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Figure 1. A few examples of meshes from the SHREC’10 Generic 3D Warehouse
dataset [Vanamali et al. 2010] with incorrect facet orientations (top row), and the results of
our automatic correction method (bottom row).

Abstract

We present a method for fixing incorrect orientations of facets in an input polygon mesh, a
problem often seen in popular 3D model repositories, such that the front side of facets is visi-
ble from viewpoints outside of a solid shape represented or implied by the mesh. As opposed
to previously proposed methods which are rather complex and hard to reproduce, our method
is very simple, only requiring sampling visibilities by shooting many rays. We also propose
a simple heuristic to handle interior facets that are invisible from exterior viewpoints. Our
method is evaluated extensively with the SHREC’10 Generic 3D Warehouse dataset contain-
ing 3168 manually designed meshes, and is demonstrated to be very effective.
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1. Introduction

Polygon meshes are a fundamental primitive in computer graphics and other fields
that rely on geometric manipulation, from geoscience to medicine. A polygon mesh
generally consists of a set of 3D vertex positions and a set of polygonal facets each
defined by an ordered list of vertex indices. The ordering of vertices of a facet deter-
mines its orientation; i.e., by convention, if we see the ordering of vertices of a facet
as counterclockwise from a particular viewpoint, we consider the facet to be showing
its front side. Having “correct” facet orientations is essential for various applications
such as back face culling, rendering with two-sided colors, inside-outside segmenta-
tion [Jacobson et al. 2013], and collision response [Harmon et al. 2008]. Here, the
“correctness” of facet orientations is defined as follows: a facet’s orientation is correct
if its front side corresponds to the “outside” of a solid object represented or implied
by the mesh. This definition is not applicable to a mesh which does not represent
or imply a solid object, a common example of which is a “single-faceted” geometry
representing an infinitely thin part with only one sheet of facets, see Figure 7. Such
cases are excluded from the scope of this paper.

Unfortunately, it is still common today to encounter polygon meshes with incor-
rect facet orientations when working from Internet repositories, including commercial
sites such as TurboSquid. We speculate that one cause is that many popular polygon-
based 3D modeling tools, such as SketchUp, use double-sided lighting that ignores
facet orientations. This allows modelers to create polygon meshes with arbitrary facet
orientations and provides no visual feedback on the error in the content creation tool.
Not all tools have this problem. For example, solid modeling tools such as ZBrush
and CATIA produce solid shapes with a clearly-defined inside and outside that export
without error to surface meshes.

Incorrect facet orientations may also arise when compositing multiple meshes
from different sources. The top row of Figure 1 shows a few examples of such in-
correct facet orientations found in the popular SHREC’10 Generic 3D Warehouse
dataset [Vanamali et al. 2010]. In this paper, we describe an automatic method for
correcting such facet orientations. The bottom row of Figure 1 shows a sample result
by this method.

1.1. Previous methods

There exist three methods in the literature for correcting facet orientations in polygon
meshes. Murali and Funkhouser’s method [1997] computes a discrete harmonic
function over a tessellation of the 3D space (either via Binary Space Partitioning or
tetrahedralization) whose sign encodes whether a given 3D position is inside (posi-
tive) or outside (negative) of a solid shape implied by the input polygon mesh. Each
facet can be reoriented by integrating the function values over its area on its front and
back sides separately and comparing the results. Because the function values on the
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Figure 2. An example in 2D (representing a pants with an accessory) where Murali and
Funkhouser’s method [1997] fails because of overlapping facets: (a) input facets, (b) visual-
ization of the harmonic function, (c) binary coloring of the function, (d) result of orienting
each facet based on the sum of the function values on its two sides.

two sides of every facet are constrained to have the same absolute value but opposite
signs, the function value vanishes where the input mesh has open boundaries or inter-
sections, leading to unconfident indication of insideness or outsideness. In addition,
this method assumes that every facet lies on the boundary between inside and outside
of the implied solid shape, but such an assumption does not hold for meshes that are
not meant to imply a solid shape. Even if the mesh does represent a solid shape, the
assumption is wrong if there are some overlapping facets, often leading to unintended
facet orientations (Fig. 2). Additionally, robustly tessellating the 3D space while con-
forming to an arbitrary polygon mesh is far from trivial, which is another drawback
of this method.

Borodin et al.’s method [2004] and Zhou et al.’s method [2008] both sample
visibilities of facets by shooting many rays from outside the bounding box of the input
mesh to get an “initial guess” of facet orientations, followed by subsequent steps of
greedy aggregation (Borodin et al.) and graph-cut (Zhou et al.) to obtain final facet
orientations. However, it is unclear to what degree these subsequent steps improve
facet orientations computed in the visibility sampling step. In fact, Borodin et al.
claim in their Figure 9 that visibility sampling alone is insufficient and problematic,
which we question because visibility sampling should orient facets such that as few
as possible facets show their back sides to exterior viewpoints. Reproducing and
analyzing their results seem difficult, since quite a few hand-tuned parameters are
involved in these methods, and their reference implementations and datasets are not
readily available.

In this paper, we present a very simple method based solely on visibility sampling
for correcting facets in polygon meshes. We evaluate our method with the SHREC’10
Generic 3D Warehouse dataset and show that our method works sufficiently well for
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all the cases where the problem is well defined.

2. Method

2.1. Visibility sampling

Our method builds on Borodin et al.’s [2004] strategy for visibility sampling, which
is described in Section 3.4.1 of their paper. The basic idea is to orient each facet such
that its front side is more visible from outside, which is determined by shooting many
rays from the facet. Specifically, for each facet, a large number of points proportional
to the facet’s area are randomly sampled on the facet as the ray origins, and for each
ray origin, a ray direction is randomly sampled. Our modification to Borodin et al.’s
method is that for each ray origin and direction, we shoot two rays in opposite di-
rections to ensure that the same number of rays are shot for both sides of the facet.
If a ray shot on the facet’s front (resp. back) side does not intersect with any other
facets in the mesh, the corresponding counter cfront (resp. cback) is incremented. After
shooting all the rays, the facet is flipped if cfront < cback.

Handling interior facets. The above method cannot make any decisions for facets that
are completely occluded and invisible from outside (often representing some internal
structures, see Figure 8) because cfront and cback are both 0. We propose a simple
heuristic to handle such cases, where the basic idea is to orient an interior facet such
that the front side has more “free” space than the back side. Specifically, in the ray
shooting process as explained above, if a ray shot on the facet’s front (resp. back)
side intersects with some other facet, the distance between the ray origin and the
intersecting point is accumulated to the corresponding counter dfront (resp. dback).
After shooting all the rays, the facet is flipped if

(cfront < cback) or ((cfront = cback) and (dfront < dback)) . (1)

2.2. Ray intersection parity sampling

If the input mesh implies a solid shape and it has a narrow cavity invisible from the
outside, the above heuristic method may orient the facet at the cavity in a way that
contradicts with the implied solid shape (Figure 3b). For such cases, although they
seldom occur and are mostly of theoretical interest (see Section 3), we propose an
alternative method based on ray intersection parity (Figure 3c), which is achieved
with a slight modification to the above method. Specifically, the system employs the
same ray shooting process as the above method, but this time, for each ray, it detects
all the intersections with all the facets (i.e., without stopping at the first intersection),
and accumulates the number of intersections modulo 2 to counters pfront or pback cor-
responding to the ray direction. After shooting all the rays, the facet is flipped if
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Figure 3. 2D examples demonstrating the effect of the alternative method based on ray in-
tersection parity. (a, d) Input facets. (b, e) Result of the visibility sampling method with the
heuristic to handle the interior facet. (c, f) Result of the alternative method based on ray inter-
section parity. The color map visualizes the generalized winding number function [Jacobson
et al. 2013] defined by the given facet orientations.

pfront > pback.
Because this method assumes that the input mesh implies a solid shape, it may

produce some unintuitive facet orientations if the assumption is violated, similar to
Murali and Funkhouser’s method [1997]. If the input mesh contains both overlapping
facets and facets representing internal cavities invisible from outside, neither of the
above two methods produce facet orientations that we would expect (Figure 3e-f).
However, such cases were never observed in the dataset we used in the evaluation.

3. Evaluation

Dataset. We used the SHREC’10 Generic 3D Warehouse dataset [Vanamali et al.
2010] to evaluate the performance of our method. This dataset was created by first
collecting SketchUp (*.skp) files from the Google 3D Warehouse and then manually
processing them (e.g., decomposing a scene with many related objects into individual
objects) so that the dataset is suitable for benchmarking shape retrieval algorithms. It
contains 3168 meshes, most of which are far from being clean and watertight: they
very often have various types of defects such as disconnected facets with random
orientations and self-intersecting/coplanar facets. We believe this dataset to be a fairly
good representation of meshes manually created by general users.
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Figure 4. A motorcycle model (left, named 2292.off in the dataset) whose backfacingness

is measured to be 0.2756 according to rendered images with two-sided coloring (right).

Note that meshes in the dataset often contain single-faceted facets representing
infinitely thin objects (e.g., fish fins) or facets invisible from outside representing in-
terior objects (e.g., car seats). In such cases, the “correct” facet orientations can only
be decided by the authors of the meshes according to their intentions, which makes
it impossible to define the ground-truth facet orientations for the dataset. Therefore,
in the following, we do not discuss the performance of our method in terms of “accu-
racy”.

Backfacingness measure. Nevertheless, we use a measure called backfacingness
which tells us how much of a given mesh’s facets are showing their back sides to
distant viewpoints, to measure the plausibility of the facet orientations at least when
viewed from outside. To compute this measure, we first render the mesh into a frame-
buffer with two-sided coloring and orthographic projection from a few view directions
(Fig. 4). The measure is then obtained as the ratio of the number of pixels coming
from the back side to the total number of drawn pixels. We found that the framebuffer
resolution of 10242 and 6 canonical view directions provide sufficiently good reliabil-
ity in practice. Note again that this measure is irrelevant for single-faceted parts and
interior objects/cavities where neither of the two orientations is more plausible than
the other in general.

Preprocessing. We implemented a preprocessing step of extracting manifold patches
similar to Borodin et al.’s method (in Section 3.2 of their paper) where the basic idea
is to group facets connected by manifold edges (i.e., edges shared by exactly two
facets) into a manifold patch. However, we found that there are quite a few cases
where the extracted patch structures are rather unexpected because of the complicated
mesh connectivities designed by hand. Figure 5a shows an example where the facets
for the top cover and the bottom support of the piano model are grouped as patches
in an undesirable way. To circumvent this problem, we omit the patch extraction step
in a default setting and process individual facets independently (Fig. 5b). Note, how-
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Figure 5. Pros and cons of patch-wise and facet-wise processing. Patch IDs are visual-
ized with different colors, and backfacing facets are rendered darker. In some cases, manifold
patches are extracted in an unexpected manner (a) because of the complicated mesh connectiv-
ities in the input meshes; in this case of the piano model (2371.off), there are non-manifold
edges in the base of the piano, and decomposing them into oriented manifold patches led to an
unexpected result with the top cover and the bottom support being grouped together, whereas
processing each facet independently is more appropriate (b). However, for single-faceted ge-
ometries whose front-side and back-side visibilities are mostly the same, such as the back
seat of the chair model (938.off), extracting manifold patches and processing patch-wise is
more appropriate (c), otherwise the visibility-based decision for each facet can fluctuate (d).

ever, that this setting can be inappropriate for meshes that represent thin parts with
single-faceted facets; for such cases, omitting the patch extraction step may result in
some neighboring facets oriented in opposite directions (Fig. 5d). Another prepro-
cessing step we employ as a default setting is to eliminate facets with identical vertex
sets. Quite a few meshes in the dataset contain multiple facets that have the exact
same set of vertices (in the same or reversed orientation). Such facets can lead to the
generation of numerous spurious patches, and may also confuse the ray intersection
engine.

Results. We applied our method with the default settings (i.e., patch extraction be-
ing skipped, all facets having unique vertex sets) to all the 3168 meshes in the dataset.
The average and the standard deviation of the backfacingness measure are 0.19 and
±0.26 for the original meshes, and 0.0026 and ±0.0063 for the output meshes, re-
spectively. Figures 1 and 6 show some results where the output meshes are oriented
in a natural way. Figure 7 shows some output meshes with higher backfacingness
remaining. Note that all the facets showing their back sides belong to single-faceted
geometry representing very thin parts, and therefore there is no way to reduce the
backfacingness any further. Figure 8 shows some results containing interior objects
invisible from the outside, such as car seats. Note how our heuristic described in Sec-
tion 2.1 works successfully for orienting interior objects. By manually and carefully
inspecting each mesh in the database, we confirmed that there are no cases where our
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Figure 6. Results of our method. In each pair, the original facet orientations and the facet
orientations corrected by our method are shown on the left and on the right, respectively.

Figure 7. Examples where the backfacingness measures remain relatively high after process-
ing, due to the single-faceted geometry.

Figure 8. Results with meshes containing interior objects. In each set, the original and
the processed facet orientations are shown on the left and right columns, respectively. The
top and bottom rows show the exterior views and the cut-away views exposing the interior,
respectively.

alternative method described in Section 2.2 is more suitable. Table 1 shows how
much backfacingness was reduced for each of these results.
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Fig Model (ID) Backfacingness Fig Model (ID) Backfacingness
1 Bicycle (103) 0.3743 → 0.0085 6 Woman (3120) 0.5343 → 0.0003

Cell phone (835) 0.3000 → 0.0287 7 Chair 3 (914) 0.5755 → 0.3743
Chair 1 (994) 0.6344 → 0.0880 Fish (1335) 0.1499 → 0.1499
Truck 1 (2983) 0.2458 → 0.0344 Keyboard (1635) 0.4819 → 0.4811

6 Bird (164) 0.5535 → 0.0073 Lamp (1953) 0.4803 → 0.2477
Chair 2 (994) 0.6344 → 0.0880 8 Bus (619) 0.0544 → 0.0001
Guitar (1437) 0.5556 → 0.0009 Parts (1065) 0.0000 → 0.0000
Lamp 1 (1990) 0.5868 → 0.0273 Train (2800) 0.3002 → 0.0020
Truck 2 (2867) 0.5693 → 0.0050

Table 1. The reduction of backfacingness for each of the results in the paper. The ID of a
model denotes its file name in the dataset (e.g., a model with ID 103 is named as 103.off).

Performance. We implemented our method in C++ using the libigl1 library for ge-
ometry manipulation and the Embree2 library for ray tracing. We include the source
code of this implementation with our supplementary material. Processing the largest
mesh in the dataset, 1938.off with 16k vertices and 92k triangles, using 3 million
rays takes about 10 seconds under this implementation on an Intel Core i7 2.6 GHz
CPU with 8 GB of RAM.
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