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Figure 1. A building information model (BIM) taken from a real-world project rendered at

more than 90 frames per second using the stereo rendering techniques presented in this paper.

Abstract

This paper describes and investigates stereo instancing—a single-pass stereo rendering tech-

nique based on hardware-accelerated geometry instancing—for the purpose of rendering build-

ing information models (BIM) on modern head-mounted displays (HMD), such as the Oculus

Rift. It is shown that the stereo instancing technique is very well suited for integration with

query-based occlusion culling as well as conventional geometry instancing, and it outperforms

the traditional two-pass stereo rendering approach, geometry shader-based stereo duplication,

as well as brute-force stereo rendering of typical BIMs on recent graphics hardware.

1. Introduction

The advent of building information models (BIM) and consumer-directed HMDs,

such as the Oculus Rift and HTC Vive, has opened up new possibilities for the use
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of virtual reality (VR) as a natural tool during architectural design. The use of BIM

allows a 3D scene to be directly extracted from the architect’s own design environ-

ment and, with the availability of a new generation of VR-systems, architects and

other stakeholders can explore and evaluate future buildings in 1:1 scale through an

affordable and portable interface.

However, given the rendering-performance demands posed by modern HMDs, the

use of BIMs in a VR setting remains a difficult task. With BIMs being primarily cre-

ated to describe a complete building in detail, many 3D datasets extracted from them

provide a challenge to manage in real-time if no additional acceleration strategies are

utilized [Johansson et al. 2015]. In this context, a combination of occlusion culling

and hardware-accelerated geometry instancing has been shown to provide a suitable

option in a non-stereo environment [Johansson 2013]. This approach could be adapted

to a stereo setup simply by performing two rendering passes of the scene, one for the

left eye and one for the right eye. However, this would still require an additional and

equal amount of rendering time, as the number of occlusion tests, rasterized triangles,

and issued draw calls would increase by a factor of two.

In order to remove the requirement of a second pass, the concept of stereo in-

stancing has recently gained a lot of attention within the game development com-

munity [Wilson 2015; Vlachos 2015]. Stereo instancing refers to a technique where

hardware-accelerated geometry instancing is used to render left and right stereo pairs

during a single pass.

In this paper, a more detailed description of the stereo instancing technique is

provided together with a thorough performance evaluation using real-world datasets.

Furthermore, the stereo instancing technique is used to extend the work in [Johansson

2013] in order to provide efficient stereoscopic rendering of BIMs. It is shown that

stereo instancing works very well in combination with occlusion culling based on

hardware-accelerated occlusion queries in a split-screen stereo setup. In addition,

the use of hardware-accelerated instancing is generalized to support both replicated

geometry as well as single-pass generation of stereo pairs.

2. Stereoscopic Rendering, Bottlenecks, and Acceleration Techniques

Any true stereoscopic display solution requires that the user be presented with dif-

ferent images for the left and right eye. In the case of the Oculus Rift, this is imple-

mented with split-screen rendering, where an application renders the image for the

left eye into the left half of the screen, and vice versa. However, due to the lenses,

which provide an increased field of view, a pincushion distortion of the image is in-

troduced. To cancel out this effect, the rendering has to be done at a higher resolution,

followed by a post-processing step that performs a barrel distortion. In Figure 2, the

Oculus stereo rendering pipeline is illustrated.
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Figure 2. A typical stereo rendering pipeline for the Oculus Rift.

In addition to requiring two distinct views of the scene every frame, stereoscopic

rendering targeting head-mounted displays (HMDs) typically has much higher inter-

activity demands compared to monoscopic, desktop applications. With the introduc-

tion of the consumer versions of both the Oculus Rift and HTC Vive, the minimum

frame rate has been set to 90 Hz, which corresponds to a maximum frame time of

11.1 ms.

Traditionally, stereo rendering has almost exclusively been implemented as two

independent, serial rendering passes, effectively doubling the geometry workload

on both the CPU and the GPU. When considering ways to improve rendering per-

formance in such a setup, we can generalize the situation in a similar fashion as

Hillaire [2012]; if an application is CPU-bound, its performance will be mostly in-

fluenced by the number of draw calls and related state changes per frame. If, on the

other hand, the application is GPU-bound, its performance will be influenced by the

number of triangles drawn every frame and the complexity of the different shader

stages.

As with monoscopic rendering, there are several different acceleration techniques

that can potentially be utilized if the performance requirements are not met. Common

examples include level-of-detail (LOD) to reduce the geometric complexity of distant

objects; frustum, occlusion, or contribution culling to reduce the number of objects

to render; hardware-accelerated instancing to reduce the number of draw calls when

rendering replicated geometry; and geometry batching to render groups of primitives

with as few draw calls as possible. An option more unique to stereoscopic rendering is

to use the geometry shader to render left and right stereo pairs from a single geometry

pass [Marbach 2009]. The geometry shader supports multiple outputs from a single
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input as well as functionality to redirect output to a specific viewport. Consequently, a

single draw call per batch of geometry is sufficient in order to produce both the left and

right eye projection. However, even if this reduces the CPU-burden—by reducing the

number of draw calls as well as related state changes—the geometry shader typically

introduces significant overhead on the GPU.

3. Stereo Instancing

As the name implies, stereo instancing takes advantage of hardware-accelerated ge-

ometry instancing in order to produce both the left- and right-eye version of the scene

during a single rendering pass. With the instancing capabilities of modern GPUs,

it is possible to produce multiple output primitives from a single input, without in-

troducing the geometry shader. To support stereo instancing, an application only

needs to replace conventional draw calls (i.e., glDrawArrays) with instanced ones

(i.e., glDrawArraysInstanced), providing two (2) as the instance count. Based on

the value of the instance counter in the vertex shader (i.e., gl_InstanceID being zero,

repectively one), each vertex can then be transformed and projected according to the

left or right eye, respectively.

However, the main difficulty with this approach is that unextended OpenGL cur-

rently does not support multiple viewport outputs from (within) the vertex shader.

Fortunately, this can be solved by performing a screen-space transformation of the

geometry, together with user-defined clipping planes. The screen-space transforma-

tion procedure used in this paper is similar to that in [Trapp and Döllner 2010], but

it is performed in the vertex shader instead of in the geometry shader. As illustrated

in Figure 3, the extent of a single viewport in OpenGL will range from [−1, 1] in

normalized device coordinates (NDC) for both the x- and y-coordinates. In order to

Figure 3. The extent of the simulated left (red) and right (green) viewports, as well as the real

viewport (black) in normalized device coordinates (NDC).
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simulate the concept of two side-by-side viewports in the vertex shader, the idea is

to perform a screen-space transformation so that the x-coordinates of the left- and

right-eye geometry will range from [−1, 0] and [0,−1], respectively, in NDC. List-

ing 1 provides GLSL vertex shader code for this process. A vertex v (x,y,z,w) is first

transformed into 4D homogenous clip space (CS) by the left or right model-view-

projection (MVP) matrix. This is followed by a division by the homogenous vector

component w in order to further transform it into NDC. In NDC, the x-coordinate is

then mapped from [−1, 1] to either [−1, 0] (left) or [0, 1] (right). Finally, the NDC-

transformed vertex has to be transformed back to CS. In addition, a user-defined clip

plane is used to restrict rendering within either one of the two simulated viewports.

The code in Listing 1 assumes that a single full screen viewport has been previously

defined on the client side.

#version 430 core

layout (location = 0) in vec3 position3;

//ViewProj matrix (left and right):

uniform mat4 viewProjMatrixLeft, viewProjMatrixRight;

uniform mat4 modelMatrix; //The Model matrix

//Frustum plane coefficients in World-Space:

uniform vec4 leftEyeRightPlaneWS, rightEyeLeftPlaneWS;

void main() {

vec4 vertPos = vec4(position3, 1.0);

vec4 vertPosWS = modelMatrix * vertPos;

if(gl_InstanceID < 1) { //Left eye

vec4 v = viewProjMatrixLeft * vertPosWS; //Transform to CS

vec4 vPosNDC = v/v.w; //...and further to NDC

float xNew = (vPosNDC.x-1.0)/2.0; //X from [-1,1] to [-1,0]

vPosNDC.x = xNew;

gl_Position = vPosNDC*v.w; //Transform back to CS

//Additional clip plane to the right

gl_ClipDistance[0] = dot(vertPosWS, leftEyeRightPlaneWS);

}

else { //Similar code as above, but for the right eye

vec4 v = viewProjMatrixRight * vertPosWS;

vec4 vPosNDC = v/v.w;

float xNew = (vPosNDC.x+1.0)/2.0; //X from [-1,1] to [0,1]

vPosNDC.x = xNew;

gl_Position = vPosNDC*v.w;

gl_ClipDistance[0] = dot(vertPosWS, rightEyeLeftPlaneWS);

}

}

Listing 1. GLSL vertex shader illustrating stereo instancing.

Depending on hardware, the screen-space transformation and custom clipping in

Listing 1 can be omitted in order to simplify the vertex shader. Both Nvidia and AMD
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provide OpenGL extensions that allow access to multiple defined viewports in the ver-

tex shader in a similar fashion as for the geometry shader (i.e., NV_viewport_array2

and AMD_vertex_shader_viewport_index).

Still, as in the case with stereo duplication in the geometry shader, stereo instanc-

ing does not reduce the number of triangles that needs to be rendered every frame. As

a consequence, the sheer amount of geometry that needs to be transformed, rasterized,

and shaded every frame, may very well become the limiting factor.

3.1. Integration with Occlusion Culling and Conventional Instancing

In [Johansson 2013], a combination of occlusion culling and hardware-accelerated ge-

ometry instancing was used in order to provide efficient real-time rendering of BIMs.

In essence, CHC++ [Mattausch et al. 2008], an efficient occlusion culling algorithm

based on hardware-accelerated occlusion queries, was extended to support instanced

rendering of unoccluded replicated geometry.

The original CHC++ algorithm takes advantage of spatial and temporal coherence

in order to reduce the latency typically introduced by using occlusion queries. The

state of visibility from the previous frame is used to initiate queries in the current

frame (temporal coherence) and, by organizing the scene in a hierarchical structure

(i.e., bounding volume hierarchy), it is possible to test entire branches of the scene

with a single query (spatial coherence). While traversing a scene in a front-to-back

order, queries are only issued for previously invisible interior nodes (i.e., groups of

objects) and for previously visible leaf nodes (i.e., singular objects) of the hierarchy.

The state of visibility for previously visible leaves is only updated for the next frame,

and they are therefore rendered immediately (without waiting for the query results

to return). However, the state of visibility for previously invisible interior nodes is

important for the current frame, and they are not further traversed until the query

results return. By interleaving the rendering of (previously) visible objects with the

issuing of queries, the algorithm reduces idle time due to waiting for queries to return.

To integrate hardware-accelerated instancing within this system, the visibility

knowledge from the previous frame is used to select candidates for instanced ren-

dering in the current frame. That is, replicated geometry found visible in frame n is

scheduled for rendering using instancing in frame n + 1. For viewpoints with many

objects visible, the proposed solution was shown to offer speed-ups in the range of

1.25x-1.7x compared to only using occlusion culling, mainly as a result of reducing

the number of individual draw calls.

When considering ways to adapt the work presented in [Johansson 2013] to a

stereo setup, the properties of the stereo instancing technique offer great opportuni-

ties. As it turns out, the combination of single-pass stereo-pair generation, hardware-

accelerated occlusion queries, and a split-screen setup becomes an almost perfect fit.

With a single depth buffer used for both the left and right eye, only a single occlusion
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query is ever needed per visibility test. That is, when a bounding box representing

an interior or leaf node of the spatial hierarchy is simultaneously rendered to both the

left and right viewport, a single occlusion query will report back a positive number if

either one of the representations (i.e., left or right) turns out to be visible. So, com-

pared to a two-pass approach, not only the number of draw calls and state changes but

#version 430 core

#extension GL_EXT_gpu_shader4 : require

#extension GL_NV_viewport_array2 : require

layout (location = 0) in vec3 position3;

//ViewProj matrix (left and right):

uniform mat4 viewProjMatrixLeft, viewProjMatrixRight;

uniform samplerBuffer M; //Matrices

uniform samplerBuffer I; //Indices

uniform int offset; //Per-geometry type offset into I

void main() {

int leftOrRight = gl_InstanceID%2;

float glInstanceIDF = float(gl_InstanceID);

float instanceID_Stereo = int(floor(glInstanceIDF/2.0));

int instance_id_offset = offset+instanceID_Stereo;

float offsetF = texelFetchBuffer( I, instance_id_offset).x;

float startPosF = offsetF*4.0;

int startPosInt = int(startPosF);

mat4 modelMatrix = mat4(texelFetchBuffer(M,startPosInt),

texelFetchBuffer(M,startPosInt+1),

texelFetchBuffer(M,startPosInt+2),

texelFetchBuffer(M,startPosInt+3));

vec4 vertPos = vec4(position3, 1.0);

vec4 vertPosWS = modelMatrix * vertPos;

if(leftOrRight < 1){ //Left eye

gl_ViewportIndex = 0;

gl_Position = viewProjMatrixLeft * vertPosWS;

}

else{ //Right eye

gl_ViewportIndex = 1;

gl_Position = viewProjMatrixRight * vertPosWS;

}

}

Listing 2. GLSL vertex shader illustrating stereo instancing combined with conventional

geometry instancing.
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also the number of occlusion tests becomes reduced by a factor of two and the culling

efficiency is only marginally reduced (i.e., an object visible in either viewport will be

scheduled for rendering into both).

In addition, it is straightforward to extend stereo instancing to also support con-

ventional (dynamic) instancing as proposed in [Johansson 2013]. Listing 2 provides

an example vertex shader that generalizes the use of instancing for both geometry

replication as well as stereo-pair generation. For a complete picture of this approach

the reader is referred to the original Johansson paper. Here, a shared array of in-

dices (I) is used to locate each instance’s transformation matrix, encoded in a single,

shared array (M). Without stereo instancing enabled, the index to fetch corresponds

to gl_InstanceID plus a per-geometry type offset (every geometry type gets a cer-

tain offset into I). With stereo instancing enabled, the instance count is increased by a

factor of two, however, the composition of the index array (I) remain unchanged.

First, the modulus operator (%) is used to distinguish between left and right in-

stances, i.e., even numbers go to the left viewport and odd to the right. Second,

the gl_InstanceID+offset is divided by two, and the integer part is used to lookup

and fetch the instance’s transformation matrix (the model matrix is the same for both

the left and right eye). Additionally, the code in Listing 2 takes advantage of the

NV_viewport_array2 extension in order to access multiple viewports in the vertex

shader, thereby removing the need for a screen-space transformation as well as cus-

tom clipping.

3.2. Batching of Non-instanced Geometry

Even with occlusion culling and the instancing-based approaches to reduce the num-

ber of draw calls, certain viewpoints may still require a large number of individual

draw calls. However, many non-instanced objects in a BIM, such as walls, contain

very few triangles, which make them suitable for geometry batching. In the case

of wall objects, the overall low triangle count per object is a result of each wall

segment—straight or curved—being considered a singular object in BIM authoring

systems (i.e. Autodesk Revit or ArchiCAD). As a result, the number of wall objects

represents a significant amount of the total number of objects contained in a BIM

while the number of wall triangles only represents a fraction of the total amount of

triangles in the model.

As BIMs contain detailed information about each individual object (i.e., meta-

data), it becomes trivial to collect and batch wall geometry by material during scene

loading. Although more sophisticated methods could be used to create optimal sets

of wall geometry, they are simply batched by material and the centroid position of the

walls bounding box (i.e., spatial coherence) in order to form clusters of approximately

7500 triangles each.
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4. Performance Evaluation

The different stereo rendering techniques have been implemented in a prototype BIM

viewer and tested on three different BIMs taken from real-world projects (Figure 4).

All three models (dormitory, hotel, and office building) were created in Autodesk Re-

vit 2014 and represent buildings that exist today or are currently being constructed.

Although the hotel model contains some structural elements, they are primarily ar-

chitectural models; as such, no mechanical, electrical, or plumbing (MEP) data is

present. However, all models contain furniture and other interior equipment. In Ta-

ble 1, related statistics for each model are shown. Please note both the large number

of instances as well as small number of triangles per batch for the wall objects, which

motivates the use of hardware-accelerated instancing as well as geometry batching of

wall objects.

All the tests were performed on a laptop equipped with an Intel Core i7-4860HQ

CPU and an Nvidia GeForce GTX 980M GPU with Nvidia graphics driver 361.43 in-

Figure 4. Exterior and interior views of the different test models. From top to bottom:

dormitory, hotel, and office building.
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Dormitory Hotel Office

# of triangles (total) 11,737,251 7,200,901 12,454,919

# of objects (total) 17,674 41,893 18,635

# of batches (total) 34,446 60,955 26,015

# of instanced batches / total # of batches 0.60 0.56 0.81

# of wall batches / total # of batches 0.38 0.37 0.12

# of wall triangles / total # of triangles 0.014 0.04 0.004

Avg. # of triangles per wall batch 12 13 16

Table 1. Model statistics for the three different BIMs.

stalled. The resolution was set to 2364 × 1461 pixels (off-screen buffer) with 4x

multisample antialiasing. All materials use a very simple N dot L diffuse color/tex-

ture shader.

Upon model loading, a bounding volume hierarchy (BVH) is constructed accord-

ing to the surface area heuristics (SAH). Unless otherwise stated, the leaf nodes in

this hierarchy represent the individual building components, such as doors, windows,

and furniture. For each object, one vertex buffer object (VBO) is constructed per ma-

terial., i.e., a typical window object will be represented by two VBOs, one for the

frame geometry and one for the glass geometry.

The implementation of CHC++ is based on the description and accompanying

code presented in [Bittner et al. 2009]. All proposed features of the original algo-

rithm are used, except for the multiqueries and tight bounds optimizations. A major

requirement in order to provide an efficient implementation of CHC++ is the abil-

ity to render axis-aligned bounding boxes with low overhead for the occlusion tests.

Primarily based on OpenGL 2.1, the code in [Bittner et al. 2009] as well as [Johans-

son 2013] uses OpenGL Immediate Mode (i.e., glBegin/glEnd). In the prototype

BIM viewer, a more performance-efficient unit-cube approach is used instead: Every

bounding box in the spatial hierarchy maintains a 4 × 4 transformation matrix that

represents the combined translation and scale that is needed in order to form it from a

unit-cube (i.e., a cube with length 1 centreed in origo). During every querying phase

of the CHC++ algorithm a single VBO, representing the geometry of a unit-cube, is

used to render every individual bounding box. The unique unit-cube transformation

matrix is submitted to the vertex shader as a uniform variable.

For all models, two different camera paths have been used: one interior at a mid-

level floor in each building, and one exterior around each building. The exterior cam-

era paths represent an orbital camera movement around each building while facing

its center. As each building is completely visible throughout the whole animation se-

quence, it serves as a representative worst case scenario, regardless of culling strategy.

For all models and animation paths, several different culling and stereo rendering

configurations have been combined and evaluated. The abbreviations used in the
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tables and figures should be read as follows: VFC for view frustum culling, OC for

occlusion culling, HI for dynamic hardware-accelerated geometry instancing, BW

for batching of wall geometry per material, TP for two-pass stereo rendering, GS

for stereo duplication in the geometry shader, SI for stereo instancing, SI NV for

stereo instancing using the NV_viewport_array2 extension, and BF for brute-force

rendering. In the brute-force rendering case (BF) non-instanced geometry is batched

together based on materials and instanced geometry is rendered using conventional

hardware-accelerated instancing. Also, no occlusion culling is present. As correct

depth ordering becomes difficult to maintain with the use of instancing, HI and BF

render semi-transparent geometry using the weighted average transparency rendering

technique [Bavoil and Myers 2008]. In all other cases, semi-transparent geometry is

rendered after opaque objects in a back-to-front order using alpha blending.

4.1. Stereo Rendering with View Frustum Culling

In Table 2, average and maximum frame times are presented for the different cam-

era paths when view frustum culling is combined with the different stereo rendering

techniques. These results are mainly to illustrate the benefit of using stereo instancing

without any additional acceleration strategies.

With only view frustum culling, these models are primarily CPU-bound due to a

large number of draw calls in relation to the total number of triangle that are being

Stereo Rendering Technique GeForce GTX 980M

(all modes use view frustum culling) Interior Exterior

Dormitory

Two pass (TP) 14.3 / 39.5 51.8 / 68.4

Geometry shader duplication (GS) 12.8 / 26.0 33.7 / 36.7

Stereo instancing (SI) 11.0 / 21.5 27.3 / 34.9

Stereo instancing using NV extension (SI NV) 8.4 / 20.4 25.0 / 34.4

Hotel

Two pass (TP) 53.0 / 82.7 91.9 / 100.8

Geometry shader duplication (GS) 29.1 / 42.0 46.3 / 49.1

Stereo instancing (SI) 29.2 / 42.2 47.1 / 49.9

Stereo instancing using NV extension (SI NV) 28.9 / 41.5 46.2 / 48.9

Office

Two pass (TP) 6.4 / 17.6 39.7 / 52.8

Geometry shader duplication (GS) 7.1 / 17.7 35.8 / 36.5

Stereo instancing (SI) 6.3 / 15.1 29.0 / 30.0

Stereo instancing using NV extension (SI NV) 5.0 / 11.1 20.1 / 22.2

Table 2. Comparison of average/maximum frame time in milliseconds for different render-

ing techniques, models, and camera paths. Numbers in bold represent the lowest numbers

encountered for each test setup.
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drawn (i.e., small batch size). Because of this, stereo instancing becomes a much

more efficient approach. Focusing on the exterior paths, the average frame times are

reduced by 27–52% compared to a two-pass alternative. It also becomes clear that the

NV_viewport_array2 extension is preferable, not only in terms of implementation

simplicity, but also in terms of performance. Although not to such a high degree, a

speed-up is also recorded for the geometry shader-based approach.

Still, even if the stereo instancing technique offers a significant performance in-

crease compared to both a two-pass as well as geometry shader-based approach, the

performance is not enough in order to provide sufficiently high frame rates, even for

the interior walkthroughs. Consequently, to be able to guarantee a smooth, interactive

experience for typical BIMs, additional acceleration techniques are needed.

Stereo Rendering Technique GeForce GTX 980M

(all modes except brute force use occlusion culling) Interior Exterior

Dormitory

Two pass 2.4 / 4.1 7.6 / 10.4

Geometry shader duplication 2.1 / 3.7 6.2 / 9.8

Stereo instancing 2.0 / 3.3 5.4 / 8.1

Stereo instancing (NV extension) 1.9 / 3.3 4.6 / 7.3

Stereo instancing (NV extension) + Instancing + Batching 2.6 / 4.0 5.2 / 7.0

Brute force 10.9 / 15.6 17.4 / 18.2

Hotel

Two pass 4.0 / 5.5 27.6 / 47.9

Geometry shader duplication 3.9 / 5.3 15.0 / 25.9

Stereo instancing 3.5 / 5.1 14.7 / 25.1

Stereo instancing (NV extension) 3.1 / 4.3 14.2 / 24.5

Stereo instancing (NV extension) + Instancing + Batching 3.3 / 4.5 7.5 / 10.9

Brute force 12.0 / 13.9 11.9 / 13.1

Office

Two pass 2.7 / 5.0 11.5 / 19.2

Geometry shader duplication 2.2 / 4.4 8.2 / 14.3

Stereo instancing 2.2 / 4.4 7.0 / 11.8

Stereo instancing (NV extension) 2.1 / 4.0 6.2 / 10.7

Stereo instancing (NV extension) + Instancing + Batching 2.3 / 4.2 6.2 / 9.0

Brute force 10.4 / 14.3 19.2 / 19.8

Table 3. Comparison of average/maximum frame time in milliseconds for different render-

ing techniques, models, and camera paths. Numbers in bold represent the lowest numbers

encountered for each test setup.
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4.2. Stereo Rendering with Occlusion Culling

In Table 3, average and maximum frame times are presented for the different camera

paths when occlusion culling is combined with the different stereo rendering tech-

niques. Focusing on the interior paths first, it becomes clear that occlusion culling

alone is sufficient to provide the required frame rates. In fact, the maximum frame

time recorded for any of the interior paths is never above 6 ms, regardless of stereo

rendering technique. As these models features fairly occluded interior regions, the

CHC++ algorithm can efficiently reduce the amount of geometry that needs to be

rendered.

Still, when inspecting these numbers in more detail, it can be seen that stereo

instancing is able to reduce both average as well as maximum frame times between

20–23% compared to a two-pass approach and 5–21% compared to the geometry

shader-based approach. When occlusion culling and stereo instancing are further

complemented with batching of walls (BW) and geometry instancing (HI), the per-

formance results do not show the same consistency. Although the maximum frame

times are consistently below that of the two-pass approach, stereo instancing is outper-

formed by geometry shader-based duplication for the dormitory model. Nevertheless,

in this context, it is also important to note that it is the batching of walls—and not

the geometry instancing technique—that is the main cause of the increased rendering

time. In fact, the combination of occlusion culling, stereo instancing, and geometry

instancing give equal or actually slightly better performance compared to only using

occlusion culling and stereo instancing for the interior paths. However, batching of

wall geometry was primarily introduced in order to reduce the number of draw calls

for viewpoints when many objects are visible. As such it does not become equally

beneficial for interior viewpoints.

In order to provide a better understanding of the performance characteristics, Fig-

ure 5 presents frame timings for the interior paths for the dormitory and for the office

building. Most notably, these graphs show the huge difference in performance com-

pared to a brute-force alternative (BF), regardless of stereo rendering technique. Al-

though the brute-force approach is able to deliver frame times below 11.1 ms during

parts of the interior camera paths, this level of interactivity cannot be guaranteed.

Focusing instead on the exterior paths in Table 3, the gain of the combined method

becomes even more apparent. With all the techniques activated (OC+SI NV+BW+HI),

the average frame times are reduced by 32–73% compared to the two-pass approach

and 16–50% compared to geometry shader-based duplication. To give a better

overview of the performance behavior, Figure 6 presents frame timings for the exte-

rior camera paths for the three different models. Here it can be seen how the different

techniques complement each other depending on which model is rendered. For the

dormitory and office building models, stereo instancing provides distinct performance

gains compared to both two-pass rendering as well as the geometry shader-based ap-
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Figure 5. Frame times (ms) for the interior path of the dormitory (top) and office (bot-

tom) buildings (BF=Brute force, OC=Occlusion culling, TP=Two-pass stereo rendering,

GS=Geometry shader stereo duplication, SI NV=Stereo instancing using NV extension,

HI=Geometry instancing, BW=Batching of wall geometry).

proach. However, for these models, there is little additional to gain from conventional

geometry instancing, and batching of walls. In fact, due to a high level of occlusion

also in the exterior views of the student model, the average frame times are actually

lower without geometry instancing and batching of walls activated. For the hotel

model, on the other hand, the behavior is somewhat reversed. Although stereo in-

stancing provides huge performance gains compared to two-pass rendering, the frame

times are essentially equal to that of the geometry shader-based technique. Even with

occlusion culling, the exterior views of the hotel model contain a huge number of vis-

ible objects and, therefore, become CPU-bound due to the large number of individual

draw calls. Both stereo instancing as well as geometry shader-based duplication only

address this to a certain degree. In order to reach the target frame rate, the number

of draw calls has to be further reduced, which is exactly what both batching of walls

and geometry instancing does. To better illustrate the individual effects of geome-

try instancing (HI) and batching of walls (BW), Figure 6 (middle) also presents the

frame timings when these two techniques are added separately to occlusion culling
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Figure 6. Frame times (ms) for the exterior path of the dormitory (top), hotel (middle) and of-

fice (bottom) buildings (BF=Brute force, OC=Occlusion culling, TP=Two-pass stereo render-

ing, GS=Geometry shader stereo duplication, SI NV=Stereo instancing using NV extension,

HI=Geometry instancing, BW=Batching of wall geometry)

and stereo instancing (i.e., OC+SI NV+BW and OC+SI NV+HI, respectively). It can

thus be seen that the combination of these two techniques is required in order to reach

a target frame rate of 90 Hz for the hotel model.

Another interesting aspect of the technique is that the brute-force approach is

actually surprisingly close in delivering sufficient rendering performance for the hotel

model. However, as seen from the results from the other two models, the brute-force

alternative is clearly not scalable, especially if we also consider more complex pixel

shaders. In comparison, the proposed combination of query-based occlusion culling,
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stereo instancing, batching of walls, and geometry instancing is able to provide the

required level of performance for all of the tested models.

5. Conclusion

In this paper the stereo instancing rendering technique has been described and further

investigated. The technique is very well suited for integration with occlusion query-

based occlusion culling as well as conventional geometry instancing and has been

shown to outperform traditional two pass stereo rendering approach, geometry shader-

based stereo duplication, as well as brute-force stereo rendering of typical BIMs on

recent hardware. Although occlusion culling alone turned out to provide sufficient

rendering performance for interior rendering of typical BIMs, the combination of

techniques proved vital in order to guarantee required frame rates also for exterior

viewpoints.
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