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Mappings between Sphere, Disc, and Square
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Figure 1. A mapping between a sphere and a square, composed of a mapping between a
hemisphere and a disc, a mapping between a disc and a square, and an arrangement of two
squares in a new square.

Abstract

A variety of mappings between a sphere and a disc and between a disc and a square, as
well as combinations of both, are used in computer graphics applications, resulting in
mappings between spheres and squares. Many options exist for each type of mapping;
to pick the right methods for a given application requires knowledge about the nature
and magnitude of mapping distortions.

This paper provides an overview of forward and inverse mappings between a unit
sphere, a unit disc, and a unit square. Quality measurements relevant for computer
graphics applications are derived from tools used in the field of map projection, and a
comparative analysis of the mapping methods is given.

1. Introduction and Background

Mappings between spheres, discs, and squares are useful tools in many areas of com-
puter graphics. Examples include panoramic imaging [German et al. 2007; Fong
2014], environment mapping [Greene 1986; Heidrich and Seidel 1998], and generat-
ing points on a disc or sphere for sampling purposes [Shirley and Chiu 1997; Sloan
et al. 2005].
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Important properties of such mappings include the angle and area distortions that
they introduce [Floater and Hormann 2005]. Some applications require equal-area
mappings that preserve area ratios, and others require conformal mappings that pre-
serve angles locally. No mapping can be both equal-area and conformal at the same
time, and preserving one quality often results in strong distortions in the other. Many
applications, in particular in computer graphics, require mappings that allow efficient
sampling of maps [Snyder and Mitchell 2001] without introducing artifacts. A bal-
anced mapping for this purpose provides both small area distortions and small angle
distortions, although neither distortion has to be zero.

This paper gives an overview of mappings between a unit sphere, a unit disc, and
a unit square, with formulas for forward and inverse transformation. Furthermore, we
derive two quality measurements relevant for computer graphics applications based
on established tools from the field of map projection, and we compare the mappings
based on these measurements.

Section 2 starts with mappings between discs and squares, Section 3 describes
map projections between spheres (or hemispheres) and discs, and Section 4 details
methods to combine methods from both categories to produce mappings between
spheres and squares. Section 5 provides numerical analysis results for all mappings
based on the derived quality measurements. The supplementary material consists of
C++ source code that implements all mapping and analysis methods as well as all
tools necessary to recreate the figures and results presented in this paper.

2. Mappings between Disc and Square

This section provides an overview of mappings between the closed unit disc D and
the closed unit square R. We identify points on D using either polar coordinates, with
radius r and angle ϕ, 0 ≤ r ≤ 1, −π < ϕ ≤ π, or Cartesian coordinates, u and v
with r =

√
u2 + v2 and ϕ = atan2(v, u). Points on R are identified using Cartesian

coordinates x and y, −1 ≤ x ≤ +1, −1 ≤ y ≤ +1. The mappings are summarized
and compared in Table 1.

2.1. Radial Stretching

Perhaps, the most direct method of mapping a disc to a square is to adjust the radius
of a point on the disc according to its angle.

For (x, y) ∈ R, we have a distance of t =
√
x2 + y2 to the origin and a polar

angle of ϕ = atan2(y, x). The polar radius of (r, ϕ) ∈ D can then be set to r =

t cosϕ for ϕ ∈ [−π/4,+π/4] (and accordingly for the remaining ranges of ϕ). Using
cosϕ = x/t, sinϕ = y/t, tanϕ = v/u, and a method applied by Cline to Shirley’s
equal-area mapping [Shirley and Cline 2011] to reduce the number of cases, this leads
to the following simple equations (see the derivation by Fong for details [Fong 2015]):
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Stretching Shirley Squircle Elliptical Conformal

DA

DI

Table 1. Overview of mappings between a disc and a square.
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Disc to square mapping:

r =
√
u2 + v2

(x, y) =


(0, 0) if r = 0

(sgn(u) · r, sgn(v) · rv/u) if r > 0 and u2 ≥ v2

(sgn(u) · ru/v, sgn(v) · r) if r > 0 and u2 < v2

Square to disc mapping:

t =
√
x2 + y2

(u, v) =


(0, 0) if t = 0

(sgn(x) · x2/t, sgn(y) · xy/t) if t > 0 and x2 ≥ y2

(sgn(x) · xy/t, sgn(y) · y2/t) if t > 0 and x2 < y2

This mapping is neither conformal nor equal-area. It suffers from strong angular
and area distortions.

2.2. Shirley’s Equal-Area Mapping

Shirley constructs an equal-area map between a disc and a square by mapping con-
centric disc strings to concentric square strips [Shirley and Chiu 1997]. Note that
Roşca derived an equivalent mapping (except for a scale factor) using a different
approach [Roşca 2010]. Both prove the equal-area property by showing that the Jaco-
bian is constant. The following formulas for the disc-to-square mapping are based on
Shirley’s code samples. The formulas for the inverse mapping are based on Cline’s
method for reducing the number of cases [Shirley and Cline 2011].

Disc to square mapping:

r =
√
u2 + v2

ϕ =

{
atan2(v, u) if atan2(v, u) ≥ −π/4
atan2(v, u) + 2π, otherwise

(x, y) =


(r, 4π rϕ) if ϕ < π/4

(− 4
π r(ϕ− π/2), r) if ϕ < 3π/4

(−r,− 4
π r(ϕ− π)) if ϕ < 5π/4

( 4π r(ϕ− 3π/2),−r), otherwise

Square to disc mapping:

(r, ϕ) =


(x, π4 y/x) if x2 > y2

(y, π2 −
π
4x/y) if x2 ≤ y2 and y2 > 0

(0, 0), otherwise
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Note that by writing the square to disc mapping of the radial stretching method in
terms of r, ϕ, using cosϕ = x/t and sinϕ = y/t, one can see that Shirley’s mapping
uses the same stretching of the radius but modifies the angle, ϕ.

This mapping is equal-area. It suffers from strong angular distortions, especially
around the discontinuities at the diagonals of the square.

2.3. Fernández-Guasti’s Squircle Mapping

Fernández-Guasti introduced a geometric form that can be varied between square and
circle using a “squareness” parameter [Fernández-Guasti 1992]; he later called this
form squircle. Note that the term squircle is sometimes used to refer to a special
case of a superellipse. To avoid ambiguities, we therefore use the term “Fernández-
Guasti’s squircle”.

In terms of Cartesian coordinates, the equation that describes Fernández-Guasti’s
squircle is s2

k4
x2y2− x2+y2

k2
+1 = 0, where s is the squareness parameter and k is the

radius of the circle (for s = 0) or half the side length of the square (for s = 1). For
values of s between 0 and 1, the geometry resembles both square and circle.

Fong proposes to map concentric circles to concentric squircles to construct a
mapping between a unit disc and a unit square [Fong 2014]. For this purpose, he sets
s = k and varies s from 0 to 1, taking r = s =

√
x2 + y2 − x2y2 as disc radius.

Disc to square mapping:

w =
sgn(uv)√

2

√
u2 + v2 −

√
(u2 + v2)(u2 + v2 − 4u2v2)

(x, y) =

{
(w/v,w/u) if |w| > 0

(u, v), otherwise

Square to disc mapping:

u = x

√
x2 + y2 − x2y2√

x2 + y2

v = y

√
x2 + y2 − x2y2√

x2 + y2

Note that (0, 0) must be mapped to (0, 0) as a special case.
This mapping is neither equal-area nor conformal.

2.4. Elliptical Arc Mapping

Nowell derived a method to map a square to a disc by mapping lines of constant x
and lines of constant y in the square to ellipses in the disc [Nowell 2005]. Cigolle et
al. mention an elliptical mapping between a disc and a square [Cigolle et al. 2014].
Their paper omits details, but their implementation in the supplementary material
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shows that they derived equivalent formulas for the mapping from square to disc and
additional formulas for the inverse mapping. The simpler formulas for the inverse
mapping given below were derived by Fong [Fong 2015].

Disc to square mapping:

x =
1

2

√
2 + u2 − v2 + 2

√
2u− 1

2

√
2 + u2 − v2 − 2

√
2u

y =
1

2

√
2− u2 + v2 + 2

√
2v − 1

2

√
2− u2 + v2 − 2

√
2v

Square to disc mapping:

u = x

√
1− y2

2

v = y

√
1− x2

2

This mapping is neither equal-area nor conformal.

2.5. Conformal Mapping

In complex analysis, the Schwarz-Christoffel transformation provides a way to con-
struct conformal transformations between simple polygons and the upper half of the
complex plane. Since there exists a conformal transformation between the upper half
of the complex plane and the open unit disc, one can construct a conformal mapping
between a square and a disc. Indeed, this special case was used as illustration and mo-
tivation in Schwarz’ original publication on the topic. However, formulas for forward
and inverse mappings suitable for implementation on computers were not available
for some time.

Conformal mapping of a disc onto a rotated square using the Schwarz-Christoffel
transformation is a core element of the Peirce quincuncial map projection [Peirce
1879]; see also Section 4. The formulas given below are based on Lee’s analysis of
Peirce’s projection [Lee 1976].

The mapping from disc to square first rotates the disc by 45◦. This step is not
necessary, but it makes this mapping consistent with the others with regard to the
orientation of the square content. Then, the rotated disc is conformally mapped to
a rotated square with corners (1, 0), (0, 1), (−1, 0), (0,−1). This square is then
rotated and scaled to fit the unit square. The conformal mapping is based on the
incomplete elliptic Legendre integral, F , with a modulus of k = 1/

√
2. This integral

must be computed using iterative methods. Numerical libraries usually provide the
necessary methods; our supplementary material includes an implementation based on
the Landen transformation.

The mapping from square to disc first rotates and scales the unit square back into
the square with corners (1, 0), (0, 1), (−1, 0), (0,−1). It then uses the complex-
valued Jacobian elliptic function cn with modulus k = 1/

√
2 to conformally map
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that square to the unit circle. Afterwards, the inverse of the optional rotation is ap-
plied. This mapping requires the value K = F (π/2) ≈ 1.854, which is the complete
elliptic integral of the first kind with modulus k = 1/

√
2. The function cn must

again be computed using iterative methods. Numerical libraries often provide real-
valued implementations that compute the related functions cn, sn, and dn at the same
time; our supplementary material includes an implementation based on the arithmetic-
geometric mean. For the special case of k = 1/

√
2, the complementary elliptic mod-

ulus k′ =
√
1− k2 is identical to k, and the complex cn function can be computed

from real-valued cn, sn, and dn as follows:

cn(x+ iy) =
cn(x) cn(y)

1− dn2(x) sn2(y)
− isn(x) dn(x) sn(y) dn(y)

1− dn2(x) sn2(y)

Note that Stark derives optimized numerical methods for the special case of con-
formal mappings between unit sphere and unit disc [Stark 2009].

Disc to square mapping:

u′ = (u− v)/
√
2

v′ = (u+ v)/
√
2

A = u′2 + v′2

B = u′2 − v′2

T =
√
(1 +A2)2 − 4B2

U = 1 + 2B −A2

α = acos((2A− T )/U)

β = acos(U/(2A+ T ))

x′ = sgn(u′)(1− F (α)/2K)

y′ = sgn(v′)(F (β)/2K)

x = x′ + y′

y = y′ − x′

Square to disc mapping:

x′ = x/2− y/2
y′ = x/2 + y/2

w = cn(K(1− x′)− iKy′)
u = (<(w) + =(w))/

√
2

v = (=(w)−<(w))/
√
2

This mapping is conformal, except for the four singular points located on the
corners of the square. Area deformation is substantial, especially near the singular
points.
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3. Mappings between Sphere and Disc

This section covers mappings between the unit sphere, S , and the unit disc, D . We
identify points on S using the longitude λ and the colatitude θ, −π < λ ≤ π,
0 ≤ θ ≤ π. The colatitude measures the angle to the north pole (by convention
(0, 0, 1) in Cartesian coordinates). We use colatitude instead of latitude (which mea-
sures the angle to the equatorial plane), because the resulting formulas are shorter.
The longitude measures the angle in the xy-plane. Points on D are again identified
using polar coordinates with radius r and angle ϕ, 0 ≤ r ≤ 1, −π < ϕ ≤ π.

The problem of mapping the sphere onto the disc is one of the classical areas
of map projection, and the methods discussed in this section are well known in that
field. In the following sections, all methods map the north pole to the center of the
unit disc, set the polar angle ϕ = λ− π/2, and compute radius r as a function of the
colatitude θ. We will discuss only this radius function for each method.

Only a subset of the mappings covered here can map the whole sphere to the unit
disc; others are restricted to a hemisphere. By shifting the north pole of the sphere
to another point and suitably recomputing longitude and colatitude, other projection
centers can be chosen. In Section 4, we will use the south pole as an additional
projection center to cover both north and south hemispheres. For this case, the new
colatitude is simply π − θ, and the longitude remains unchanged.

The mappings are summarized and compared in Table 2.

3.1. Equal-Area Projection (Lambert Azimuthal)

Lambert designed several important map projections [Snyder 1987], among them the
azimuthal equal-area map projection.

Sphere to disc mapping:

r = sin(θ/2)

Disc to sphere mapping:

θ = 2asin(r)

When projecting just one hemisphere instead of the whole sphere, an additional
scale factor of

√
2 is applied to the radius so that the unit disc is filled.

This mapping can map the whole sphere in a disc. It is an equal-area mapping.
Angular distortions increase with distance to the pole.

3.2. Conformal Projection (Stereographic)

The stereographic map projection is a conformal projection that was already known
in ancient Greece [Snyder 1987].
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Equal-Area Conformal Harmonic Mean Mixture Equidistant

Sphere
to disc

Hemisphere
to disc

DA

(hemisphere)

DI

(hemisphere)

Table 2. Overview of mappings between a sphere and a disc.
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Hemisphere to disc mapping:

r = tan(θ/2)

Disc to hemisphere mapping:

θ = 2atan(r)

This mapping cannot be used to map a complete sphere in a disc. It is a conformal
mapping. Scale increases with distance from the pole.

3.3. Harmonic Mean of Equal-Area and Conformal Projection (Breusing)

Many attempts have been made to balance the area-preserving qualities of the Lam-
bert azimuthal equal-area projection with the angle-preserving qualities of the stere-
ographic projection, with the goal of arriving at a map projection with only moderate
area and angle distortions throughout. Breusing is credited with the idea of using the
geometric mean of both projections; Young preferred the harmonic mean over the
geometric and arithmetic means and stated that it leads to simpler formulas than the
alternatives while being an error-minimizing projection in some sense [Young 1920].

Sphere to disc mapping:

r = tan(θ/4)

Disc to sphere mapping:

θ = 4atan(r)

When projecting just one hemisphere instead of the whole sphere, an additional
scale factor of 1√

2−1 is applied to the radius so that the unit disc is filled.
This mapping can map the whole sphere in a disc. It is neither equal-area nor

conformal, but both area and angular distortions are moderate.

3.4. Mixture of Equal-Area and Conformal Projection

Instead of using a fixed relation between equal-area and conformal projection, Fong
proposes to use a parameterized mixture of both [Fong 2014]. The tradeoff between
area and angular distortions can be chosen using a parameter β ∈ [0, 1], with β = 0

choosing the stereographic projection and β = 1 choosing the Lambert azimuthal
equal-area projection. Fong applied this idea to the whole sphere, which lead to dif-
ficulties since the stereographic projection requires an infinite plane to map the com-
plete sphere; in his version, the parameter β can only approach zero, but not become
zero. We restrict the mixed projection to the hemisphere instead and can, therefore,
use simpler formulas that furthermore do not impose a restriction on β.
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Hemisphere to disc mapping:

r =

√
1 + β tan(θ/2)√
1 + β tan2(θ/2)

Disc to hemisphere mapping:

θ = 2atan

(
r√

1 + β(1− r2)

)

For β = 0, r = tan(θ/2) and θ = 2atan(r), thus this mapping becomes
the stereographic mapping. For β = 1, r =

√
2 tan(θ/2)√
1+tan2(θ/2)

=
√
2 sin(θ/2) and

θ = 2atan(r/
√
2− r2) = 2 asin(r/

√
2), thus this mapping becomes the Lambert

azimuthal equal-area mapping in its hemisphere variant.
This mapping cannot map the whole sphere in a disc. It can be equal-area (for

β = 1) or conformal (for β = 0) and balances area against angular distortions for
0 < β < 1.

3.5. Equidistant Projection

The equidistant map projection has been known for many centuries; its origin can-
not be clearly identified [Snyder 1987]. Its main features are its simplicity and the
preservation of distances measured from the center of the projection. Its area and an-
gular distortions fall between those of the equal-area and conformal projections, thus
making this projection another candidate for a compromise between both.

Sphere to disc mapping:

r = θ/π

Disc to sphere mapping:

θ = rπ

When projecting just one hemisphere, instead of the whole sphere, an additional
scale factor of 2 is applied to the radius so that the unit disc is filled.

This projection can map the whole sphere in a disc. It is neither conformal nor
equal-area, but balances area and angular distortions. Distances to the center are
preserved.

4. Mappings between Sphere and Square

For projecting a sphere onto a square, there are essentially two layout options, de-
scribed in the following sections.
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Hemisphere
to disc

mapping Lambert Stereographic Harmonic Mean Mixture Equidistant
Disc

to square
mapping Shirley Conformal Elliptical Squircle Elliptical

Example map

DA

DI

Table 3. Selected mappings between a sphere and a square in quincuncial layout.
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Figure 2. Example map with the south pole of the sphere mapped to the square border. Here
the equidistant azimuthal projection was combined with the disc-to-square mapping based on
Fernández-Guasti’s squircle.

4.1. Pole-at-border Layout

The first layout option projects the whole sphere onto a disc using one of the methods
from Section 3 that is capable of this, and then applies one of the methods from
Section 2 to map that disc to a square.

In this layout, the sphere point opposite the projection center is mapped to the
border of the square. In our examples, the projection center is the north pole, and the
south pole is spread across the border. Figure 2 shows an example map.

Obviously, this layout leads to very strong distortions in the region around the
point opposite the projection center. This limits its usefulness in applications that
require acceptable sampling quality throughout the map, but there are still use cases
for this layout, for example in panoramic imaging [Fong 2014].

4.2. Quincuncial Layout

Peirce’s quincuncial map projection [Peirce 1879] shown in Figure 3 introduced this
layout. It projects each hemisphere onto its own disc, maps these discs to two squares,
and then arranges the squares into a single square as depicted in Figure 4. The center
part and the four corner parts form a quincunx.
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Figure 3. The original quincuncial map by Peirce combines stereographic conformal projec-
tion from each hemisphere to a disc, conformal mapping of these discs to two squares, and
arrangement of the squares in a quincuncial layout.

Figure 4. Arrangement of two squares into a new square in quincuncial layout. The second
square is mirrored along its borders to fit into the new square.
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Figure 5. Tiling of the quincuncial layout. The upper-left and lower-right quarters are the
original map, the upper-right and lower-left quarters are rotated by 180◦.

The sphere point opposite the projection center is mapped to the four corners of
the square. Distortions are much smaller than in the opposite-point-at-border layout.
Additionally, the quincuncial layout has the nice property that maps can be tiled, as
shown in Figure 5: when leaving the map at any border point except the four corners,
in any direction, there is a continuation point where we can re-enter the map without
disruption.

The quincuncial layout has been used in computer graphics to represent an octa-
hedron inside a square for the purpose of vector representation [Meyer et al. 2010;
Cigolle et al. 2014] or sphere parametrization [Praun and Hoppe 2003] and for the
display of panoramic images [German et al. 2007].

To arrange two unit squares into a unit square in quincuncial layout, both must
first be rotated by −45◦ and scaled by 1/

√
2. Each quadrant of the second input

square R2 is then mirrored along its border in that quadrant; see Figure 4.
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Selected mappings in quincuncial layout are summarized and compared in Ta-
ble 3. Note that there are methods that map directly between sphere and octahedron or
square, without using the disc as an intermediate step. These include Snyder’s equal-
area map projection for polyhedral globes [Snyder 1992] and Gringorten’s square
equal-area world map [Gringorten 1972]. Furthermore, Clarberg describes an opti-
mized SIMD implementation of a mapping between sphere and square using Shirley’s
equal-area mapping and an octahedral layout [Clarberg 2008]. These methods are not
discussed in this paper.

5. Analysis

In this section, we derive quality measurements and provide numerical analysis results
for all mappings. Note that all results were obtained using IEEE double precision
floating-point numbers and computations.

5.1. Distortion Measurements

To evaluate the mapping methods discussed in the preceding sections, we use a stan-
dard tool from the field of map projection: Tissot’s indicatrix [Snyder 1987].

The idea of the indicatrix is that any map projection maps an infinitesimal circle
on the sphere onto an infinitesimal ellipse on the map. This ellipse describes the
local characteristics of the map projection. For example, a conformal map projection
preserves angles, and the local ellipse will therefore be a circle, but generally not of
the same size as the original circle. An equal-area map projection preserves area, and
the size ratio of the local ellipse to the original circle will be constant throughout the
map, but the axes of the ellipse will have varying orientation and length.

In general, for any pair of lines that intersect at a given point on the sphere, the
angle at which they intersect on the map will not be identical (unless the map projec-
tion is conformal). The greatest deviation from the correct angle at a given point is
called the maximum angular deformation ω.

Both the original circle and the mapped ellipse are infinitesimal, but Tissot’s indi-
catrix allows to compute the ratio between corresponding properties. The most impor-
tant ellipse properties are the semi-major axis a and the semi-minor axis b. Both are
measured relative to the original circle: the identity mapping will result in a = b = 1.

For applications in computer graphics, two values derived from a and b are of
special interest, since they determine the sampling quality of a map projection:

• The local area distortionDA. The determinant of the Jacobian matrix of a map-
ping gives the local scale factor s, which can also be determined numerically as
s = ab. In a strict sense, s must be 1 everywhere on the map for the mapping
to be truly area-preserving, but usually source and destination have different
areas, and an equal-area mapping will have a constant scale factor representing

16

http://jcgt.org


Journal of Computer Graphics Techniques
Mappings between Sphere, Disc, and Square

Vol. 5, No. 2, 2016
http://jcgt.org

2.5

1

0.4

1

2.5

Figure 6. Color map forDA andDI in Tables 1, 2, 3 and Figure 7. DA (left scale) can deviate
upward or downward from the ideal value 1, with direction of the deviation encoded in hue.
DI (right scale) can only deviate upward from 1, where it uses the same color encoding asDA.

the ratio R of destination and source areas, e.g. s ≡ 4/π for equal-area map-
pings from disc to square. We therefore use DA = ab/R as a measurement of
local area distortion.

• The local isotropy distortion DI . The ratio of a and b is a measurement for
the isotropy distortion: DI = a/b. The ideal value is 1. Larger anisotropy
typically leads to degraded sampling quality in computer graphics applications.
Note that conformal maps have DI ≡ 1, but DI ≡ 1 does not imply that a map
is conformal: ω might still be larger than zero locally.

These two distortion measurements are color-coded using a color map generated
with the methods described by Wijffelaars et al. [Wijffelaars et al. 2008] as shown in
Figure 6; they are displayed for all relevant mappings in Tables 1, 2, and 3.

Table 1 shows that for mappings between disc and square, DA tends to increase
strongly in the corners of the square, except for the radial stretching method and, of
course, Shirley’s equal-area mapping. In fact,DA grows indefinitely in the corners for
Fernández-Guasti’s squircle method, elliptical arc mapping, and conformal mapping,
with conformal mapping showing the largest errors and affected areas. DI is strongest
at the square diagonals for the radial stretching mapping and Shirley’s equal-area
mapping, but it does not grow indefinitely for these methods. Fernández-Guasti’s
squircle method and elliptical arc mapping show indefinitely growing DI values in
the corners of the square. For conformal mapping, DI ≡ 0 as expected.

Interestingly, Shirley’s equal-area mapping exhibits the lowest DI measurements
of the non-conformal mappings. It is therefore a good candidate if its discontinuity at
the square diagonals is acceptable for the application. On the other hand, Fernández-
Guasti’s squircle method and elliptical arc mapping provide small DA and DI values
for the largest part of the square, as can also be seen by looking at the mapped teapot
shapes; if an application is mainly interested in the interior of the square and not its
corners, these methods are good candidates.
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Figure 7. DA (top) and DI (bottom) of the method described in Section 3.4, for varying β.

Table 2 shows that the harmonic mean, mixture, and equidistant mappings all
provide good compromises in terms of DA and DI when compared to the equal-
area and conformal mappings. We used β = 0.4 for the mixture method since it
delivers the best compromise; see Figure 7. Still, the harmonic mean method might
be preferable if an adjustable error tradeoff is not required.

Table 3 shows only a small subset of the many possible quincuncial combina-
tions of methods. The distortions introduced by sphere/disc and disc/square mappings
combine. Compromises between equal-area and conformal mappings still exhibit rel-
atively large values for DA and DI at the corners of the inner square, mainly caused
by the disc/square mapping. For some applications, it is possible to position these
four points in regions of low interest, e.g. oceans for applications that visualize Earth
landmass data.

5.2. Precision Measurements

We tested the numerical precision of our implementation by placing a uniform grid
on the square map, applying inverse mapping to each grid point to obtain coordinates
in the original domain (disc or sphere), and then mapping these coordinates first to
the map and then back again. For each obtained point in the original domain, we then
have a distance to the point resulting from forward and inverse transformation. The
maximum distance is the error measurement.

The mappings between disc and square all have very low errors. Measured on
Earth’s equatorial disc, the distances are in the micrometer range or below, with two
exceptions: Fernández-Guasti’s squircle mapping has an error in the millimeter range,
and conformal mapping has an error in the meter range. Of course, these are im-
plementation dependent, but we did not arrive at lower distances for the conformal
mapping when using different numerical libraries for the computation of F and cn.

The errors of mappings between sphere and square are dominated by the errors of
the disc/square mappings used. On an Earth-sized sphere, they are again mostly in the
micrometer range, except when Fernández-Guasti’s squircle mapping or conformal
mapping are used, in which case errors in the millimeter (squircle) or meter range
(conformal) occur.
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6. Conclusion

This paper gives an overview of mappings between a disc and a square, between a
sphere and a disc, and (by composition) between a sphere and a square. It provides
ready-to-implement formulas for both the forward and inverse mappings, and it ana-
lyzes all mappings using distortion measurements that are relevant for applications in
computer graphics.

Since requirements in terms of mapping properties strongly depend on the appli-
cation area, general recommendations cannot be made. Instead, this paper provides
analysis results intended to help pick the right mapping for a given application.
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