
Journal of Computer Graphics Techniques Vol. 4, No. 1, 2015 http://jcgt.org

Building a Balanced k-d Tree in O(kn log n) Time

Russell A. Brown

	
  

X	
  

Y	
   Y	
  

Z	
   Z	
   Z Z

Figure 1. A balanced k -d tree that sorts (x, y, z) tuples.

Abstract

The original description of the k-d tree recognized that rebalancing techniques, such as are
used to build an AVL tree or a red-black tree, are not applicable to a k-d tree. Hence, in order
to build a balanced k-d tree, it is necessary to find the median of the data for each recursive
partition. The choice of selection or sort that is used to find the median for each subdivision
strongly influences the computational complexity of building a k-d tree.

This paper discusses an alternative algorithm that builds a balanced k-d tree by presorting
the data in each of k dimensions prior to building the tree. It then preserves the order of these
k sorts during tree construction and thereby avoids the requirement for any further sorting.
Moreover, this algorithm is amenable to parallel execution via multiple threads. Compared
to an algorithm that finds the median for each recursive subdivision, this presorting algorithm
has equivalent performance for four dimensions and better performance for three or fewer
dimensions.

1. Introduction

Bentley [1975] introduced the k-d tree as a binary tree that stores k-dimensional data.
Like a standard binary tree, the k-d tree subdivides data at each recursive level of the
tree. Unlike a standard binary tree that uses only one key for all levels of the tree, the
k-d tree uses k keys and cycles through these keys for successive levels of the tree.
For example, to build a k-d tree from three-dimensional points that comprise (x, y, z)
coordinates, the keys would be cycled as x, y, z, x, y, z... for successive levels of the

50 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

k-d tree. A more elaborate scheme for cycling the keys chooses the coordinate that
has the widest dispersion or largest variance to be the key for a particular level of
recursion [Friedman et al. 1977].

Due to the use of different keys at successive levels of the tree, it is not possible
to employ rebalancing techniques, such as are used to build an AVL tree [Adelson-
Velskii and Landis 1962] or a red-black tree [Bayer 1972; Guibas and Sedgewick
1978], when building a k-d tree. Hence, the typical approach to building a balanced
k-d tree finds the median of the data for each recursive subdivision of those data.
Bentley showed that if the median of n elements could be found in O (n) time, then
it would be possible to build a depth-balanced k-d tree in O (n log n) time. However,
algorithms that find the median in guaranteed O (n) time are somewhat complicated
[Blum et al. 1973; Cormen et al. 2009]. Quicksort [Hoare 1962] finds the median
in O (n) time in the best case, but in O

(
n2
)

time in the worst case [Wirth 1976].
Merge sort [Goldstine and von Neumann 1963] and heap sort [Williams 1964] find the
median in guaranteed O (n log n) time, which leads to O

(
n log2 n

)
time for building

a balanced k-d tree [Wald and Havran 2006].
An alternative approach to building a balanced k-d tree presorts the data prior

to building the tree and avoids resorting for each recursive subdivision. Two such
algorithms have been reported that sort triangles for three-dimensional graphics ray
tracing and that have best-case complexity of O (n log n) but undetermined worst-
case complexity [Havran and Bittner 2002; Wald and Havran 2006]. The algorithm
that is described in the present article presorts points in each of k dimensions prior
to building the k-d tree, then maintains the order of these k sorts when building a
balanced k-d tree and thereby achieves a worst-case complexity of O (kn log n).

2. Implementation

2.1. The O (kn log n) Algorithm

Consider the 15 (x, y, z) tuples that are stored in elements 0 through 14 of the “Tu-
ples” array that is shown at the left side of Figure 2. The k-d tree-building algorithm
begins by presorting the tuples in their x-, y- and z-coordinates via three executions
of merge sort. These three sorts do not in fact sort the x-, y- and z-coordinates by us-
ing these coordinates as sort keys entirely independently of one another; instead, x, y
and z form the most significant portions of the respective super keys x:y:z, y:z:x and
z:x:y that represent cyclic permutations of x, y and z. The symbols for these super
keys use a colon to designate the concatenation of the individual x, y and z values.
Hence, for example, the symbol z:x:y represents a super key wherein z is the most
significant portion of the super key, x is the middle portion of the super key and y is
the least significant portion of the super key.

51

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

The merge sorts employ super keys, instead of keys that are merely the individual
x-, y- and z-coordinates, in order to detect and remove duplicate tuples, as will be
explained later. The merge sorts do not reorder the tuples array; rather, they reorder
three index arrays whose elements are indices into the tuples array. The initial order
of these index arrays is established by the merge sorts and is shown in Figure 2 in the
xyz, yzx and zxy columns under “Initial Indices”. In this figure, xyz, yzx and zxy

are shorthand notations for the super keys x:y:z, y:z:x and z:x:y, respectively.
	
  

(2,3,3)	
  

(5,4,2)	
  

(9,6,7)	
  

(4,7,9)	
  

(8,1,5)	
  

(7,2,6)	
  

(9,4,1)	
  

(8,4,2)	
  

(9,7,8)	
  

(6,3,1)	
  

(3,4,5)	
  

(1,6,8)	
  

(9,5,3)	
  

(2,1,3)	
  

(8,7,6)	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

11	
  

12	
  

13	
  

14	
  

11	
  

13	
  

0	
  

10	
  

3	
  

1	
  

9	
  

5	
  

4	
  

7	
  

14	
  

6	
  

12	
  

2	
  

8	
  

13	
  

4	
  

5	
  

9	
  

0	
  

6	
  

1	
  

7	
  

10	
  

12	
  

2	
  

11	
  

14	
  

8	
  

3	
  

9	
  

6	
  

1	
  

7	
  

13	
  

0	
  

12	
  

10	
  

4	
  

5	
  

14	
  

2	
  

11	
  

8	
  

3	
  

11	
  

13	
  

0	
  

10	
  

3	
  

1	
  

9	
  

13	
  

9	
  

0	
  

1	
  

10	
  

11	
  

3	
  

9	
  

1	
  

13	
  

0	
  

10	
  

11	
  

3	
  

4	
  

7	
  

14	
  

6	
  

12	
  

2	
  

8	
  

4	
  

6	
  

7	
  

12	
  

2	
  

14	
  

8	
  

6	
  

7	
  

12	
  

4	
  

14	
  

2	
  

8	
  

13	
  

0	
  

9	
  

13	
  

9	
  

0	
  

9	
  

13	
  

0	
  

11	
  

10	
  

3	
  

10	
  

11	
  

3	
  

10	
  

11	
  

3	
  

4	
  

7	
  

6	
  

4	
  

6	
  

7	
  

6	
  

7	
  

4	
  

14	
  

2	
  

8	
  

2	
  

14	
  

8	
  

14	
  

2	
  

8	
  

(x,y,z)	
   xyz
	
  

yzx
	
  

zxy
	
  

xyz
	
  

yzx
	
  

zxy
	
  

xyz
	
  

yzx
	
  

zxy
	
  

Tuples	
   Initial	
  Indices	
   After	
  First	
  Split	
   After	
  Second	
  Split	
  

Figure 2. An (x, y, z) tuple array and xyz-, yzx- and zxy-index arrays.

52

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

The xyz, yzx and zxy columns under “Initial Indices” represent the initial order
of the xyz-, yzx- and zxy-index arrays that indicate the results of the three merge
sorts. For example, elements 0, 1, ... 13, 14 of the xyz-index array contain the
sequence 11, 13, ... 2, 8 that represents the respective tuples (1, 6, 8); (2, 1, 3); ...
(9, 6, 7); (9, 7, 8) that were ordered via merge sort using the respective super keys
1:6:8, 2:1:3, ... 9:6:7, 9:7:8. Similarly, elements 0, 1, ... 13, 14 of the yzx-index
array contain the sequence 13, 4, ... 8, 3 that represents the respective tuples (2, 1, 3);
(8, 1, 5); ... (9, 7, 8); (4, 7, 9) that were ordered via merge sort using the respective
super keys 1:3:2, 1:5:8, ... 7:8:9, 7:9:4. Lastly, elements 0, 1, ... 13, 14 of the zxy-
index array contain the sequence 9, 6, ... 8, 3 that represents the respective tuples
(6, 3, 1); (9, 4, 1); ... (9, 7, 8); (4, 7, 9) that were ordered via merge sort using the
respective super keys 1:6:3, 1:9:4, ... 8:9:7, 9:4:7.

The next step of the k-d tree-building algorithm partitions the (x, y, z) tuples in
x using the x:y:z super key that is specified by the median element of the xyz-index
array under “Initial Indices”. This median element is located at address 7 of this array;
its value is 5 and specifies the tuple (7, 2, 6) for which the x:y:z super key is 7:2:6.
The partitioning does not reorder the tuples array; instead, it reorders the yzx- and
zxy-index arrays. The xyz-index array requires no partitioning because it is already
sorted in x. However, the yzx- and zxy-index arrays require partitioning in x using
the x:y:z super key 7:2:6 that is specified by the median element of the xyz-index
array.

This partitioning is accomplished for the yzx-index array as follows. The ele-
ments of the yzx-index array are retrieved in order of increasing address from 0 to
14. The x:y:z super key that is specified by each element of the yzx-index array is
compared to the 7:2:6 super key that is specified by the median element of the xyz-
index array. Each element of the yzx-index array is copied to either the lower or
upper half of a temporary index array, depending on the result of this comparison.
After all of the elements of the yzx-index array have been processed in this manner,
the temporary index array replaces the yzx-index array and becomes the new yzx-
index array that is depicted in Figure 2 under “After First Split.” The partitioning of
the first six elements of the yzx-index array is discussed below and provides insight
into the details of the k-d tree-building algorithm.

The element at address 0 of the yzx-index array is 13 and specifies the tuple
(2, 1, 3) for which the x:y:z super key is 2:1:3. This super key is less than the median
super key 7:2:6; hence, the element at address 0 of the yzx-index array is copied to
address 0 in the new yzx-index array, which is the lowest address in the lower half
of the new yzx-index array. The element at address 1 of the yzx-index array is 4
and specifies the tuple (8, 1, 5) for which the x:y:z super key is 8:1:5. This super
key is greater than the median super key 7:2:6; hence, the element at address 1 of the
yzx-index array is copied to address 8 in the upper half of the new yzx-index array,

53

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

which is the lowest address in the upper half of the new yzx-index array. The element
at address 2 of the yzx-index array is 5 and specifies the tuple (7, 2, 6) for which the
x:y:z super key is 7:2:6. This super key equals the median super key 7:2:6; hence,
the element at address 2 in the yzx-index array is ignored and not copied to the new
yzx-index array.

The element at address 3 of the yzx-index array is 9 and specifies the tuple
(6, 3, 1) for which the x:y:z super key is 6:3:1. This super key is less than the median
super key 7:2:6; hence, the element at address 3 of the yzx-index array is copied to
address 1 in the lower half of the new yzx-index array, which is the second lowest
address in the lower half of the new yzx-index array. The element at address 4 of the
yzx-index array is 0 and specifies the tuple (2, 3, 3) for which the x:y:z super key is
2:3:3. This super key is less than the median super key 7:2:6; hence, the element at
address 4 of the yzx-index array is copied to address 2 in the lower half of the new
yzx-index array, which is the third lowest address in the lower half of the new yzx-
index array. The element at address 5 of the yzx-index array is 6 and specifies the
tuple (9, 4, 1) for which the x:y:z super key is 9:4:1. This super key is greater than
the median super key 7:2:6; hence, the element at address 5 of the yzx-index array is
copied to address 9 in the upper half of the new yzx-index array, which is the second
lowest address in the upper half of the new yzx-index array.

Partitioning continues for the remaining eight elements of the yzx-index array in
the manner that is described above. The partitioning of the first six elements of the
yzx-index array reveals that the yzx-index array has been partitioned in x relative
to the median element of the xyz-index array; this partitioning preserves the initial
merge-sorted order in y within the lower and upper halves of the new yzx-index array.

Next, the zxy-index array is partitioned in x relative to the median element of
the xyz-index array, which preserves the initial merge-sorted order in z for the lower
and upper halves of the new zxy-index array. The reader is encouraged to audit the
partitioning of the first few elements of the zxy-index array under “Initial Indices”
in order to verify that these elements are correctly assigned to the lower and upper
halves of the new zxy-index array that is shown in Figure 2 under “After First Split.”
Because the partitioning in x preserves the initial merge-sorted order for the lower
and upper halves of the yzx- and zxy-index arrays, there is no requirement for any
further sorting after the k initial merge sorts.

Inspection of the lower and upper halves of the new xyz-, yzx- and zxy-index
arrays in Figure 2 under “After First Split” reveals that the index value 5 is absent
from the lower and upper halves of these index arrays. This value is absent from
these index arrays because it is the value of the median element of the xyz-index
array that specified the x:y:z super key 7:2:6 relative to which the yzx- and zxy-
index arrays were partitioned in x. In order to record this partitioning, a reference to
the tuple (7, 2, 6) is stored in the root of the nascent k-d tree, as shown in Figure 3.

54

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

	
  

2,3,3	
   3,4,5	
  6,3,1	
   4,7,9	
   9,4,1	
   8,1,5	
   8,7,6	
   9,7,8	
  

2,1,3	
   1,6,8	
   8,4,2	
   9,6,7	
  

5,4,2	
   9,5,3	
  

7,2,6	
  
<	
   >	
  

Figure 3. A k -d tree that is built from the (x, y, z) tuples of Figure 2.

Next, the lower and upper halves of the xyz-, yzx- and zxy-index arrays are
processed recursively and partitioned in y to create the “less than” and “greater than”
subtrees of the root of the k-d tree. Consider the lower half of the yzx-index array
that is depicted in Figure 2 under “After First Split.” The median element of this array
is located at address 3; its value is 1 and specifies the tuple (5, 4, 2) for which the
y:z:x super key is 4:2:5. The lower half of the yzx-index array is already sorted in
y. However, the lower halves of the zxy- and xyz-index arrays require partitioning in
y relative to the y:z:x super key 4:2:5 that is specified by the median element of the
lower half of the yzx-index array. The reader is encouraged to verify the result of this
partitioning by inspection of the first and second fourths of the new xyz-, yzx- and
zxy-index arrays that are depicted in Figure 2 under “After Second Split.” The upper
halves of the zxy- and xyz-index arrays are partitioned in a similar manner relative
to the y:z:x super key 5:3:9 that is formed from the tuple (9, 5, 3) that is specified by
the value 12 of the median element at address 11 of the upper half of the yzx-index
array. References to the tuples (5, 4, 2) and (9, 5, 3) are stored in the “less than” and
“greater than” children of the root of the nascent k-d tree, as shown in Figure 3.

Recursion terminates when an index array comprises one, two or three elements.
In the case of one element, a reference to the corresponding tuple is stored in a new
node of the k-d tree. For two or three elements, the elements are already in sorted
order in the index array, so the determination of which tuple to reference from a

55

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

new node of the k-d tree and which tuple or tuples to reference from children of
that node is trivial. For example, consider the four fourths of the zxy-index arrays
under “After Second Split” in Figure 2. Each fourth comprises three elements, so
recursion terminates. The tuples (2, 1, 3) and (1, 6, 8) that are specified respectively
by the median elements 13 and 11 at addresses 1 and 5 of the zxy-index array are
referenced by the respective “less than” and “greater than” children of node (5, 4, 2)

of the nascent k-d tree. Similarly, the tuples (8, 4, 2) and (9, 6, 7) that are specified
respectively by the median elements 7 and 2 at addresses 9 and 13 of the zxy-index
array are referenced by the respective “less than” and “greater than” children of node
(9, 5, 3) of the nascent k-d tree. The children and grandchildren of nodes (5, 4, 2) and
(9, 5, 3) are shown in Figure 3.

The foregoing discussion reveals that the k-d tree includes “less than” and “greater
than” children but no “equal” children. For this reason, duplicate (x, y, z) tuples must
be removed from the data prior to building the k-d tree. After the k initial merge sorts
have reordered the xyz-, yzx- and zxy-index arrays, each index array is traversed
once in order to discard all but one index from each set of contiguous indices that
reference identical (x, y, z) tuples. In order that adjacent indices reference identical
(x, y, z) tuples, the k initial merge sorts employ x:y:z, y:z:x and z:x:y super keys
instead of keys that are merely the individual x-, y- and z-coordinates. If the k initial
merge sorts employed keys that were only the individual x-, y- and z-coordinates,
adjacent indices within an index array could reference non-identical (x, y, z) tuples
for which one or more, but not all, of the x-, y- and z-coordinates were identical.
The x:y:z, y:z:x and z:x:y super keys guarantee that each group of identical (x, y, z)
tuples is indexed by a set of contiguous indices within each index array. These super
keys enable the removal of duplicate (x, y, z) tuples via one pass through each index
array that discards adjacent indices that reference identical (x, y, z) tuples.

It is possible to optimize the use of the temporary index array such that only one
temporary index array is required and such that the xyz-, yzx- and zxy-index arrays
may be reused to avoid allocation of new index arrays at each level of recursion. This
optimization operates as follows. The xyz-index array is copied to the temporary
index array. Then the yzx-index array is partitioned in x and the result is stored in the
two halves of the xyz-index array. Next, the zxy-index array is partitioned in x and
the result is stored in the two halves of the yzx-index array. Finally, the temporary
index array is copied to the zxy-index array. This optimization permutes the xyz-,
yzx- and zxy-index arrays cyclically at each level of recursion, as is required to cycle
the keys in the order x, y, z, x, y, z... for successive levels of the k-d tree. Moreover, it
guarantees that the x:y:z, y:z:x or z:x:y super key that is required for partitioning at
a particular level of the k-d tree is always specified by the median element of the xyz-
index array. The computational cost of this index array optimization is the copying of
one additional index array at each level of recursion.

56

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

Recursive partitioning occurs for log2 (n) levels of the nascent k-d tree. The com-
putational complexity of this k-d tree-building algorithm includes a O (kn log n) term
for the k initial merge sorts plus a O ((k + 1)n log n) term for copying n elements of
k + 1 index arrays at each of the log2 (n) levels of recursion. This O (kn log n) k-d
tree-building algorithm requires storage for a tuples array of n k-dimensional tuples,
plus an n-element temporary array, plus k n-element index arrays. The tuples array is
immutable. The index and temporary arrays are ephemeral and are no longer required
after construction of the k-d tree.

2.2. Parallel Execution

The merge-sorting function [Sedgewick 1992] and the O (kn log n) k-d tree-building
function both subdivide index arrays and process non-overlapping halves of each in-
dex array via recursive calls to these functions. Hence, these functions (or Java meth-
ods) are amenable to parallel execution via multiple threads that occurs as follows.

One thread executes a recursive call of the method; this thread is designated as
the parent thread. The parent thread subdivides one or more index arrays, then calls
the method recursively to process the lower and upper halves of each index array. The
parent thread does not execute the recursive call that processes the lower half of each
index array; instead, it launches a child thread to execute that recursive call. After
launching the child thread, the parent thread executes the recursive call that processes
the upper half of each index array, then waits for the child thread to finish execution
of the recursive call that processes the lower half of each index array.

For a balanced k-d tree, the number of threads q that are required by this thread-
allocation strategy is q = 2d ≈ n/2 where d represents the deepest level of recursion
and n represents the number of tuples. A large number of tuples would require a
prohibitively large number of threads; hence, child threads are launched to only the
maximum level of recursion that is allowed by the number of available threads. Be-
yond this maximum level of recursion, the parent thread processes both halves of each
index array.

Two threads permit launching a child thread at the first level of recursion. Four
threads permit launching child threads at the first two levels of recursion. Eight
threads permit launching child threads at the first three levels of recursion, et cetera.
Because threads are launched at the lowest levels of recursion, each thread processes
the maximum possible workload. Because the index arrays are subdivided by their
median elements at each level of recursion, all threads share the workload equally.

A disadvantage of this thread allocation strategy is that it limits the number of
threads to an integer power of two. Because the level of recursion determines the
number of threads, it is not possible to employ, for example, three or ten threads.
An advantage of this thread allocation strategy is that it is simple and robust because
synchronization involves only a parent thread and one child thread.

57

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

2.3. Results for the O (kn log n) Algorithm

The O (kn log n) k-d tree-building algorithm was implemented in the Java language,
and the single-threaded performance of the merge sorting, duplicate tuple removal
and k-d tree-building methods was measured using a 2.3 GHz Intel i7 processor. Fig-
ure 4 shows the total time in seconds that was required to perform the initial merge
sorts, remove the duplicate tuples and build the k-d tree, plotted versus n log2 (n) for
218 ≤ n ≤ 224 (x, y, z, w) tuples of randomly-generated 32-bit integers. The dashed
line of Figure 4 shows the least-squares fit of the total time t to the function
t = mn log2 (n) where m is the slope of the line. The correlation coefficient
r = 0.998 indicates an adequate least-squares fit; hence, the execution times are
proportional to n log2 (n). The question of whether these execution times are propor-
tional to k will be addressed in Section 4 of this article.

0e+00 1e+08 2e+08 3e+08 4e+08

0
10

20
30

40
50

60
70

Nlog(N)

To
ta

l k
-d

 T
re

e-
B

ui
ld

in
g 

Ti
m

e 
(s

)

Figure 3: Total k-d Tree-Building Time vs. Nlog(N)

m = 1.6e-07 r = 0.998

Figure 4. The total of merge sorting, duplicate tuple removal and k-d tree-building times
(seconds) is plotted vs. n log2 (n) for the application of the O (kn log n) k-d tree-building
algorithm to 218 ≤ n ≤ 224 (x, y, z, w) tuples of randomly-generated 32-bit integers.

58

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

The O (kn log n) k-d tree-building algorithm was parallelized via Java threads
and its performance was measured for one to eight threads using a 2.3 GHz Intel
quad-core i7 processor. Figure 5 shows the total time in seconds that was required
to perform the initial merge sorts, remove the duplicate tuples and build the k-d tree,
plotted versus the number of threads q for n = 224 (x, y, z, w) tuples of randomly-
generated 32-bit integers. The dashed curve of Figure 5 shows the least-squares fit of
the total time t to the equation

t = ts +
t1
q
+mc (q − 1) (1)

This equation will be discussed in Section 4 of this article. The correlation coefficient
r = 0.9867 indicates an acceptable least-squares fit.

1 2 3 4 5 6 7 8

30
40

50
60

70

Number of Threads

To
ta

l k
-d

 T
re

e-
B

ui
ld

in
g 

Ti
m

e 
(s

)

Figure 4: Total k-d Tree-Building Time vs. Number of Threads

t1 = 67.48
tS = 1

mC = 1.96
r = 0.9867

Figure 5. The total of merge sorting, duplicate tuple removal and k-d tree-building times
(seconds) is plotted vs. the number of threads for the application of the O (kn log n) k-d
tree-building algorithm to n = 224 (x, y, z, w) tuples of randomly-generated 32-bit integers.

59

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

3. Comparative Performance

3.1. The O (n log n) Algorithm

In order to understand the performance of the O (kn log n) k-d tree-building algorithm
relative to that of other algorithms, it was compared to a O (n log n) k-d tree-building
algorithm that incorporates a O (n) median-finding algorithm [Blum et al. 1973; Cor-
men et al. 2009]. Most of the complexity of the O (n log n) algorithm is limited to the
O (n) median-finding algorithm. The application of this O (n log n) k-d tree-building
algorithm to sort (x, y, z) tuples is described as follows.

First, an index array is created and merge sorted in x, y or z via one of the x:y:z,
y:z:x and z:x:y super keys; the choice of super key is arbitrary. The initial merge sort
does not reorder the tuples array; instead, it reorders the index array whose elements
are indices into the tuples array. Next, duplicate (x, y, z) tuples are removed via one
pass through the index array, as discussed in Section 2.1 of this article.

The subsequent k-d tree-building step partitions the index array recursively. At
each level of recursion, the median element of the index array is found in O (n) time
using the x:y:z, y:z:x or z:x:y super key that is appropriate to that level of recursion.
A convenient feature of the O (n) median-finding algorithm is that the index array is
partitioned relative to the median element during the search for the median element.
Hence, once the median element has been found, a reference to the (x, y, z) tuple that
the median element specifies is stored in the root of the nascent k-d tree, as shown
in Figure 3. The lower and upper halves of the index array are processed recursively
to create the “less than” and “greater than” subtrees of the root of the k-d tree. The
O (n log n) k-d tree-building method processes non-overlapping halves of the index
array via recursive calls to this method. Hence, this method is amenable to parallel
execution via multiple threads in the manner that was explained in Section 2.2 of this
article.

Recursion terminates when the index array comprises one, two or three elements.
In the case of one element, a reference to the corresponding tuple is stored in a new
node of the k-d tree. For two elements, a reference to the tuple that corresponds to
the first element is stored in a new node of the k-d tree, then the super keys of the
two elements are compared to decide whether to reference the tuple that corresponds
to the second element from the “less than” or “greater than” child of that node. For
three elements, the index array is sorted via insertion sort [Bentley 1999] to determine
which tuple to reference from a new node of the k-d tree and which tuples to reference
from the children of that node.

Recursive partitioning occurs for log2 (n) levels of the nascent k-d tree. The com-
putational complexity of this k-d tree-building algorithm includes a O (n log n) term
for the initial merge sort plus another O (n log n) term for partitioning n elements of
the index array at each of the log2 (n) levels of recursion. This O (n log n) k-d tree-

60

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

building algorithm requires storage for a tuples array of n k-dimensional tuples, plus
an n-element index array, plus an n/2-element temporary array. The tuples array is
immutable. The index and temporary arrays are ephemeral and are no longer required
after construction of the k-d tree.

3.2. Results for the O (n log n) Algorithm

The O (n log n) k-d tree-building algorithm was implemented in the Java language,
and the single-threaded performance of the merge sorting, duplicate tuple removal
and k-d tree-building methods was measured using a 2.3 GHz Intel i7 processor. Fig-
ure 6 shows the total time in seconds that was required to perform the initial merge
sort, remove the duplicate tuples and build the k-d tree, plotted versus n log2 (n) for
218 ≤ n ≤ 224 (x, y, z, w) tuples of randomly-generated 32-bit integers. The dashed

0e+00 1e+08 2e+08 3e+08 4e+08

0
10

20
30

40
50

60

Nlog(N)

To
ta

l k
-d

 T
re

e-
B

ui
ld

in
g 

Ti
m

e 
(s

)

Figure 5: Total k-d Tree-Building Time vs. Nlog(N)

m = 1.6e-07 r = 0.9986

Figure 6. The total of merge sorting, duplicate tuple removal and k-d tree-building times
(seconds) is plotted vs. n log2 (n) for the application of the O (n log n) k-d tree-building
algorithm to 218 ≤ n ≤ 224 (x, y, z, w) tuples of randomly-generated 32-bit integers.

61

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

line of Figure 6 shows the least-squares fit of the total time t to the function
t = mn log2 (n) where m is the slope of the line. The correlation coefficient
r = 0.9986 indicates an adequate least-squares fit.

The O (n log n) k-d tree-building algorithm was parallelized via Java threads and
its performance was measured for one to eight threads using a 2.3 GHz Intel quad-core
i7 processor. Figure 7 shows the total time in seconds that was required to perform the
initial merge sort, remove the duplicate tuples and build the k-d tree, plotted versus
the number of threads q for n = 224 (x, y, z, w) tuples of randomly-generated 32-
bit integers. The dashed curve of Figure 7 shows the least-squares fit of the total
time t to Equation 1. The correlation coefficient r = 0.9958 indicates an acceptable
least-squares fit.

1 2 3 4 5 6 7 8

20
30

40
50

60

Number of Threads

To
ta

l k
-d

 T
re

e-
B

ui
ld

in
g 

Ti
m

e 
(s

)

Figure 6: Total k-d Tree-Building Time vs. Number of Threads

t1 = 66.16
tS = 0.33

mC = 1.75
r = 0.9958

Figure 7. The total of merge sorting, duplicate tuple removal and k-d tree-building times
(seconds) is plotted vs. the number of threads for the application of the O (n log n) k-d tree-
building algorithm to n = 224 randomly-generated (x, y, z, w) tuples of 32-bit integers.

62

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

4. Discussion

Figures 4 and 6 demonstrate that the execution times of the O (kn log n) and O (n log n)

k-d tree-building algorithms are proportional to n log2 (n). Figures 5 and 7 show that
the k-d tree-building algorithms scale for multiple threads. For either algorithm, the
execution by eight threads on a quad-core Intel i7 processor, which supports concur-
rent execution of two threads per core, increases the execution speed by approximately
three times relative to the speed of one thread. The execution time t does not adhere
to the Amdahl [Amdahl 1967] model t = ts + t1/q but rather to the model that is
expressed by Equation 1 in Section 2.3 of this article

t = ts +
t1
q
+mc (q − 1)

In this equation, q is the number of threads, ts represents the time required to exe-
cute the serial or non-parallelizable portion of the algorithm, t1 represents the time
required to execute the parallelizable portion of the algorithm via one thread, and
mc (q − 1) models an additional limitation to the performance of multi-threaded exe-
cution that the Amdahl model fails to capture.

This additional limitation to performance may occur due to cache misses in a
shared-memory architecture. During multi-threaded execution of the k-d tree build-
ing algorithm, any thread may read from any address of the (x, y, z, w) tuples ar-
ray, as directed by a specific index from an index array. This unrestricted access
to the (x, y, z, w) tuples array may cause cache misses in a shared-memory archi-
tecture because two threads could simultaneously attempt to access two different tu-
ples that map into the same cache line of a shared cache memory. The cache miss
term mc (q − 1) of Equation 1 models the performance limitation, which results from
cache misses, as a linear function of q [Gunther 2007].

Differentiating Equation 1 with respect to q yields

dt

dq
= mc −

t1
q2

(2)

Setting dt/dq to zero in Equation 2 and solving for q predicts that the minimum
execution time occurs at q =

√
t1/mc threads. Substituting into this square root

the respective values of t1 and mc that were obtained via least-squares fitting for the
O (kn log n) and O (n log n) algorithms predicts minima at q = 5.87 and
q = 6.15 threads, respectively. These minima are depicted in Figures 5 and 7, which
predict decreased performance of both k-d tree building algorithms for more than
eight threads. The decreased performance for as few as eight threads is a consequence
of the relatively large values for mc (1.96 and 1.75 seconds per thread, respectively)
that were obtained via least-squares fitting. Execution time measurements obtained
using a system that supports concurrent execution of more than eight threads should
confirm decreased performance for more than eight threads.

63

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

The similar parallelizable times t1 for both algorithms (67.48 and 66.16 thread-
seconds) indicate that their single-threaded performance is about equal. This effect is
due to a fortuitous choice of k = 4 that specifies test data that comprise (x, y, z, w)

tuples. Because the execution time of the O (kn log n) algorithm should be propor-
tional to k but the execution time of the O (n log n) algorithm should not, these two
algorithms are expected to have unequal performance for a different choice of k. In
order to test this hypothesis, each algorithm was utilized to build five different k-d
trees. For each k-d tree, 224 k-dimensional tuples of randomly-generated 32-bit inte-
gers were created using a different value of k = 2, 3, 4, 5, 6. The performance of each
algorithm was measured using a single thread of a 2.3 GHz Intel i7 processor. The
results of this experiment are shown in Figure 8.

2 3 4 5 6

40
60

80
10
0

Number of Dimensions

To
ta

l k
-d

 T
re

e 
B

ui
ld

 T
im

e 
(s

)

Figure 7: Total k-d Tree Build Time vs. Number of Dimensions

mSOLID = 18.07 mDASHED = 0.55

Figure 8. The total of merge sorting, duplicate tuple removal and k-d tree-building times
(seconds) is plotted vs. the number of dimensions k for the application of the O (kn log n)

algorithm (solid line and circles) and the O (n log n) algorithm (dashed line and diamonds) to
build a k-d tree from n = 224 k-dimensional tuples of randomly-generated 32-bit integers.

64

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

Figure 8 shows the total time in seconds that was required to perform the initial
merge sorts, remove the duplicate tuples and build the k-d tree via the O (kn log n)

and O (n log n) algorithms for n = 224 k-dimensional tuples of randomly-generated
32-bit integers, plotted versus the number of dimensions k = 2, 3, 4, 5, 6. This figure
demonstrates that the execution time of the O (kn log n) algorithm is proportional to
k but the execution time of the O (n log n) algorithm is not. In this figure, the slope of
the solid line (mSOLID = 18.07 seconds per dimension) indicates that for 224 tuples,
each additional dimension increases the execution time of the O (kn log n) algorithm
by 18 seconds. For k = 4, the two algorithms have equal performance.

In Figure 8, the slope of the dashed line (mDASHED = 0.55 seconds per dimension)
suggests that the execution time of the O (n log n) algorithm might be proportional
to k. However, this apparent scaling is an artifact that is related to the fact that the
k-dimensional tuples comprise randomly-generated 32-bit integers.

The storage requirements of the O (kn log n) and O (n log n) algorithms differ.
Although both algorithms require storage for a tuples array of n k-dimensional tuples,
the O (kn log n) algorithm requires storage for an n-element temporary array plus k
n-element index arrays, whereas the O (n log n) algorithm requires storage for an
n/2-element temporary array plus only one n-element index array.

The O (n) median-finding algorithm is somewhat complicated and requires care-
ful implementation to achieve optimum performance. For example, the median-
finding algorithm utilizes a sorting algorithm to sort large numbers of five-element
arrays. For the initial implementation of the O (n) median-finding algorithm, these
small arrays were sorted via the merge sort algorithm that is used for the initial
sort of the index array [Sedgewick 1992]. That merge sort algorithm is not opti-
mized for sorting small arrays and hence resulted in poor performance of the O (n)

median-finding algorithm and consequent poor performance of the O (n log n) k-d
tree-building algorithm. Replacing the merge sort algorithm with an insertion sort
algorithm [Bentley 1999] that is better suited to sorting small arrays allowed a 30 per-
cent improvement in the performance of the O (n log n) k-d tree-building algorithm.

5. Conclusion

The k-d tree-building algorithm that is proposed in this article achieves a worst-case
computational complexity of O (kn log n) for n points and k dimensions. For k =

4, the performance of this algorithm equals the performance of a O (n log n) k-d
tree-building algorithm that employs a O(n) median-finding algorithm. For either
algorithm, an improvement in performance by a factor of three relative to single-
threaded performance is achieved via parallel execution by eight threads of a quad-
core Intel i7 processor that supports concurrent execution of two threads per core.

65

http://jcgt.org


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

Source Code

I include Java, C, and C++ implementations of the O (kn log n) and O (n log n) al-
gorithms for k-d tree-building, using Java threads and OpenMP for parallelism. I also
include the R language code for analysis. The source code for these implementations
includes the BSD 3-Clause License.

Acknowledgements

I thank Paul McJones, Gene McDaniel, Joseph Wearing and John Robinson for help-
ful comments.

References

ADELSON-VELSKII, G., AND LANDIS, E. 1962. An algorithm for the organization of
information. Proceedings of the USSR Academy of Sciences 146, 263–266. 51

AMDAHL, G. M. 1967. Validity of the single-processor approach to achieving large
scale computing capabilities. In American Federation of Information Processing Soci-
eties (AFIPS) Conference Proceedings, AFIPS Press, Reston, VA, 483–485. URL: http:
//dl.acm.org/citation.cfm?id=1465560, doi:10.1145/1465482.1465560. 63

BAYER, R. 1972. Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta Informatica 1, 290–306. doi:10.1007/BF00289509. 51

BENTLEY, J. 1975. Multidimensional binary search trees used for associa-
tive searching. Communications of the ACM 18, 509–517. URL: http:

//www.computer.org/csdl/trans/ts/1979/04/01702638-abs.html,
doi:10.1109/TSE.1979.234200. 50

BENTLEY, J. 1999. Insertion sorts. In Programming Pearls, second ed. Addison-Wesley,
Reading, MA, 115–116. 60, 65

BLUM, M., FLOYD, R., PRATT, V., RIVEST, R., AND TARJAN, R. 1973.
Time bounds for selection. Journal of Computer and System Sciences
7, 448–461. URL: http://people.csail.mit.edu/rivest/

BlumFloydPrattRivestTarjan-TimeBoundsForSelection.pdf,
doi:10.1016/S0022-0000(73)80033-9. 51, 60

CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. 2009. Selection in worst-case
linear time. In Introduction to Algorithms, third ed. MIT Press, Cambridge, MA, 220–222.
URL: http://mitpress.mit.edu/books/introduction-algorithms. 51,
60

FRIEDMAN, J., BENTLEY, J., AND FINKEL, R. 1977. An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathematical Soft-
ware 3, 209–226. URL: http://dl.acm.org/citation.cfm?id=355745,
doi:0.1145/355744.355745. 51

GOLDSTINE, H., AND VON NEUMANN, J. 1963. Coding of some combinatorial (sort-
ing) problems. In John von Neumann Collected Works: Design of Computers, Theory

66

http://jcgt.org
http://dl.acm.org/citation.cfm?id=1465560
http://dl.acm.org/citation.cfm?id=1465560
http://www.computer.org/csdl/trans/ts/1979/04/01702638-abs.html
http://www.computer.org/csdl/trans/ts/1979/04/01702638-abs.html
http://people.csail.mit.edu/rivest/BlumFloydPrattRivestTarjan-TimeBoundsForSelection.pdf
http://people.csail.mit.edu/rivest/BlumFloydPrattRivestTarjan-TimeBoundsForSelection.pdf
http://mitpress.mit.edu/books/introduction-algorithms
http://dl.acm.org/citation.cfm?id=355745


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

of Automata and Numerical Analysis, A. Taub, Ed., vol. 5. Pergamon Press Ltd. and the
Macmillan Company, New York, NY, 196–214. 51

GUIBAS, L., AND SEDGEWICK, R. 1978. A dichromatic framework for balanced trees. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science., IEEE
Press, 8–21. doi:10.1109/SFCS.1978.3. 51

GUNTHER, N. J. 2007. Scalability - a quantitative approach. In Guerrilla Capacity Planning:
A Tactical Approach to Planning for Highly Scalable Applications and Services, first ed.
Springer-Verlag, Berlin, 41–70. 63

HAVRAN, V., AND BITTNER, J. 2002. On improving kd-trees for ray shooting. In Proceed-
ings of the Winter School of Computer Graphics (WSCG), Science Press, Plzen, Czech Re-
public, 209–216. URL: http://wscg.zcu.cz/wscg2002/Papers_2002/F43.
pdf. 51

HOARE, C. 1962. Quicksort. The Computer Journal 5, 10–15. URL:
http://comjnl.oxfordjournals.org/content/5/1/10.abstract,
doi:10.1093/comjnl/5.1.10. 51

SEDGEWICK, R. 1992. Mergesort. In Algorithms in C++. Addison-Wesley, Reading, MA,
165–166. 57, 65

WALD, I., AND HAVRAN, V. 2006. On building fast kd-trees for ray tracing, and
on doing that in O(N log N). In Proceedings of the 2006 Institute of Electrical
and Electronics Engineers (IEEE) Symposium on Interactive Ray Tracing, IEEE Press,
61–69. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=4061547, doi:10.1109/RT.2006.280216. 51

WILLIAMS, J. 1964. Heapsort (algorithm 232). Communications of the ACM 7, 347–348.
51

WIRTH, N. 1976. Finding the median. In Algorithms + Data Structures = Programs.
Prentice-Hall, Englewood Cliffs, NJ, 82–84. 51

Author Contact Information
Russell A. Brown
russ.brown@yahoo.com

Russell A. Brown, Building a Balanced k-d Tree in O(kn log n) Time, Journal of Computer
Graphics Techniques (JCGT), vol. 4, no. 1, 50–68, 2015
http://jcgt.org/published/0004/01/03/

Received: 2014-11-25
Recommended: 2015-03-16 Corresponding Editor: Patrick Cozzi
Published: 2015-03-30 Editor-in-Chief: Morgan McGuire

67

http://jcgt.org
http://wscg.zcu.cz/wscg2002/Papers_2002/F43.pdf
http://wscg.zcu.cz/wscg2002/Papers_2002/F43.pdf
http://comjnl.oxfordjournals.org/content/5/1/10.abstract
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4061547
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4061547
mailto:russ.brown@yahoo.com
http://jcgt.org/published/0004/01/03/


Journal of Computer Graphics Techniques
Building a Balanced k-d Tree in O(kn log n) Time

Vol. 4, No. 1, 2015
http://jcgt.org

c© 2015 Russell A. Brown (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

68

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

