Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

Efficient GPU Screen-Space Ray Tracing

Morgan McGuire Michael Mara
Williams College

Figure 1. Reflections in ripply water approximated by a scen spce ray tracer in 2 ms at
1080p on GeForce 650M.

Abstract

We present an efficient GPU solution for screen-space 3D ray tracing against a depth buffer
by adapting the perspective-correct DDA line rasterization algorithm. Compared to linear
ray marching, this ensures sampling at a contiguous set of pixels and no oversampling. This
paper provides for the first time full implementation details of a method that has been proven
in production of recent major game titles. After explaining the optimizations, we then extend
the method to support multiple depth layers for robustness. We include GLSL code and
examples of pixel-shader ray tracing for several applications.

1. Introduction

Ray casting is a fundamental computer-graphics primitive for determining visibility
between two points and for discovering the next surface intersection on a path that
transports light through a scene. (Ray tracing is technically the process of recursively

73

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

casting rays based on discovered hit points initially described by Turner Whitted.
However, so many ray-based algorithms have since been developed that “casting” and
“tracing” are now often used interchangeably, with the latter perhaps more popular.)

The inputs to a ray-tracing algorithm are a ray and a scene. Different tracing
algorithms are preferred for different scene data structures. Important structures in-
clude dynamic triangles in a bounding-volume hierarchy [Wald et al. 2007], implicit
surfaces [Blinn 1982; Hart 1994], dense voxels [Amanatides and Woo 1987], sparse
voxels [Laine and Karras 2011], and regular heightfields [Musgrave 1988; Henning
and Stephenson 2004]. Different algorithms are also preferred for different architec-
tures. Today all high-performance processors are concurrent vector processors, which
primarily differ only in vector width, thread count, and ALU/bandwidth ratio.

Ray tracing against the scene data structure of a depth buffer, perhaps with mul-
tiple layers, is at the core of many new research and already-deployed industry algo-
rithms. The depth buffer naturally gives a strong bound on scene complexity, allows
fully-dynamic scenes, is efficiently built as a natural side-effect of rasterization, and
captures all visible surfaces. Ambient occlusion, reflection, refraction, and even full
screen-space path tracing can be implemented using only a depth buffer, with vary-
ing quality of approximation versus a geometric scene representation. Of course, the
depth buffer fails to represent areas of high depth complexity and those far outside the
viewport. However, a guard band around the viewport and fallback outside the view
frustum to some other data structure, such as a voxel grid, improve trace quality.

1.1. Linear 3D lteration

The current state of the art for screen-space ray tracing on a GPU was presented by
Sousa et al. [2011] of Crytek, for the application of mirror reflection tracing in games.
This widely-deployed method linearly ray marches a sample point along a 3D ray for
a bounded distance. It projects each 3D point into screen space and classifies it as a
ray hit if the point is behind the depth buffer at that pixel. Some extensions are binary
search to refine the final hit point and heuristics to detect depth discontinuities and
hits against “backfaces” Sousa et al. described the properties of this method but not
specifics, which are given in the supplement of Mara et al.’s paper [2014]. Crytek’s
Crysis 3 and the game Just Cause 2 by Avalanche Studios, published by Eidos Inter-
active in 2010, are major commercial games that appear to use this technique, based
on artifacts visible in reflections. Ganestam and Doggett [2014] extend this method
for refraction as well as reflection. Their method uses a combination of screen-space
data and a geometric bounding-volume hierarchy. Their observations on representing
finite surface thickness are particularly relevant for robustness, and we incorporate
those ideas later in this paper.

Linearly marching in 3D is reasonable for low-quality reflections on legacy game
consoles. Those machines are limited by memory bandwidth to only about five sam-

74

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014

Efficient GPU Screen-Space Ray Tracing http://jcgt.org
[T 1] [1]
FEET amm
EEF] LT
EEEE mEs
L EE] [T 1]
LT
a8 nes
BE
a [L1
an
[T 1]
L1
L] L]

Figure 2. Sampled pixels along a ray, where more red is more oversampled. Linear 3D ray
marching (left) skips some pixels and oversamples others. The linear 2D iteration (right) that
we describe addresses both drawbacks.

ples per pixel at 30 fps. Yet, taking so few samples misses many intersections, due
both to large steps across the scene and termination before finding any intersection.
Higher quality through more samples is desirable on faster GPUs with more band-
width. Sousa et al.’s method extends to this case but becomes inefficient because
linear 3D marching is not equivalent to linearly marching in 2D for most rays (fig-
ure 2). So, even with a high number of steps, it may still miss many depth-buffer
pixels (which is a source of error) and will sample the same pixels multiple times
(which is inefficient).

1.2. Linear 2D lteration

Recent advances for tracing a ray linearly in 2D across a screen-space depth buffer
address the limitations of the linear 3D approach and provide the following properties:

Places each sampled pixel adjacent (in x, y, or diagonally) to the previous one.
Samples each pixel at most once.
Clips the ray to the view frustum.

O e

Efficiently uses GPU resources by minimizing register consumption, divergent
execution, and expensive operations.

The first property addresses quality. The last three address efficiency. Algorithms
with these properties have been proved in practice through games available in the
last two years. The underlying method of 2D iteration is well known and about 20
years old; the evolution of 2D line rasterization from Bresenham’s algorithm through
DDA and Musgrave’s heightfield applications are covered in standard textbooks to-
day. What the recent games brought was the details needed for reflection tracing and
optimizations for modern GPU (or equivalently, CPU SIMD) architectures. Wron-
ski [2014a, 80][2014b] and Valient [2014b, 90][2014a] sketched the algorithms in
recent presentations. In this paper, we provide practical details needed to implement
such algorithms. We developed these in our own production use and through discus-
sions with those authors. We then explain why the implementation that we provide is
efficient in the context of a GPU architecture.

We also offer some extensions. These include relaxing the adjacency constraint
(to support controlled spacing between samples for efficiency), jittering (to compen-

75

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

sate for the banding artifacts that result from such spaced samples), and application to
multiple depth layers (for robustness). These depth layers are those that are produced
by depth peeling. However the depth peeling algorithm is slow, so on modern GPUs
we prefer faster single-pass methods (e.g., [Mara et al. 2014]) based around reverse
reprojection, multiple viewport, and multiple rasterization.

We observe that marching along a 3D ray with samples placed at unique and
adjacent 2D pixels is equivalent to perspective-correct rasterization of the portion
of the ray that lies within the view volume. So, we adapt a thin-line rasterization
algorithm to the application of ray casting. This can step diagonally between pixels.
If that is undesirable, then we suggest extending it to conservative line rasterization
but have not done so ourselves.

2. Challenges of 2D lteration

Current GPUs support both integer and floating-point operations, but only floating-
point is at full speed. The preferred floating-point line-rasterization algorithm is a
Digital Differential Analyzer (DDA). Listing 1 gives pseudocode for a line-segment
DDA for the first (+x, +y) quadrant of the plane.

def drawLine (x9, Yo, X1, Y1):
if x1—xo>y1—yo:

slope = 2L
X1 — X0
for t=0 to x;—xp: setPixel (xg+t, Yyo-+t-slope)
else:
X1 — X
slope = =70
y1r—Yo

for t=0 to y;—yp: setPixel (xo+1?-slope, yo+1)

Listing 1. Pseudocode for a 2D thin-line DDA rasterizer.

The arithmetic operations in the DDA are well-suited to the GPU because the
inner loop contains simple fused multiply-add (FMUL) instructions. The major per-
formance bottleneck is the branch. A typical application of screen-space ray-tracing
has each pixel trace its own ray, e.g., for a reflection. GPUs group pixels into “warps”
or “wavefronts” (e.g., of 8 x 4 = 32 pixels on today’s architectures) of adjacent pix-
els, each of which runs on a single core of a superscalar processor. At a statement
where pixels within a group branch in different directions, the GPU must compute
both sides of the branch, issuing no operation to a portion of the vector lanes for each
branch. So, while branch instructions themselves are often relatively expensive com-
pared to arithmetic instructions, their most important cost is that divergent execution
will reduce throughput by one half for each nested branch.

We gave pseudocode for the first quadrant. To build a practical DDA implemen-
tation, one must flip iteration directions based on the quadrant, clip to the viewport,
and handle single-pixel lines. Those transformations are tedious but straightforward

76

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

to implement. Unfortunately, they also mean that a practical DDA requires a signif-
icant number of branches in the classic form, making it inefficient on a GPU'.
Rasterizing a 3D line segment is very similar to rasterizing a 2D one. Rasteri-
zation can trivially interpolate any property linearly along the iteration direction. If
the property is in homogeneous space, then the result will be linear interpolation of
the corresponding value in 3D. Specifically, let point Q be a 3D point on the ray and
H =M-(Q,1) be its homogeneous perspective projection by matrix M. Properties
k=1/(H-(0,0,0,1)) and Q -k interpolate linearly in 2D. So, treating the point and

reciprocal of the homogeneous w as functions along the 2D line, @, %, a%k), and

% are constant in screen space. At any 2D point (x,y), the corresponding 3D point is

(Q'k)(xay)‘

Q' (x,y) =)

)

3. An Efficient GPU DDA Solution

Listings 2 and 3 are our GPU-optimized ray tracer based on a DDA, with support
for between one and four depth layers. We break it into two listings and format it
specially for readability in this paper. The full code as a standalone file with additional
comments is available on the JCGT website, including a separate version with specific
optimizations for the common single depth-layer case.

The classic DDA suffered divergence from eight cases (4 quadrants x 2 iteration
directions). We unified these (line 48) by permuting axes in lines 30-34 and taking
derivatives relative to sign(delta.x) so iteration is always on the x-axis. Matrix
permute compensates for the permutation in the vertical case, so all code after line 34
can assume iteration in x.

The practical DDA also required expensive frustum clipping. We observe that for
screen-space ray tracing, the caller can trivially ensure the ray origin lies within the
view frustum. So, we clip only the far end of the ray against the near plane in line 12.
We implicitly clip to the viewport by structuring our test so that the zero value returned
by texelFetch for an out-of-bounds depth-buffer sample will terminate iteration (we
also provide efficient viewport clipping code in listing 4 for reference.)

From this optimized structure, we then applied GPU programming best practices:
minimize peak register count, use conditional assignment instead of branches, mul-
tiply by precomputed inverses instead of dividing, use floating point instead of inte-
ger, minimize instructions within the inner loop (for the instruction cache), and favor

'AGPU already has a hardware implementation of parallel rasterization, although it is not accessible
to software for 2D ray-tracing. Ignoring access, one might ask why that implementation is efficient on a
GPU if a classic DDA is not? Part of the answer is that hardware rasterization is fixed point and may not
use DDA. But more importantly, it rasterizes a single primitive across multiple processing units, whereas
for pixel-shader ray tracing, we need to process multiple primitives (the rays for all pixels in the group)
on the single GPU core handling that group. That is, the difference is deep vs. wide parallelism.

77

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

FMUL over other operations.

Preprocessor loops (e.g., line 4) are a feature of the G3D Innovation Engine
(http://g3d.sf.net) and not standard GLSL. Many frameworks support these;
for others, the loops may be expanded manually. We use them to generalize the ray
trace to multiple depth layers. They are unnecessary for single depth-buffer tracing.

The function input arguments are: camera-space ray origin csorig and direction
csDir; the matrix proj that projects from camera-space position to pixel screen po-
sition, along with explicit (negative) nearPlanez; the depth buffer cszBuffer, its
dimensions cszBufferSize, and encoding (cszBufferIsHyperbolic); the camera-
space zThickness to ascribe to each point in a depth buffer; the maxDistance in
camera-space and maxSteps to trace, and stride information. Setting stride = 1.0
produces thin-line rasterization. Larger values space samples for efficiency, at a loss
of quality. That also introduces banding, which can be concealed by setting the
jitter € [0, 1] amount to bump the ray in pixels. We use right-handed camera space
where +z is out of the screen.

The function returns true if the ray hits a surface, with output parameters giving
the hitpixel coordinates, the hitLayer in the depth buffer (useful when
numLayers > 1), and the camera-space csHitPoint. To reduce the loop body and
increase instruction caching, we break out of the loop on a hit but don’t check if it
was a legal screen coordinate until line 84.

Within the function, po and p1 are the screen-space pixel endpoints of the line
segment. None of the divisions will encounter a zero denominator: by line 19, the
ray was already clipped to the near plane so there is no w = 0 singularity; and line 27
guarantees that delta. x later will be nonzero even for the case of a single-pixel line.
The optional viewport clipping code also avoids division by zero because the extent
is never zero when clipping is required.

It is likely that the application will trace many rays that touch the same pixels.
Converting the hyperbolically encoded values in a standard depth buffer to camera-
space z values for each iteration at each pixel will then be expensive. For convenience,
if cszBufferIsHyperbolic = true, then our implementation will accept a standard
depth buffer and use lines 66-70 to convert each value to camera-space. However, it
prefers a floating-point buffer of precomputed (negative) camera-space values.

The code tracks up to four depth-buffer layers in scenezMax at each pixel. It
assumes that each represents the front of a frustum-shaped voxel that extends away
zThickness in z. Within a pixel, the ray itself covers the z interval [rayzMin, rayzMax].
The ray hits the depth buffer at a pixel if this overlaps a voxel in any layer.

Our implementation assumes that pixel (0, 0) is the upper-left corner of the screen.
To switch to the lower-left corner convention, modify the final hit point by

hitPoint.y = csZBufferSize.y - hitPoint.y.

78

http://jcgt.org
http://g3d.sf.net

0NN BA W —

A B B B BB W W W W LW L L LW LW WK NN NDNDDNDDNDDNDDND= = = = = = = =
DN B W= O VoI WLWNDFFE OOV P WNDRE, OO N A WD~ O\

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

#define point2 vec2
#define point3 vec3

#for (int numLayers = 1; numLayers < 5; ++numlayers)

bool traceScreenSpaceRay##numLayers (point3 csOrig, vec3 csDir, matdx4 proj,
sampler2D csZBuffer, vec2 csZBufferSize, float zThickness,
const bool csZBufferIsHyperbolic, vec3 clipInfo, float nearPlaneZ,
float stride, float jitter, const float maxSteps, float maxDistance,
out point2 hitPixel, out int hitLayer, out point3 csHitPoint) {

// Clip to the near plane

float raylength = ((csOrig.z + csDir.z % maxDistance) > nearPlaneZ) ?
(nearPlaneZ - csOrig.z) / csDir.z : maxDistance;

point3 csEndPoint = c¢sOrig + csDir * rayLength;

hitPixel = point2 (-1, -1);

// Project into screen space

vec4d HO = proj * vecd(csOrig, 1.0), H1l = proj * vecd(csEndPoint, 1.0);
float k0 = 1.0 / HO.w, k1 = 1.0 / Hl.w;

point3 Q0 = csOrig % k0, Q1 = csEndPoint = kl1;

// Screen-space endpoints
point2 PO = HO.xy * k0, Pl = Hl.xy * kl1;

// [Optionally clip here using listing 4]

Pl += vec2((distanceSquared (PO, P1l) < 0.0001) 2 0.01 : 0.0);
vec2 delta = P1 - PO;

bool permute = false;
if (abs(delta.x) < abs(delta.y)) {
permute = true;

delta = delta.yx; PO = PO.yx; P1 Pl.yx;

float stepDir = sign(delta.x), invdx = stepDir / delta.x;

// Track the derivatives of Q and k.

vec3 dQ (01 - Q0) * invdx;

float dk (k1 - k0) » invdx;

vec2 dP = vec2(stepDir, delta.y x invdx);

dP %= stride; dQ *= stride; dk *= stride;
PO += dP x Jjitter; Q0 += dQ x jitter; k0 += dk x Jjitter;
float previZiMaxEstimate = csOrig.z;

Listing 2. Optimized GLSL screen-space ray trace (setup).

79

http://jcgt.org

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

// Slide P from PO to P1l, (now—homogeneous)
point3 Q = Q0; float k = k0, stepCount = 0.
for (point2 P = PO;
((P.x *« stepDir) <= end) && (stepCount < maxSteps);
P += dP, Q.z += dQ.z, k += dk, stepCount += 1.0) {

Q from Q0 to Q1, k from kO to k1l
0, end = Pl.x * stepDir;

// Project back from homogeneous to camera space
hitPixel = permute ? P.yx : P;

// The depth range that the ray covers within this loop iteration.

// Assume that the ray is moving in increasing z and swap if backwards.
float rayZMin = previZMaxEstimate;

// Compute the value at 1/2 pixel into the future

float rayZMax = (dQ.z * 0.5 + Q.z) / (dk % 0.5 + k);

prevZMaxEstimate = rayZMax;

if (rayZMin > rayZMax) { swap(rayZMin, rayZMax); }

// Camera-space z of the background at each layer (there can be up to 4)
vecd sceneZMax = texelFetch(cszBuffer, int2 (hitPixel), 0);

if (cszZBufferIsHyperbolic) {

for (int layer = 0; layer < numlayers; ++tlayer)
sceneZMax[layer] = reconstructCSZ (sceneZMax[layer], clipInfo);
endfor
}
float4 sceneZMin = sceneZMax - zThickness;
for (int L = 0; L < numLayers; ++L)
if (((rayZMax >= sceneZMin[L]) && (rayZMin <= sceneZMax[L])) ||
(sceneZMax[L] == 0)) {

hitLayer = layer;
break; // Breaks out of both loops, since the inner loop is a mact
}
endfor // layer
} // for each pixel on ray

// Advance Q based on the number of steps
Q.xy += dQ.xy * stepCount; hitPoint = Q x (1.0 / k);
return all (lessThanEqual (abs (hitPixel - (csZBufferSize x 0.5)),
csZBufferSize « 0.5));
}
#endfor

Listing 3. Optimized GLSL screen-space ray trace (inner loop).

80

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

O 03N N R W=

U
- o

float xMax=csZBufferSize.x-0.5, xMin=0.5, yMax=csZBufferSize.y-0.5, yMin=0.5;
float alpha = 0.0;

// Assume PO is in the viewport (Pl - PO is never zero when clipping)
if ((Pl.y > yMax) || (Pl.y < yMin))
alpha = (Pl.y - ((Pl.y > yMax) ? yMax : yMin)) / (Pl.y - PO.y);
if ((Pl.x > xMax) || (Pl.x < xMin))
alpha = max(alpha, (Pl.x - ((Pl.x > xMax) ? xMax : xMin)) / (Pl.x - P0.x));

Pl = lerp(Pl, PO, alpha); kl = lerp(kl, kO, alpha); Q01 = lerp(Ql, QO0, alpha);

Listing 4. Optional viewport clipping.

4. Parameters and Image Quality

Adjust the layer thickness to match the expected object thickness to improve image
quality. This allows rays to pass behind objects. It is most useful for a multi-layered
depth buffer. Figure 3 compares varying thickness in a simple scene with a single
buffer, where near-infinite thickness is also a reasonable choice.

Some rays will never hit a surface captured by the depth-buffer because those
rays travel farther than maxDistance or towards the camera. In this case, one can
fall back to tracing a different data structure, such as sparse voxels, or simply fetch
from an environment cube map based on the ray direction. Figure 4 (left) shows water
reflection and refraction for a box of teapots. The right side highlights pixels at which
ray misses occurred.

Several parameters allow the programmer to trade the image quality for perfor-
mance. Figure 5 shows the impact of adjusting stride and jitter. We recommend
stride> 1 only for rough surfaces, where details conceal artifacts. Reducing the ray
length by camera-space maxDistance and screen-space maxSteps gives the obvious
effects of shortening the ray and bounding worst-case computation time.

Figure 6 shows four applications of screen-space ray tracing. Reflection and re-
fraction each cost one ray cast per pixel and are reasonable for real-time applications.
The ambient occlusion and radiosity examples each cast 25 uniformly distributed rays
per pixel. We chose 25 rays because that was the highest count possible for real-time
performance on our desktop. These results are academically interesting, but since
they spend about 30 ms on just ray casts for global illumination, they are not vi-
able techniques in a real-time pipeline containing other graphics tasks. However, for
solving the specific problem of real-time global illumination today, we recommend a
much faster (= 3ms) approximation [2014]. That method is so fast because it casts no
rays...it instead samples within a ball and assumes that each point can transport light
directly to the center with no further occlusion.

81

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

Figure 3. Varying thickness. From left to right, zThickness ={ 1, 2, 5, 1000} meters.

Figure 4. Left) Teapots reflecting in water. Right) The left image with origins of rays that

missed the depth buffer and instead sampled the cube map are marked in yellow.

Image
stride 1 4 4
jitter 0.0 0.0 float ((c.x+c.y)&l) 0.5

Figure 5. An enlarged region of the reflection of the left teapot’s knob in figure 4. Stride sam-
ples trades quality for performance; jittering can help. ¢ = ivec2 (gl_FragCoord.xy).

Figure 6. The “Lucy” angel statue rendered with global illumination terms computed by ray
tracing in screen space plus a cube map of areas outside the viewport. a) Direct illumination

b) reflective chrome c) refractive glass d) ambient occlusion e) radiosity.

82

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

Ray tracing performance of course varies with the scene because it is linear in
the number of iterations before a hit is encountered or the maxDist is reached. At
1920 x 1080 resolution, casting a diagonal ray for 25 iterations of the inner loop
at every pixel costs 1.2 ms on a desktop NVIDIA GeForce Titan and 6.4 ms on a
MacBook NVIDIA GeForce 650M. (Here, we chose 25 iterations as the minimum
needed for reasonable image quality; it is a coincidence that this is the same constant
as the number of rays per pixel in the previous paragraph.)

The method from this paper has been both suitably fast and flexible for our appli-
cations. In closing, we note three natural extensions others might wish to explore as
future work. First, the trace could test all pixels that the ray passes through, instead
of allowing diagonal adjacency. This requires adapting a conservative rasterization
algorithm [Amanatides and Woo 1987; Wu 1991]. Second, when using stride > 1,
one might wish to refine the final hit point location by binary search over the final
interval. Third, subpixel refinement allows bilinear sampling of the screen color at
the hit point, which gives smoother indirect lighting effects.

Acknowledgements

We thank Bart Wronski, Michal Valient, and Michal Drobot for presenting their work
publicly and discussing it with us privately, and Ulf Assarsson for the many improve-
ments he contributed to this paper’s exposition.

References

AMANATIDES, J., AND W00, A. 1987. A fast voxel traversal algorithm for ray tracing.
In Eurographics, 3-10. URL: http://www.cse.yorku.ca/~amana/research/
grid.pdf. 74, 83

BLINN, J. F. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3
(July), 235-256. URL: http://doi.acm.org/10.1145/357306.357310. 74

GANESTAM, P., AND DOGGETT, M. 2014. Real-time multiply recursive reflections and
refractions using hybrid rendering. The Visual Computer, 1-9. doi:10.1007/s00371-014-
1021-7. 74

HART, J. C. 1994. Sphere tracing: A geometric method for the antialiased ray tracing of
implicit surfaces. The Visual Computer 12, 527-545. URL: http://graphics.cs.
illinois.edu/papers/zeno. 74

HENNING, C., AND STEPHENSON, P. 2004. Accelerating the ray tracing of height
fields. ACM, GRAPHITE ’04, 254-258. URL: http://doi.acm.org/10.1145/
988834.988878. 74

LAINE, S., AND KARRAS, T. 2011. Efficient sparse voxel octrees. I[EEE TVCG
17, 1048-1059. URL: http://doi.ieeecomputersociety.org/10.1109/
TVCG.2010.240. 74

83

http://jcgt.org
http://www.cse.yorku.ca/~amana/research/grid.pdf
http://www.cse.yorku.ca/~amana/research/grid.pdf
http://doi.acm.org/10.1145/357306.357310
http://graphics.cs.illinois.edu/papers/zeno
http://graphics.cs.illinois.edu/papers/zeno
http://doi.acm.org/10.1145/988834.988878
http://doi.acm.org/10.1145/988834.988878
http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.240
http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.240

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

MARA, M., MCGUIRE, M., NOWROUZEZAHRAI, D., AND LUEBKE, D. 2014.
Fast global illumination approximations on deep G-buffers. Tech. Rep. NVR-2014-
001, NVIDIA Corporation, June. URL: http://graphics.cs.williams.edu/
papers/DeepGBufferld4. 74,76, 81

MCGUIRE, M. 2013. The Graphics Codex, 2.7 ed. URL: http://graphicscodex.
com. 84

MUSGRAVE, K. F. 1988. Grid tracing: Fast ray tracing for height fields. Tech. Rep.
YALEU/DCS/RR-639, Yale University. 74

SousaA, T., KASYAN, N., AND ScHULzZ, N. 2011. Secrets of CryENGINE
3 graphics technology. In SIGGRAPH Courses, ACM, New York, NY,
USA. URL: http://www.crytek.com/cryengine/presentations/
secrets—-of-cryengine-3-graphics—technology. 74

VALIENT, M., 2014. Reflections and volumetrics of Killzone Shadow Fall. Presen-
tation at SIGGRAPH Advances in Real-Time Rendering in Games course. ~URL:
http://advances.realtimerendering.com/s2014/valient/Valient_
Siggraphl4_Killzone.pptx. 75

VALIENT, M., 2014. Taking Killzone Shadow Fall image quality into the next gener-
ation. Presentation at GDC’14. URL: http://www.guerrilla-games.com/
presentations/GDC2014_Valient_Killzone_Graphics.pdf. 75

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray tracing deformable scenes using
dynamic bounding volume hierarchies. ACM Trans. Graph. 26, 1 (Jan.). URL: http:
//doi.acm.org/10.1145/1189762.1206075. 74

WRONSKI, B., 2014. Assassin’s Creed 4: Black Flag, road to next-gen graphics. Presentation
at GDC’14. URL: http://bartwronski.files.wordpress.com/2014/03/
ac4_gdc.pdf. 75

WRONSKI, B., 2014. The future of screenspace reflections, Jan-
uary. Blog post. URL: http://bartwronski.com/2014/01/25/
the-future-of-screenspace-reflections/. 75

Wu, X. 1991. An efficient antialiasing technique. SIGGRAPH 25, 4 (July), 143-152. URL.:
http://doi.acm.org/10.1145/127719.122734. 83

Index of Supplemental Materials

Our supplemental materials are a fully-commented GLSL implementation of the ray tracing
algorithm (raytrace.glsl), and C++ and GLSL code (from the Graphics Codex [McGuire
2013]) for recovering z from a depth buffer value and other utilities (util. *).

84

http://jcgt.org
http://graphics.cs.williams.edu/papers/DeepGBuffer14
http://graphics.cs.williams.edu/papers/DeepGBuffer14
http://graphicscodex.com
http://graphicscodex.com
http://www.crytek.com/cryengine/presentations/secrets-of-cryengine-3-graphics-technology
http://www.crytek.com/cryengine/presentations/secrets-of-cryengine-3-graphics-technology
http://advances.realtimerendering.com/s2014/valient/Valient_Siggraph14_Killzone.pptx
http://advances.realtimerendering.com/s2014/valient/Valient_Siggraph14_Killzone.pptx
http://www.guerrilla-games.com/presentations/GDC2014_Valient_Killzone_Graphics.pdf
http://www.guerrilla-games.com/presentations/GDC2014_Valient_Killzone_Graphics.pdf
http://doi.acm.org/10.1145/1189762.1206075
http://doi.acm.org/10.1145/1189762.1206075
http://bartwronski.files.wordpress.com/2014/03/ac4_gdc.pdf
http://bartwronski.files.wordpress.com/2014/03/ac4_gdc.pdf
http://bartwronski.com/2014/01/25/the-future-of-screenspace-reflections/
http://bartwronski.com/2014/01/25/the-future-of-screenspace-reflections/
http://doi.acm.org/10.1145/127719.122734

Journal of Computer Graphics Techniques Vol. 3, No. 4, 2014
Efficient GPU Screen-Space Ray Tracing http://jcgt.org

Author Contact Information
Morgan McGuire and Michael Mara
Williams College

47 Lab Campus Drive
Williamstown, MA 01267
morgan@cs.williams.edu
http://graphics.cs.williams.edu

McGuire and Mara, Efficient GPU Screen-Space Ray Tracing, Journal of Computer Graphics
Techniques (JCGT), vol. 3, no. 4, 73-85, 2014
http://jcgt.org/published/0003/04/04/

Received: 2014-08-05
Recommended: 2014-08-10 Corresponding Editor: ~ Ulf Assarsson
Published: 2014-12-09 Acting Editor-in-Chief: Ulf Assarsson

(© 2014 McGuire and Mara (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

85

http://jcgt.org
mailto:morgan@cs.williams.edu
http://graphics.cs.williams.edu
http://jcgt.org/published/0003/04/04/
http://creativecommons.org/licenses/by-nd/3.0/

