until they get absorbed by the contained mesostruc-
ture. Methods calculate either the light transport along the ray (for translucency) or
the first intersection with opaque mesostructure. Rays are traversed in either object or
texture space, each space having its own traversal characteristics.

Object space traversal requires the evaluation of texture coordinates at each step
for sampling the mesostructure. Texture coordinates are typically interpolated from

39

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

(a) Object space ray (b) Object space ray - tetrahedra

(c) Texture space ray (d) Texture space ray - tetrahedra

Figure 10. Side view of a shell in object space (top) and the corresponding view in texture
space (bottom). The ray passes through three extruded faces. The correct traversal path in
texture space is shown in green. The piecewise linear approximation, obtained from interpo-
lating entry to exit points, is shown in red. The right side shows the errors of the ray path
approximation if we subdivide each extruded face to tetrahedra, shown here as triangles.

values specified on the corners of the primitive they are in. When rendering shells as
extruded triangulated prisms, texture coordinates are interpolated on the triangle faces
but need to be calculated when a ray is inside a prism. So, at each raycasting step,
this requires the inversion of Equation (1) with~q(~b,w) known and~b, w as unknowns:

(~b,w) = ~F(x,y,z) =~q−1(~b,w)

Texture space traversal does not need such a transformation per-step, as it can
sample mesostructure directly. But because the transformation from object space to
texture space is not globally affine, rays in object space become curved in texture
space and vice versa. So, a straight line traversal in texture space is frequently an
approximation of the object space ray traversal and can result in visual artifacts (see
Figure 10). Techniques have attempted to curve texture-space rays in a variety of ways
and contexts: using “deflectors” [Kurzion and Yagel 1995], using numerical solution
[Neyret 1996], barycentric correspondence [Jeschke et al. 2007], tangent/normal map
lookups [Chen and Chang 2008], or “ray direction” textures [Na and Jung 2008].

[Porumbescu et al. 2005] compute the world space ray intersections with either
the base or the offset surface. The intersecting tetrahedron’s entry and exit point
are computed, and the ray segment is marched in world space. At each step, points
are transformed in texture space using point-in-tetrahedron queries and barycentric
coordinates, in order to calculate densities and ray-surface intersections. Because ray

40

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

marching is performed in world space, they actually trace a curved ray in texture
space, which does not introduce texture distortions due to space warping for small
step sizes. Each object in texture space has a predefined step size, resulting in adaptive
sampling. Tetrahedra store links to adjacent tetrahedra, so that if a ray exits through
one of the sides, ray marching continues. The implementation of this technique was
non-interactive at the time of its development, but it is possible to implement in GPUs
to run at interactive frame rates in today’s hardware due to increased programmability
and performance.

[Dufort et al. 2005] initially sort the shell tetrahedra using the “scanning exact
meshed polyhedra visibility ordering” (SXMPVO) algorithm by [Cook et al. 2004]
when rendering semi-transparent textures. For each rendered tetrahedron, the vertex
shader computes the intersection of the ray originating from each vertex towards the
direction of the view ray with one of planes formed using the tetrahedron’s faces. The
intersection point is transformed to texture space, and the coordinates of both spaces
are interpolated as they are passed to the pixel shader. Ray marching is performed on
the texture view ray and color is accumulated based on the opacity of the ray-marched
samples.

[Donnelly 2005] presents a GPU-accelerated version of sphere tracing by [Hart
1996], applied to rendering displacement maps instead of implicit surfaces (DfDm).
It is similar to normal mapping techniques, but uses a 3D texture storing a distance
field in texture space. The view vector is transformed in texture space and sphere
tracing is used to traverse the distance field and compute the hit point.

While the evaluation is fast, there are a number of drawbacks, such as deformation
distortions, storage cost, generation cost, and lack of silhouettes. While the algorithm
performs well on planar surfaces, artifacts will appear on curved surfaces. This is a
result of the precomputed distance data in the 3D texture space. Since the volume
is warped because of surface curvature, the precomputed closest distances become
invalid (see Appendix B, Figure 11). Even if the distance field data are calculated
while mapped uniquely on the surface, any deformation results in artifacts. The dis-
tance field generation cost is also prohibitive for dynamic data generation, resulting
in inability to represent procedurally defined surfaces; that is, if the distance field
cannot be represented procedurally as well. While this technique has several draw-
backs, it is a simple but effective way of accelerating raycasting and was used in later
shell-mapping techniques [Ritsche 2006; Jeschke et al. 2007].

[Ritsche 2006], in real-time shell-space rendering (RTSS), uses the same ray-
plane intersection scheme as STSms. For raymarching, a fixed number of iterations
is used but the distance traversed for each step is based on values obtained from a
mapped 3D distance field sampled at each step.

As mentioned in Section 4.2, all tetrahedra-based shell mapping techniques
[Hirche et al. 2004; Porumbescu et al. 2005; Dufort et al. 2005; Ritsche 2006] ex-

41

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Figure 11. Distance field of a texture (left) and sampling on a quad in original (middle left)
and deformed (middle right, right) object spaces at the top-right corner. The region within
the radius of the sampled safe distance, valid for the undeformed state of the texture (original
space) is shown in red. The same region, deformed along with the texture, is shown in green.
The overlapping part of both regions is shown in brown. Notice how the sampled distances
in the deformed spaces can be either too conservative or too large if used for object-space ray
traversal acceleration.

hibit artifacts due to the piecewise-linear nature of the mapping. [Jeschke et al. 2007]
avoid such artifacts by iterative correction of the ray path. They first triangulate the
prism fins so that the prisms are convex . They observe that they can partially invert
the function in Equation (1), which maps texture space to object space by using the
barycentric correspondence of triangles at a fixed w coordinate:

Given an offset w, the barycentric coordinates~b of a point ~q(~b,w) on a triangle
G(T123,w) correspond exactly to the barycentric coordinates of T123, allowing for an
easy transformation between object and texture space.

The view-ray segment end is calculated by computing the intersection with all
the prism triangles, and the w values are computed for the entry and exit world space
points using a bisectional search. Sampling along the ray is performed by iteratively
correcting the linearly interpolated ray in texture space; at each step, the sampled
point is transformed to world space, adjusted to the correct position and then trans-
formed back while also adjusting the texture space sampling direction. This adjust-
ment occurs a few times until the error is low enough. The process is repeated until
an intersection is found or the exit point is passed. They also use 3D distance fields
to accelerate raymarching.

In contrast to shell-mapping techniques, [Policarpo and Oliveira 2006] approached
volumetric mesostructure using a layered relief-mapping approach. Intersection test-
ing is done similar to relief maps, but in this case it is performed in parallel for each
layer, and, in the end, only the closest intersection is kept. As in relief maps, the
technique supports silhouettes. Correct silhouettes are obtained by precomputation of
two per-vertex coefficients, a and b, that represent a quadric surface (z = ax2 + by2)
which locally approximates the underlying geometry. Since correct silhouette ren-
dering requires calculations based on the surface geometry, it results in an additional
performance cost on animated or deformable surfaces. Also, if the rays have to travel

42

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

far in the texture, the quadric representation becomes a poor approximation and will
result in artifacts.

5.2. Precomputed Texture Function Lookups

Instead of marching along rays, techniques using high-dimensional texture functions
do view-dependent texture lookups, effectively trading off runtime calculations with
storage requirements.

[Wang et al. 2003] calculate the curvature along the tangent-space view direction
as a function of the view direction, the principal curvatures, and the surface normal.
They then use the curvature, the view direction, and the texture coordinate to sample
the function. Pixels for which the sampled distance is−1 (special value for specifying
no intersection of ray with geometry), are outside of the silhouette and are discarded.

[Wang et al. 2004] apply a two-pass approach using graphics hardware. In the
first pass, vertices are projected towards the viewing direction and are tested for in-
tersection with the planes containing the prism backfaces. Distances and texture co-
ordinates of plane hit points are rasterized and used in the second pass as vertex at-
tributes. The interpolated values in the pixel shader, along with the computed texture
space view direction, are used to sample the GnDm and obtain the mesostructure dis-
tance. If there is an intersection, the 3D texture coordinate is computed so shading can
be performed.

[Wang et al. 2005] use a depth-peeling approach for silhouette determination:
They render front and back faces in each peeling pass, sampling from the MsDf and
comparing distances to identify if there is any mesostructure along the resulting ray
segments.

All of the above techniques exhibit artifacts under macrostructure deformation,
since the precalculated visibility data are computed for a single mesh configuration.

5.3. Slice-based Rendering

A shell-rendering alternative to the previously described techniques is to partition
each extruded volume to aligned slices and render them; this was first introduced by
[Meyer and Neyret 1998].

[Peng et al. 2004] use a slice-based direct isosurface rendering method imple-
mented in two passes, where the slices are perpendicular to the surface normal (Fig-
ure 7(c)). In the first pass, for each quadrilateral face, they render the layers of the
face as stacked quadrilaterals extending towards the line director vectors, and output
the depth and 3D coordinates of the fragments nearest to the isosurface. In the second
pass, they smoothly interpolate the coordinates and obtain normals by transforming
the stored gradient from texture space to the space where shading is applied.

More recently, volumetric billboards (VolB) were introduced by [Decaudin and
Neyret 2009] as a rendering technique used for volumetric mesostructure rendering

43

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Convex hull constraint

Shell rendering representation

Slice-based
[Penghethal.h2004]

[DecaudinhandhNeyreth2009]
[Wanghethal.h2004]

Extrude UVs to 3D

[Wanghethal.h2004]
[Penghethal.h2004]
[Duforthethal.h2005]

[Porumbescuhethal.h2005]
[Ritscheh2006]

[Jeschkehethal.h2007]
[DecaudinhandhNeyreth2009]

[Zhouhethal.h2006]

2 triangles per fin

[Porumbescuhethal.h2005]
[Ritscheh2006]

3 tetrahedra per prism

[Jeschkehethal.h2007]

[Duforthethal.h2005]

Figure 12. Shell rendering representations. Figures from [Porumbescu et al. 2005; Decaudin
and Neyret 2009; Wang et al. 2004]

with opaque as well as semi-transparent content. It requires a 3D volume representa-
tion of colors, opacities, and normals and uses cells, which are prisms extruded from
a macrostructure surface. The scene is partitioned in slabs, rectangular volumes or-
thogonal to and along the camera’s view direction, and each slab is assigned only the
cells that intersect it. For each slab, the assigned cells are rendered, and the geometry
shader generates the polygon that defines the prism-plane intersection surface. Slabs
are processed in back-to-front order for correct blending. The shell is rendered using
a GPU-accelerated slice rendering scheme, generating view space slices for each cell
in the geometry shader (Figure 7(d)).

The technique is real-time, produces good results, and can handle silhouettes,
mesh deformation, and mesostructure transparency, but its main problem is the num-
ber of slices it needs for close-up detail. The bottleneck of the technique is the fill-rate
and, in particular, the rendering in back-to-front order. Another issue is the normal
sampling, since precomputed normals cannot represent thin geometry in volume data
very well. Artifacts are also expected from a small number of slices when rendering
volumes containing regular as opposed to fuzzy structures, while the required number
of slices for prisms extruded from a relatively dense triangle mesh could again cause
more performance issues. A potential performance bottleneck is the assignment of
cells to slabs, since there is no mention of how this would scale to more than a few
thousand cells.

A grouping of shell-based rendering techniques based on the geometric represen-
tation of the shells is shown in Figure 12.

6. Rendering Artifacts, Limitations and Performance

Interactive rendering techniques often need to sacrifice quality or features (Figures
13 and 14). In this section, we describe visual artifacts and limitations exhibited
by the reviewed rendering techniques. Table 4 summarizes this information. We
conclude the section with a short discussion about the difficulty of a fair performance
comparison.

44

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Figure 13. A plane using displacement mapping for bumps (left). When the plane bends
(right), the volumetric space near the bend is compressed, resulting in the nearby bumps
getting distorted. Figure from [Botsch and Sorkine 2008].

(a) Prism artifacts. Notice how the top boundary
curve of the zoomed cylinder abruptly changes at
the prism boundary.

(b) Tetrahedra artifacts. Notice how the cylinders
bend abruptly inside the prisms.

Figure 14. Examples of shell-mapping artifacts. Figures (modified) from [Jeschke et al.
2007].

Below, we use the abbreviated forms of the reviewed techniques: VuDm is [Wang
et al. 2003], AvDf is [Peng et al. 2004], GnDm is [Wang et al. 2004], MsDf is [Wang
et al. 2005], STSm is [Dufort et al. 2005], DfDm is [Donnelly 2005], RTSS is [Ritsche
2006], MLRm is [Policarpo and Oliveira 2006], SSm/CSm is [Jeschke et al. 2007],
and VolB is [Decaudin and Neyret 2009].

6.1. Silhouettes

Silhouette rendering is supported by all techniques that render and raymarch the ex-
truded shells. Techniques that render only the original mesh surface have a greater
difficulty rendering silhouettes, since they have no information about how the mesh
changes along the ray direction. Curvature precalculation (VuDm) and local surface
approximation as quadric (MLRm) have notable performance costs, thus excluding
common mesh animations. Silhouette determination with MsDf is performed using
depth peeling, which does not scale well in the number of layers in terms of perfor-
mance. Simple texture-space ray traversal, like the one used in DfDm, does not allow
rays to escape the texture space volume and thus cannot display silhouettes.

45

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Artifacts and limitations VuDm AvDf GnDm MsDf STSm DfDm RTSS MLRm SSm CSm VolB

Silhouettes 7 7 71

Dynamic mesostructure 7 7 7 7 7 7 7 7

Transparency 7 7 7 7 7 7 7 7 7

Shell self-intersections 7 7 7 7 7

Curved
Mapping 7 7 7 7 7

Ray Deformation 7 7 7 7 7 7 71 7 7

path
PWL

Prism fins 7 7 7 7 72 7

Tetrahedra 7 7

Table 4. Artifacts and limitations of interactive mesostructure rendering techniques, 7 notes
the existence of an artifact or lack of support for a feature. Abbreviations are linked to tech-
niques in Table 1 and Section 6.

6.2. Dynamic Mesostructure

Support for dynamic mesostructure excludes techniques that rely on non-interactive
precomputations based on the mesostructure content. As such, techniques that rely
on distance fields are excluded (DfDm) as distance field calculation is currently quite
performance intensive for large datasets, while techniques that use them as an optional
acceleration structure become significantly slower without them (RTSS, SSm, CSm).
Procedurally defined distance fields are possible [Quilez 2008], but are very difficult
to generate for arbitrary detail. High-dimensional texture functions are also excluded,
since they rely on generation of the samples and their subsequent compression, both
operations being non-interactive and done as a preprocess (VuDm, GnDm, MsDf).
MLRms are also excluded, since the conversion from a volumetric representation to
depth layers is part of preprocessing and quite performance intensive.

6.3. Transparency

While transparency is a material property, it imposes significant requirements on algo-
rithms for rendering shape, such as primitive sorting and visibility integration, so that,
in most cases, it is simply unsupported. Techniques that were designed to explicitly
support transparency are STSm and VolB. This type of transparency (material) is not
to be confused with transparency as a result of integrating visibility of fine geometry
when sampling.

1Artifacts are mutually exclusive
2Assuming Coons patches as the limit base surface results in artifacts when using partially covering

volumetric mesostructure on a different base surface

46

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

6.4. Shell Self-intersections

As mentioned in Section 4.2, the naive way of creating an offset surface by extruding
the base surface by a fixed amount (GnDm, STSm, SSm, CSm, VolB) can result in
shell self-intersections in concave areas which, in turn, results in rendering artifacts.

6.5. Ray Path

The most common source of errors is the ray traversal through the mapped volume
data. Below, we explain and name the reasons for these errors.

6.5.1. Curved, mapping

As explained in Section 5.1 and shown in Figure 10, straight rays in object space
become curved in texture space and vice-versa.

VuDm does not take into account the change of curvature on the surface while
MsDf uses a depth-peeling approach that is limited in the number of layers it can
process before the rendering speed drops significantly. GnDm exhibits fewer visual
artifacts than VuDm by calculating a better approximation of the ray path in texture
space, but they still do not account for the ray curving.

All techniques that use tetrahedra (STSm, RTSS) are subject to these errors, since
they approximate the curved ray path as a coarse, piecewise-linear curve.

6.5.2. Curved, deformation

Similar to the above errors, curved ray paths in texture space that correspond to
straight ray paths in the object space of a mesh in one pose, are no longer correct
if the mesh undergoes a non-affine deformation to a different pose.

All techniques that exhibit artifacts for static objects naturally continue to exhibit
such artifacts when the surface is deforming (VuDm, GnDm, MsDf, STSm, RTSS).

MLRms can approximate the surface locally as a quadric and calculate a curved
ray path in texture space. However, if the surface deforms, the approximation has to
be recomputed, resulting in a greater computational cost.

Techniques that use distance fields for acceleration of ray casting (DfDm, RTSS,
SSm, CSm) are subject to artifacts due to the invalidation of the distance field under
deformation, as discussed in Appendix B.

6.5.3. Piecewise-linear, prism fins

In most interactive volumetric texture rendering techniques, the mesh surface is dis-
cretized to triangles, and the 2D piecewise-linear (PWL) parameterization of the base
mesh is extended to 3D by assigning texture coordinates to the offset surface and lin-
early interpolating the space inside. Rays in shell space are curves in texture space
and, due to the piecewise-linear nature of the mapping, these curves are C0-continuous
at the (bilinear) fins. As shown in Figure 10, linear interpolation of entry/exit texture
coordinates for the space inside each prism results in continuity artifacts at the prism

47

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

fins. Such artifacts become worse if the fin is approximated by triangles. The conti-
nuity artifacts are observed in most techniques that use shells (GnDm, STSm, RTSS,
SSm, VolB).

6.5.4. Piecewise-linear, tetrahedra

As shown in Figure 10, techniques that discretize prisms to three tetrahedra (STSm,
RTSS) introduce different rendering artifacts compared to prisms with triangulated
fins: the approximation is better but there are more derivative discontinuities in texture
space.

6.6. Performance

During the last decade, the power and programmability of GPUs have significantly
increased, so a fair performance comparison of techniques in the way they were de-
veloped is very difficult. Techniques that were previously non-interactive and im-
plemented in the CPU, can be now suitable for a GPU implementation (e.g., [Po-
rumbescu et al. 2005]). Another example is shell geometry generation and rendering
which, with modern hardware, can be modified to use geometry shaders, thus chang-
ing the performance characteristics of techniques that use them (GnDm, STSm, SSm,
CSm, VolB).

In Table 5, we provide a performance comparison of texture-mapped volumetric
detail rendering methods that share characteristics with many of the reviewed tech-
niques. We used a system equipped with a GeForce GTX Titan, rendering a close-up
of two triangles extruded to a prism at a resolution of 1920 × 1200 in order to avoid
a bottleneck in the geometry shader where we chose to construct the prism. No opti-
mizations were applied. For triangle and tetrahedra shells, raycasting step size was set
at voxel resolution. For slice-based rendering, 40 slices were used, each subdivided
to 5 in the geometry shader.

Extra features Triangle shell Tetrahedra shell View-space slice-based Multi-layer relief mapping

None
(STSm) (VolB) (MLRm)

2.85 (6.89) 5 (12.5) 27.02 (33.33) 1.05 (1.10)

Distance field 1.85 (3.24) 3.57 (5.71) N/A N/A

Curved ray path
(Sm)

N/A N/A
28.57 (66.66) 100 (250)

Distance field + (SSm,CSm) (RTSS)
N/A N/A

Curved ray path 22.22 (45.45) 25 (50)

Table 5. Performance comparison of shell-rendering techniques, rendering a 256×256×64
volumetric texture mapped in a shell extruded from two triangles. Times are in milliseconds.
Times in parentheses are for the same volumetric texture at double resolution (512× 512×
128). The techniques in parentheses show the shell rendering method and the extra features
that they use.

48

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

7. Summary and Conclusions

Volumetric mesostructure rendering using texture mapping methods is a difficult prob-
lem. Current methods trade-off quality and flexibility to be interactive, and no single
method is artifact-free, even at the expense of performance. Texture mapping meth-
ods were chosen for their support of deformable surfaces and, as such, we focused on
techniques that contribute to one of the three core parts of such a rendering pipeline:
storage, mapping, and rendering.

We described storage methods such as procedural definitions, dense, hierarchical
and compressed texture maps and meshes. Mesostructure data are mapped either on
a thick shell over the surface or directly on the surface. Real-time rendering methods
include slice-based volume rendering for shells, rendering the shell geometry and
casting rays through it, or using the view rays and the location on the base surface or
shell to sample a high-dimensional texture map.

With regard to storage, dense volume textures do not scale well to high-resolution
data. Procedural methods are still non-intuitive for modeling of volumetric mesostruc-
ture, while the evaluation cost can be prohibitive for real-time applications. Geome-
try as a mesostructure representation has not been generally used due to its numerous
disadvantages. High-dimensional texture functions have high storage and precompu-
tation costs and do not scale well with high frequency/resolution detail.

For rendering, slice-based methods can be effective when a low number of slices
is required or the detail is stochastic, but fill rate becomes a problem for highly de-
tailed representation of non-stochastic mesostructure. Raycasting is a well-studied
rendering technique, but when naively applied to warped 3D domains (such as traver-
sal of texture space using world-space rays) distortions are introduced. Additionally,
raycasting acceleration methods—such as distance fields—that rely on offline pre-
computations dependent on macrostructure, result in artifacts if the latter is deformed.

7.1. Open Problems

Although volumetric texture-mapping research has been ongoing for decades, there
are still a lot of open problems. Addressing these problems will allow for better
quality, interactive volumetric mesostructure rendering on deformable surfaces.

Hierarchical storage for volumetric textures. Most of the reviewed techniques are ei-
ther agnostic to the representation of detail, or use custom representations, or use
some simple but non-scalable forms such as geometry or dense textures. With re-
cent developments in out-of-core rendering (Section 3.2.2), where highly detailed
volumes are stored and accessed efficiently using hierarchies, we expect to see these
concepts applied to volumetric textures.

Streaming for volumetric textures. The growing demand for higher detail complexity
results in storage requirements increasing much faster than the availability of GPU

49

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

memory and, more importantly, bandwidth between disk, application, and GPU. This
has led to increased research in streaming for out-of-core techniques. As in the case
of 3D mesostructure, where the storage requirements are usually prohibitive for large
amounts of unique detail, we can expect adoption of streaming for such volumetric
texturing techniques.

Dynamic, low distortion 3D parameterization for deformable surfaces. Existing low-
distortion 3D parameterizations are performance intensive even for calculating single
frames. Since a major benefit of volumetric texture mapping is its application on
deforming surfaces, we expect 3D parameterization methods to exploit the spatially
coherent nature of the deformation in order to dynamically update the parameteri-
zation. Content-aware techniques, such as [Koniaris et al. 2013], can be developed
for 3D parameterizations in order to exploit the non-homogeneity of the volumetric
materials.

Efficient ray traversal in 3D-parameterised, deformable volumes. Ray traversal has
been a major subject of research in rendering of static volumes. Given the visual ar-
tifacts existent in many of the current ray traversal methods for volumetric textures,
we expect researchers to try and adapt recent ray traversal research to deformed vol-
umetric domains.

A. Volumetric Space Normals

Given a 3D density field D(u,v,w), normals can be obtained as follows:

N̂(u,v,w) =− ∇D(u,v,w)
‖∇D(u,v,w)‖

If the density field is given as a volumetric texture mapped to the surface’s shell
space, the obtained normals need to be transformed according to the shell space trans-
formation. Using the generalization of the Taylor series, G(~q) can be approximated at
a point ~p = {a,b,c} for unknown~q = {u,v,w} by its Jacobian J(~p) and a translation

G(~q) = G(~p)+J(~p)(~q−~p)

Since the Jacobian represents the linear part of the transformation, its inverse trans-
pose can be used to transform the normal:

N̂(u,v,w)′ = J(u,v,w)−1>N̂(u,v,w)

=−J(u,v,w)−1> ∇D(u,v,w)
‖∇D(u,v,w)‖

Note that after the transformation, the magnitude of the normal might not be 1.

50

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

B. Distance Transforms and Deformations

Euclidean distance transforms can be applied to mesostructure shape data to produce
a reprentation for fast ray traversal [Cohen and Sheffer 1994]. Given a mesostruc-
ture surface in a shell volume SM, a texture-space unsigned distance field volume
DT(u,v,w) can be defined as

DT(u,v,w) = min
~pM∈SM

(‖(u,v,w)−~pM‖). (2)

A signed distance field can be obtained for orientable surfaces without boundaries by
checking if the closest point is above or below the surface, which can be computed by
checking the sign of the dot product of the surface normal and the distance vector.

Given a warp function W (u,v,w) of the volume (e.g. the shell mapping G(u,v,w)),
Equation (2) becomes:

DTW(u,v,w) = min
~pM∈SM

(‖W (u,v,w)−W (~pM)‖).

In order for DTW(u,v,w) to be equivalent to DT(u,v,w), W needs to be an isometric
transformation. Given the generally non-affine nature of the deformation of shell
space volumes, it is very unlikely that this requirement will be fulfilled in a per-face
(prism or hexahedron) basis, so distance fields cannot be used for deformable surfaces
without introducing distortions. This can be seen with a simple example in Figure 11.

The distance field of a grass texture, computed in texture space, is mapped on a
quad. Sampling the top-right corner point would result in a safe distance to traverse.
When the quad is undeformed, there are no errors. When the quad is deformed, the
texture space deforms as well, since it is defined by coordinates at the quad’s end-
points. In this deformed space, distances are not isotropic anymore, and, compared
to the original space, they can be either too conservative, requiring more steps, or
too large, skipping opaque regions in the distance field. Marching directly in texture
space would eliminate this problem, but, in that space, rays would need to curve to
avoid more artifacts, as seen in Figure 10.

C. Parametric Mapping

Following the format in [Heckbert 1989], trilinear mapping for a cuboid volume pxyz,
{x,y,z} ∈ {0,1}, can be expressed in a parametric form as follows:

(Px Py Pz) = (stq sq tq st s q t 1)


Ax Ay Az
Bx By Bz
Cx Cy Cz
Dx Dy Dz
Ex Ey Ez
Fx Fy Fz
Gx Gy Gz
Hx Hy Hz

 .

51

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

where the values (s, t) represent the bilinear parametric coordinates of top and bottom
quads, and q represents the intepolant value between these quads. The coefficients
can be obtained by 

Ax Ay Az
Bx By Bz
Cx Cy Cz
Dx Dy Dz
Ex Ey Ez
Fx Fy Fz
Gx Gy Gz
Hx Hy Hz

= A


p000x p000y p000z
p100x p100y p100z
p010x p010y p010z
p110x p110y p110z
p001x p001y p001z
p101x p101y p101z
p011x p011y p011z
p111x p111y p111z


using the matrix

A =


−1 1 1 −1 1 −1 −1 1

1 −1 −1 1 0 0 0 0
1 0 −1 0 −1 0 1 0
1 −1 0 0 −1 1 0 0

−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
−1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

 .

The above applies for extruded quadrilaterals. For prism volumes, defined by
triangles PABCbot and PABCtop , the mapping is simpler:

(Px Py Pz) = (st tq s t q 1)


Ax Ay Az
Bx By Bz
Cx Cy Cz
Dx Dy Dz
Ex Ey Ez
Fx Fy Fz


where the values (s, t) represent the barycentric coordinates of top and bottom trian-
gles, and q represents the intepolant value between these triangles. The coefficients
can be obtained by


Ax Ay Az
Bx By Bz
Cx Cy Cz
Dx Dy Dz
Ex Ey Ez
Fx Fy Fz

= A


pAbot x

pAbot y
pAbot z

pBbot x
pBbot y

pBbot z
pCbot x

pCbot y
pCbot z

pAtop x
pAtop y

pAtop z
pBtop x

pBtop y
pBtop z

pCtop x
pCtop y

pCtop z


using the matrix

A =


1 1 −1 −1 0 1

−1 0 1 0 0 0
0 −1 0 1 0 0

−1 −1 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0

 .

Both mappings exhibit C0 continuity with adjacent volumes, since they do not
take into account any neighboring information.

Acknowledgements

This work was funded by the EPSRC Centre for Digital Entertainment and Disney Research.
Images in Figure 2 were obtained from Wikipedia. Thanks to deviantART artist Pablo An-

52

http://jcgt.org


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

dreetta for providing the image in Figure 3. Thanks to Stefan Jeschke and Manuel Oliveira for
providing source code for SSm/CSm and MLRm, respectively.

References

BECKER, B., AND MAX, N. 1993. Smooth transitions between bump rendering algorithms.
In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Tech-
niques, ACM, New York, NY, SIGGRAPH ’93, 183–190. http://doi.acm.org/10.
1145/166117.166141. 29

BENSON, D., AND DAVIS, J. 2002. Octree textures. ACM Trans. Graph. 21, 3, 785–790.
http://doi.acm.org/10.1145/566654.566652. 29

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture synthesis by example.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Pro-
cessing, ACM, New York, NY, USA, SGP ’04, 41–44. http://doi.acm.org/10.

1145/1057432.1057437. 27

BOTSCH, M., AND SORKINE, O. 2008. On linear variational surface deformation methods.
IEEE Transactions on Visualization and Computer Graphics 14, 1, 213–230. http://

dx.doi.org/10.1109/TVCG.2007.1054. 45

BRODERSEN, A., MUSETH, K., PORUMBESCU, S., AND BUDGE, B. 2007. Geometric
texturing using level sets. IEEE Transactions on Visualization and Computer Graphics,
277–288. http://dx.doi.org/10.1109/TVCG.2007.70408. 18, 21, 37, 38, 39

BRUNETON, E., AND NEYRET, F. 2012. A survey of nonlinear prefiltering methods for
efficient and accurate surface shading. IEEE Transactions on Visualization and Computer
Graphics 18, 2, 242–260. http://dx.doi.org/10.1109/TVCG.2011.81. 27,
29

BURLEY, B., AND LACEWELL, D. 2008. Ptex: Per-face texture mapping for produc-
tion rendering. In Proceedings of the Nineteenth Eurographics Conference on Render-
ing, Eurographics Association, Aire-la-Ville, Switzerland, EGSR’08, 1155–1164. http:
//dx.doi.org/10.1111/j.1467-8659.2008.01253.x. 25

CATMULL, E. E. 1974. A Subdivision Algorithm for Computer Display of Curved Sur-
faces. PhD thesis. The University of Utah, AAI7504786, www.pixartouchbook.
com/storage/catmull_thesis.pdf. 19

CHEN, Y., AND CHANG, C. 2008. A prism-free method for silhouette rendering in inverse
displacement mapping. Computer Graphics Forum 27, 7, 1929–1936. http://dx.

doi.org/10.1111/j.1467-8659.2008.01341.x. 40

COHEN, D., AND SHEFFER, Z. 1994. Proximity clouds - an acceleration technique for 3d
grid traversal. The Visual Computer 11, 1, 27–38. http://dx.doi.org/10.1007/
BF01900697. 51

COOK, R., MAX, N., SILVA, C., AND WILLIAMS, P. 2004. Image-space visibility ordering
for cell projection volume rendering of unstructured data. IEEE Transactions on Visual-
ization and Computer Graphics 10, 6, 695–707. http://dx.doi.org/10.1109/

TVCG.2004.45. 41

53

http://jcgt.org
http://doi.acm.org/10.1145/166117.166141
http://doi.acm.org/10.1145/166117.166141
http://doi.acm.org/10.1145/566654.566652
http://doi.acm.org/10.1145/1057432.1057437
http://doi.acm.org/10.1145/1057432.1057437
http://dx.doi.org/10.1109/TVCG.2007.1054
http://dx.doi.org/10.1109/TVCG.2007.1054
http://dx.doi.org/10.1109/TVCG.2007.70408
http://dx.doi.org/10.1109/TVCG.2011.81
http://dx.doi.org/10.1111/j.1467-8659.2008.01253.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01253.x
www.pixartouchbook.com/storage/catmull_thesis.pdf
www.pixartouchbook.com/storage/catmull_thesis.pdf
http://dx.doi.org/10.1111/j.1467-8659.2008.01341.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01341.x
http://dx.doi.org/10.1007/BF01900697
http://dx.doi.org/10.1007/BF01900697
http://dx.doi.org/10.1109/TVCG.2004.45
http://dx.doi.org/10.1109/TVCG.2004.45


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

CRASSIN, C., NEYRET, F., LEFEBVRE, S., AND EISEMANN, E. 2009. Gigavoxels: Ray-
guided streaming for efficient and detailed voxel rendering. In Proceedings of the 2009
symposium on Interactive 3D graphics and games, ACM, New York, NY, I3D ’09, 15–22.
http://doi.acm.org/10.1145/1507149.1507152. 19, 30

DANA, K., VAN GINNEKEN, B., NAYAR, S., AND KOENDERINK, J. 1999. Reflectance
and texture of real-world surfaces. ACM Trans. Graph. 18, 1, 1–34. http://doi.acm.
org/10.1145/300776.300778. 30

DEBRY, D. G., GIBBS, J., PETTY, D. D., AND ROBINS, N. 2002. Painting and render-
ing textures on unparameterized models. ACM, New York, NY, USA, vol. 21, 763–768.
http://doi.acm.org/10.1145/566654.566649. 29

DECAUDIN, P., AND NEYRET, F. 2009. Volumetric billboards. Computer Graphics Fo-
rum 28, 8, 2079–2089. http://dx.doi.org/10.1111/j.1467-8659.2009.

01354.x. 18, 21, 28, 36, 39, 43, 44, 45

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision surfaces in character
animation. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’98, 85–94. http:

//doi.acm.org/10.1145/280814.280826. 25

DONNELLY, W. 2005. Per-pixel displacement mapping with distance functions. GPU
Gems 2, 2. http://http.developer.nvidia.com/GPUGems2/gpugems2_

chapter08.html. 21, 28, 41, 45

DUFORT, J., LEBLANC, L., AND POULIN, P. 2005. Interactive rendering of meso-structure
surface details using semi-transparent 3d textures. In Proc. Vision, Modeling, and Vi-
sualization, Citeseer, 399–406. http://www.iro.umontreal.ca/~dufortjf/

vmv2005.pdf. 21, 28, 36, 39, 41, 45

EBERT, D., MUSGRAVE, F., PEACHEY, D., PERLIN, K., AND WORLEY, S. 2002. Texturing
and modeling: a procedural approach. Morgan Kaufmann. 26

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND STUETZLE,
W. 1995. Multiresolution analysis of arbitrary meshes. In Proceedings of the 22Nd An-
nual Conference on Computer Graphics and Interactive Techniques, ACM, New York,
NY, USA, SIGGRAPH ’95, 173–182. http://doi.acm.org/10.1145/218380.
218440. 32

ELBER, G. 2005. Geometric texture modeling. IEEE Comput. Graph. Appl. 25, 4 (July),
66–76. http://dx.doi.org/10.1109/MCG.2005.79. 32

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K., MARK, W. R., AND HANRA-
HAN, P. 2009. Data-parallel rasterization of micropolygons with defocus and motion
blur. In Proceedings of the Conference on High Performance Graphics 2009, ACM, New
York, NY, USA, HPG ’09, 59–68. http://doi.acm.org/10.1145/1572769.

1572780. 32

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K., MARK, W. R., MORETON,
H., AND HANRAHAN, P. 2010. Reducing shading on gpus using quad-fragment merg-
ing. ACM Trans. Graph. 29, 4 (July), 67:1–67:8. http://doi.acm.org/10.1145/
1778765.1778804. 32

54

http://jcgt.org
http://doi.acm.org/10.1145/1507149.1507152
http://doi.acm.org/10.1145/300776.300778
http://doi.acm.org/10.1145/300776.300778
http://doi.acm.org/10.1145/566654.566649
http://dx.doi.org/10.1111/j.1467-8659.2009.01354.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01354.x
http://doi.acm.org/10.1145/280814.280826
http://doi.acm.org/10.1145/280814.280826
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter08.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter08.html
http://www.iro.umontreal.ca/~dufortjf/vmv2005.pdf
http://www.iro.umontreal.ca/~dufortjf/vmv2005.pdf
http://doi.acm.org/10.1145/218380.218440
http://doi.acm.org/10.1145/218380.218440
http://dx.doi.org/10.1109/MCG.2005.79
http://doi.acm.org/10.1145/1572769.1572780
http://doi.acm.org/10.1145/1572769.1572780
http://doi.acm.org/10.1145/1778765.1778804
http://doi.acm.org/10.1145/1778765.1778804


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

FILIP, J., AND HAINDL, M. 2009. Bidirectional texture function modeling: A state of the
art survey. IEEE Trans. Pattern Anal. Mach. Intell. 31, 11 (Nov.), 1921–1940. http:

//dx.doi.org/10.1109/TPAMI.2008.246. 20, 27, 30

FOURNIER, A. 1992. Normal distribution functions and multiple surfaces. In Graph-
ics Interface ’92 Workshop on Local Illumination, 45–52. http://www.iro.

umontreal.ca/~poulin/fournier/papers/Fournier-1992-NDF/

Fournier-1992-NDFMS.pdf. 29

GILET, G., AND DISCHLER, J. 2009. A Framework for Interactive Hypertexture Modelling.
In Computer Graphics Forum, vol. 28, Wiley Online Library, 2229–2243. http://dx.
doi.org/10.1111/j.1467-8659.2009.01436.x. 21, 27

GLASSNER, A. S. 1994. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA. 22

GOBBETTI, E., MARTON, F., AND IGLESIAS GUITIÁN, J. 2008. A single-pass GPU ray
casting framework for interactive out-of-core rendering of massive volumetric datasets.
The Visual Computer 24, 7, 797–806. http://vic.crs4.it/vic/cgi-bin/

bib-page.cgi?id=’Gobbetti:2008:SGR’. 30

HAN, C., SUN, B., RAMAMOORTHI, R., AND GRINSPUN, E. 2007. Frequency domain
normal map filtering. ACM, New York, NY, USA, vol. 26. http://doi.acm.org/
10.1145/1276377.1276412. 29

HART, J. 1996. Sphere tracing: A geometric method for the antialiased ray tracing of im-
plicit surfaces. The Visual Computer 12, 10, 527–545. http://www.eecs.wsu.edu/
~hart/papers/zeno.ps.gz. 41

HECKBERT, P. S. 1989. Fundamentals of texture mapping and image warping. Tech. Rep.
UCB/CSD-89-516, EECS Department, University of California, Berkeley, Jun. http:

//www.eecs.berkeley.edu/Pubs/TechRpts/1989/5504.html. 33, 51

HEITZ, E., NOWROUZEZAHRAI, D., POULIN, P., AND NEYRET, F. 2013. Filtering color
mapped textures and surfaces. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D ’13, 129–136.
http://doi.acm.org/10.1145/2448196.2448217. 28

HIRCHE, J., EHLERT, A., GUTHE, S., AND DOGGETT, M. 2004. Hardware acceler-
ated per-pixel displacement mapping. In Proceedings of the 2004 Graphics Interface
Conference, Canadian Human-Computer Communications Society, School of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, GI ’04, 153–158. http:

//dl.acm.org/citation.cfm?id=1006058.1006077. 21, 35, 36, 41

HORMANN, K., LÉVY, B., AND SHEFFER, A. 2007. Mesh parameterization: Theory and
practice video files associated with this course are available from the citation page. In
ACM SIGGRAPH 2007 Courses, ACM, New York, NY, USA, SIGGRAPH ’07. http:

//doi.acm.org/10.1145/1281500.1281510. 25

HU, L., SANDER, P. V., AND HOPPE, H. 2010. Parallel view-dependent level-of-detail
control. IEEE Transactions on Visualization and Computer Graphics 16, 5 (Sept.), 718–
728. http://dx.doi.org/10.1109/TVCG.2009.101. 32

55

http://jcgt.org
http://dx.doi.org/10.1109/TPAMI.2008.246
http://dx.doi.org/10.1109/TPAMI.2008.246
http://www.iro.umontreal.ca/~poulin/fournier/papers/Fournier-1992-NDF/Fournier-1992-NDFMS.pdf
http://www.iro.umontreal.ca/~poulin/fournier/papers/Fournier-1992-NDF/Fournier-1992-NDFMS.pdf
http://www.iro.umontreal.ca/~poulin/fournier/papers/Fournier-1992-NDF/Fournier-1992-NDFMS.pdf
http://dx.doi.org/10.1111/j.1467-8659.2009.01436.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01436.x
http://vic.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2008:SGR'
http://vic.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2008:SGR'
http://doi.acm.org/10.1145/1276377.1276412
http://doi.acm.org/10.1145/1276377.1276412
http://www.eecs.wsu.edu/~hart/papers/zeno.ps.gz
http://www.eecs.wsu.edu/~hart/papers/zeno.ps.gz
http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/5504.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/5504.html
http://doi.acm.org/10.1145/2448196.2448217
http://dl.acm.org/citation.cfm?id=1006058.1006077
http://dl.acm.org/citation.cfm?id=1006058.1006077
http://doi.acm.org/10.1145/1281500.1281510
http://doi.acm.org/10.1145/1281500.1281510
http://dx.doi.org/10.1109/TVCG.2009.101


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

IGLESIAS GUITIÁN, J., GOBBETTI, E., AND MARTON, F. 2010. View-dependent explo-
ration of massive volumetric models on large-scale light field displays. Vis. Comput. 26,
6-8 (June), 1037–1047. http://dx.doi.org/10.1007/s00371-010-0453-y.
30

JESCHKE, S., MANTLER, S., AND WIMMER, M. 2007. Interactive smooth and curved shell
mapping. 351–360. http://dx.doi.org/10.2312/EGWR/EGSR07/351-360.
21, 28, 36, 38, 39, 40, 41, 42, 45

KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three dimensional textures. ACM,
New York, NY, USA, vol. 23, 271–280. http://doi.acm.org/10.1145/74334.
74361. 34

KAJIYA, J. T. 1985. Anisotropic reflection models. ACM, New York, NY, USA, vol. 19,
15–21. http://doi.acm.org/10.1145/325165.325167. 29

KNISS, J., PREMOZE, S., HANSEN, C., AND EBERT, D. 2002. Interactive translu-
cent volume rendering and procedural modeling. In Proceedings of the Conference on
Visualization ’02, IEEE Computer Society, Washington, DC, USA, VIS ’02, 109–116.
http://dl.acm.org/citation.cfm?id=602099.602114. 27

KOENDERINK, J. J., AND VAN DOORN, A. J. 1996. Illuminance texture due to surface
mesostructure. J. Opt. Soc. Am. A 13, 3 (Mar), 452–463. http://josaa.osa.org/
abstract.cfm?URI=josaa-13-3-452. 22

KONIARIS, C., COSKER, D., YANG, X., MITCHELL, K., AND MATTHEWS, I. 2013. Real-
time content-aware texturing for deformable surfaces. 11:1–11:10. http://doi.acm.
org/10.1145/2534008.2534016. 50

KOVACS, D., MITCHELL, J., DRONE, S., AND ZORIN, D. 2009. Real-time creased
approximate subdivision surfaces. In Proceedings of the 2009 Symposium on Interac-
tive 3D Graphics and Games, ACM, New York, NY, USA, I3D ’09, 155–160. http:

//doi.acm.org/10.1145/1507149.1507174. 25

KURZION, Y., AND YAGEL, R. 1995. Space deformation using ray deflectors. In Rendering
Techniques âĂŹ95, Springer Vienna, P. Hanrahan and W. Purgathofer, Eds., Eurographics,
21–30. http://dx.doi.org/10.1007/978-3-7091-9430-0_3. 40

LAGAE, A., LEFEBVRE, S., COOK, R., DEROSE, T., DRETTAKIS, G., EBERT, D., LEWIS,
J., PERLIN, K., AND ZWICKER, M. 2010. A survey of procedural noise functions. In
Computer Graphics Forum, vol. 29, Wiley Online Library, 2579–2600. http://dx.

doi.org/10.1111/j.1467-8659.2010.01827.x. 20, 27

LAI, Y.-K., HU, S.-M., GU, D. X., AND MARTIN, R. R. 2005. Geometric texture synthesis
and transfer via geometry images. In Proceedings of the 2005 ACM Symposium on Solid
and Physical Modeling, ACM, New York, NY, USA, SPM ’05, 15–26. http://doi.

acm.org/10.1145/1060244.1060248. 27

LAINE, S., AND KARRAS, T. 2010. Efficient sparse voxel octrees. 55–63. http://doi.
acm.org/10.1145/1730804.1730814. 30

56

http://jcgt.org
http://dx.doi.org/10.1007/s00371-010-0453-y
http://dx.doi.org/10.2312/EGWR/EGSR07/351-360
http://doi.acm.org/10.1145/74334.74361
http://doi.acm.org/10.1145/74334.74361
http://doi.acm.org/10.1145/325165.325167
http://dl.acm.org/citation.cfm?id=602099.602114
http://josaa.osa.org/abstract.cfm?URI=josaa-13-3-452
http://josaa.osa.org/abstract.cfm?URI=josaa-13-3-452
http://doi.acm.org/10.1145/2534008.2534016
http://doi.acm.org/10.1145/2534008.2534016
http://doi.acm.org/10.1145/1507149.1507174
http://doi.acm.org/10.1145/1507149.1507174
http://dx.doi.org/10.1007/978-3-7091-9430-0_3
http://dx.doi.org/10.1111/j.1467-8659.2010.01827.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01827.x
http://doi.acm.org/10.1145/1060244.1060248
http://doi.acm.org/10.1145/1060244.1060248
http://doi.acm.org/10.1145/1730804.1730814
http://doi.acm.org/10.1145/1730804.1730814


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

LEE, A., MORETON, H., AND HOPPE, H. 2000. Displaced subdivision surfaces. In Pro-
ceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques,
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’00, 85–
94. http://dx.doi.org/10.1145/344779.344829. 25

LEFEBVRE, S., HORNUS, S., NEYRET, F., ET AL. 2005. Octree textures on the gpu.
GPU gems 2, 595–613. http://http.developer.nvidia.com/GPUGems2/

gpugems2_chapter37.html. 30

LEFOHN, A. E., SENGUPTA, S., KNISS, J., STRZODKA, R., AND OWENS, J. D. 2006.
Glift: Generic, efficient, random-access gpu data structures. ACM Trans. Graph. 25, 1
(Jan.), 60–99. http://doi.acm.org/10.1145/1122501.1122505. 30

LOOP, C., SCHAEFER, S., NI, T., AND CASTAÑO, I. 2009. Approximating subdivision
surfaces with gregory patches for hardware tessellation. 151:1–151:9. http://doi.

acm.org/10.1145/1661412.1618497. 25

MCDONALD, JR, J., AND BURLEY, B. 2011. Per-face texture mapping for real-time ren-
dering. In ACM SIGGRAPH 2011 Studio Talks, ACM, New York, NY, USA, SIGGRAPH
’11, 3:1–3:1. http://doi.acm.org/10.1145/2037703.2037706. 25

MEYER, A., AND NEYRET, F. 1998. Interactive volumetric textures. In Rendering
techniques’ 98: proceedings of the Eurographics Workshop in Vienna, Austria, June
29-July 1, 1998, Springer Verlag Wien, 157. http://www-imagis.imag.fr/

Publications/1998/MN98b/EGWR98.ps.gz. 34, 43

MILLER, C. M., AND JONES, M. W. 2005. Texturing and hypertexturing of volumetric
objects. In Proceedings of the Fourth Eurographics / IEEE VGTC Conference on Volume
Graphics, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, VG’05, 117–
125. http://dx.doi.org/10.2312/VG/VG05/117-125. 27

NA, K.-G., AND JUNG, M.-R. 2008. Curved ray-casting for displacement mapping in the
gpu. 348–357. http://dl.acm.org/citation.cfm?id=1785794.1785832.
40

NEYRET, F. 1995. A general and multiscale model for volumetric textures. In Graphics Inter-
face, 83–91. http://www.graphicsinterface.org/pre1996/95-Neyret.
ps.gz. 34

NEYRET, F. 1996. Local illumination in deformed space. Rapports de recherche- INRIA.
http://hal.inria.fr/inria-00073835. 40

NEYRET, F. 1998. Modeling, animating, and rendering complex scenes using volumetric
textures. IEEE Transactions on Visualization and Computer Graphics 4, 1 (Jan.), 55–70.
http://dx.doi.org/10.1109/2945.675652. 29

NIESSNER, M., AND LOOP, C. 2013. Analytic displacement mapping using hardware tes-
sellation. ACM Trans. Graph. 32, 3 (July), 26:1–26:9. http://doi.acm.org/10.

1145/2487228.2487234. 25

NIESSNER, M., LOOP, C., MEYER, M., AND DEROSE, T. 2012. Feature-adaptive gpu
rendering of catmull-clark subdivision surfaces. ACM Trans. Graph. 31, 1 (Feb.), 6:1–
6:11. http://doi.acm.org/10.1145/2077341.2077347. 25

57

http://jcgt.org
http://dx.doi.org/10.1145/344779.344829
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter37.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter37.html
http://doi.acm.org/10.1145/1122501.1122505
http://doi.acm.org/10.1145/1661412.1618497
http://doi.acm.org/10.1145/1661412.1618497
http://doi.acm.org/10.1145/2037703.2037706
http://www-imagis.imag.fr/Publications/1998/MN98b/EGWR98.ps.gz
http://www-imagis.imag.fr/Publications/1998/MN98b/EGWR98.ps.gz
http://dx.doi.org/10.2312/VG/VG05/117-125
http://dl.acm.org/citation.cfm?id=1785794.1785832
http://www.graphicsinterface.org/pre1996/95-Neyret.ps.gz
http://www.graphicsinterface.org/pre1996/95-Neyret.ps.gz
http://hal.inria.fr/inria-00073835
http://dx.doi.org/10.1109/2945.675652
http://doi.acm.org/10.1145/2487228.2487234
http://doi.acm.org/10.1145/2487228.2487234
http://doi.acm.org/10.1145/2077341.2077347


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

OLANO, M., AND BAKER, D. 2010. Lean mapping. In Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, I3D ’10, 181–188. http://doi.acm.org/10.1145/1730804.1730834.
29

OLANO, M., AND NORTH, M. 1997. Normal distribution mapping. Univ. of North Carolina
Computer Science Technical Report, 97–041. http://www.cs.unc.edu/~olano/
papers/ndm/. 29

OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000. Relief texture mapping. In
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH
’00, 359–368. http://dx.doi.org/10.1145/344779.344947. 28

PENG, J., KRISTJANSSON, D., AND ZORIN, D. 2004. Interactive modeling of topologically
complex geometric detail. 635–643. http://doi.acm.org/10.1145/1186562.
1015773. 18, 21, 28, 34, 37, 38, 39, 43, 45

PERLIN, K., AND HOFFERT, E. M. 1989. Hypertexture. In Proceedings of the 16th An-
nual Conference on Computer Graphics and Interactive Techniques, ACM, New York,
NY, USA, SIGGRAPH ’89, 253–262. http://doi.acm.org/10.1145/74333.

74359. 26

PERLIN, K. 1985. An image synthesizer. SIGGRAPH Comput. Graph. 19, 3 (July), 287–296.
http://doi.acm.org/10.1145/325165.325247. 26

PIETRONI, N., CIGNONI, P., OTADUY, M., AND SCOPIGNO, R. 2010. Solid-texture syn-
thesis: A survey. IEEE Comput. Graph. Appl. 30, 4 (July), 74–89. http://dx.doi.
org/10.1109/MCG.2009.153. 27

POLICARPO, F., AND OLIVEIRA, M. M. 2006. Relief mapping of non-height-field surface
details. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, I3D ’06, 55–62. http://doi.acm.org/10.1145/

1111411.1111422. 18, 21, 28, 42, 45

PORUMBESCU, S. D., BUDGE, B., FENG, L., AND JOY, K. I. 2005. Shell maps. 626–633.
http://doi.acm.org/10.1145/1186822.1073239. 21, 24, 36, 37, 39, 40, 41,
44, 48

QUILEZ, I. 2008. Rendering worlds with two triangles with raytracing on the gpu in 4096
bytes. NVSCENE. 46

RITSCHE, N. 2006. Real-time shell space rendering of volumetric geometry. In Proceedings
of the 4th International Conference on Computer Graphics and Interactive Techniques in
Australasia and Southeast Asia, ACM, New York, NY, USA, GRAPHITE ’06, 265–274.
http://doi.acm.org/10.1145/1174429.1174477. 21, 28, 36, 39, 41, 45

SATHERLEY, R., AND JONES, M. W. 2002. Hypertexturing complex volume objects. The Vi-
sual Computer 18, 4, 226–235. http://dx.doi.org/10.1007/s003710100143.
27

58

http://jcgt.org
http://doi.acm.org/10.1145/1730804.1730834
http://www.cs.unc.edu/~olano/papers/ndm/
http://www.cs.unc.edu/~olano/papers/ndm/
http://dx.doi.org/10.1145/344779.344947
http://doi.acm.org/10.1145/1186562.1015773
http://doi.acm.org/10.1145/1186562.1015773
http://doi.acm.org/10.1145/74333.74359
http://doi.acm.org/10.1145/74333.74359
http://doi.acm.org/10.1145/325165.325247
http://dx.doi.org/10.1109/MCG.2009.153
http://dx.doi.org/10.1109/MCG.2009.153
http://doi.acm.org/10.1145/1111411.1111422
http://doi.acm.org/10.1145/1111411.1111422
http://doi.acm.org/10.1145/1186822.1073239
http://doi.acm.org/10.1145/1174429.1174477
http://dx.doi.org/10.1007/s003710100143


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

SCHILLING, A. 1997. Towards real-time photorealistic rendering: Challenges and solutions.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware, ACM, New York, NY, USA, HWWS ’97, 7–15. http://doi.acm.org/10.

1145/258694.258701. 29

SZIRMAY-KALOS, L., AND UMENHOFFER, T. 2008. Displacement mapping on the gpu -
state of the art. Computer Graphics Forum 27, 6, 1567–1592. http://dx.doi.org/
10.1111/j.1467-8659.2007.01108.x. 20, 23

TAN, P., LIN, S., QUAN, L., GUO, B., AND SHUM, H.-Y. 2005. Multiresolution re-
flectance filtering. In Proceedings of the Sixteenth Eurographics Conference on Rendering
Techniques, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, EGSR’05,
111–116. http://dx.doi.org/10.2312/EGWR/EGSR05/111-116. 29

TOKSVIG, M. 2005. Mipmapping normal maps. Journal of Graphics, GPU, & Game Tools
10, 3, 65–71. http://dx.doi.org/10.1080/2151237X.2005.10129203. 29

WANG, L., WANG, X., TONG, X., LIN, S., HU, S., GUO, B., AND SHUM, H.-Y. 2003.
View-dependent displacement mapping. ACM Trans. Graph. 22, 3 (July), 334–339. http:
//doi.acm.org/10.1145/882262.882272. 21, 31, 43, 45

WANG, X., TONG, X., LIN, S., HU, S., GUO, B., AND SHUM, H.-Y. 2004. Generalized
displacement maps. In Proceedings of the Fifteenth Eurographics Conference on Rendering
Techniques, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, EGSR’04,
227–233. http://dx.doi.org/10.2312/EGWR/EGSR04/227-233. 21, 31, 35,
39, 43, 44, 45

WANG, J., TONG, X., SNYDER, J., CHEN, Y., GUO, B., AND SHUM, H.-Y. 2005. Cap-
turing and rendering geometry details for btf-mapped surfaces. The Visual Computer 21,
8-10, 559–568. http://dx.doi.org/10.1007/s00371-005-0318-y. 21, 28,
43, 45

WESTIN, S. H., ARVO, J. R., AND TORRANCE, K. E. 1992. Predicting reflectance functions
from complex surfaces. SIGGRAPH Comput. Graph. 26, 2 (July), 255–264. http://

doi.acm.org/10.1145/142920.134075. 22

WILLIAMS, L. 1983. Pyramidal parametrics. ACM, New York, NY, USA, vol. 17, 1–11.
http://doi.acm.org/10.1145/964967.801126. 29

ZHOU, K., HUANG, X., WANG, X., TONG, Y., DESBRUN, M., GUO, B., AND SHUM, H.-
Y. 2006. Mesh quilting for geometric texture synthesis. ACM Trans. Graph. 25, 3 (July),
690–697. http://doi.acm.org/10.1145/1141911.1141942. 21, 27, 36, 38,
39

Charalampos Koniaris, Darren Cosker, Xiaosong Yang, and Kenny Mitchell, Texture Mapping
Techniques for Volumetric Mesostructure, Journal of Computer Graphics Techniques (JCGT),
vol. 3, no. 2, 18–59, 2014
http://jcgt.org/published/0001/03/02/

59

http://jcgt.org
http://doi.acm.org/10.1145/258694.258701
http://doi.acm.org/10.1145/258694.258701
http://dx.doi.org/10.1111/j.1467-8659.2007.01108.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01108.x
http://dx.doi.org/10.2312/EGWR/EGSR05/111-116
http://dx.doi.org/10.1080/2151237X.2005.10129203
http://doi.acm.org/10.1145/882262.882272
http://doi.acm.org/10.1145/882262.882272
http://dx.doi.org/10.2312/EGWR/EGSR04/227-233
http://dx.doi.org/10.1007/s00371-005-0318-y
http://doi.acm.org/10.1145/142920.134075
http://doi.acm.org/10.1145/142920.134075
http://doi.acm.org/10.1145/964967.801126
http://doi.acm.org/10.1145/1141911.1141942
http://jcgt.org/published/0001/03/02/


Journal of Computer Graphics Techniques
Texture Mapping Techniques for Volumetric Mesostructure

Vol. 3, No. 2, 2014
http://jcgt.org

Received: 2013-09-25
Recommended: 2013-11-22 Corresponding Editor: Reynold Bailey
Published: 2014-02-27 Editor-in-Chief: Morgan McGuire

© 2014 Charalampos Koniaris, Darren Cosker, Xiaosong Yang, and Kenny Mitchell (the Au-
thors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND 3.0
license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors fur-
ther grant permission reuse of images and text from the first page of the Work, provided that
the reuse is for the purpose of promoting and/or summarizing the Work in scholarly venues
and that any reuse is accompanied by a scientific citation to the Work.

60

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

