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Figure 1. Screenshot of "Marching Cubes 33 case viewer" application.

Abstract

The marching cubes (MC) algorithm, which generate isosurfaces from a regular 3D grid, is
widely used in visualization of volume data from a CT scan, MRI, X-ray diffraction, quantum
mechanical calculation, or mathematical function. In this paper, we introduce a C-language
code for the marching cubes 33 (MC33) algorithm. The routines of this implementation were
optimized for fast execution and low memory consumption. The array of triangles, point coor-
dinates, and normal vectors of the generated surfaces do not require an extensive continuous
memory, which improves the memory allocation. The interior test was properly performed

considering that one of the four main diagonals of the grid cube must first be selected.

1. Introduction

Marching cubes (MC) [Lorensen and Cline 1987] is the best-known method to build
isosurfaces, starting from a scalar function (F'(x,y, z) = «, « is the isovalue) eval-

1 ISSN 2331-7418


http://jcgt.org

Journal of Computer Graphics Techniques Vol. §, No. 3, 2019
Marching Cubes 33 Implementation with the Correct Interior Test http://jcgt.org

uated at the array of uniformly distributed points in a regular three-dimensional grid.
The isosurface consists of a set of triangles in which the vertices are located on the
edges of each grid cell (cube), and their coordinates are obtained by linear interpola-
tion along each cube edge.

In this method, one cube is processed at a time. Each cube vertex is classified as
positive or negative when its values is greater, respectively, smaller than the given iso-
value. If the eight cube vertices have the same sign, the isosurface does not intersect
the cube. Otherwise, the intersection points between the edges and the isosurface must
be determined. These intersection points are the vertices of the triangles that form the
isosurface. The way to connect the vertices is obtained from a triangle pattern stored
in a look-up table (LUT).

The LUT contains all of the possible options, and each entry has a triangle pattern
according to the way in which the isosurface and the grid cube intersect. There are 28
=256 possible options (the eight cube vertices can be positive or negative). However,
the number of options can be reduced to 128, since the options are equivalent when
the signs of all cube vertices are inverted. In the original MC [Lorensen and Cline
1987], only those options with a maximum of four positive vertices were considered.
By grouping the options that are equivalent when applying a rotation operation, they
were classified in 15 cases, shown in Figure 2.

A main weakness of the MC algorithm is that it can produce surfaces with holes
as a result of the topological inconsistency between common faces in adjacent cubes.
For each configuration, the LUT contains only one variant of the isosurface topology,
while the trilinear function, Equation (1), supports multiple variants in some of these
configurations. These variants appear when the two kinds of ambiguities are solved,
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Figure 2. MC triangle patterns. The function value is greater than the isovalue in the marked

vertices.
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Figure 3. Parameters for the trilinear interpolation formula, Equation (1).

one on the cube faces and the other inside the cube:

F(g,s,t) = (1= q)(1 = s)(1 = ¢)Fooo + q(1 — s)(1 = ¢)F100
+ (1 — q)s(l — t)F()lo + qs(l — t)FH() + (1 — q)(l — S)tFOOl (D
+ C_I(l — S)tFlOl + (1 - Q)StF[)ll + qStFlll

where F; ;i is the function evaluated at cube vertices and g, s, and ¢ range from 0 to 1
(see Figure 3).

The ambiguity problem for the faces was solved using bilinear interpolation [Niel-
son and Hamann 1991]; as a result the surfaces are topologically consistent and 20
cases were added to the 15 initial ones. Some of the added patterns never occur when
a trilinear approximation is used for describing the scalar function (F'), as shown by
Chernyaev [1995]. Additionally, in the Chernyaev paper, the internal ambiguity was
solved and the number of cases was increased to 33 (MC33).

There is another method similar to MC33 to resolve the ambiguities, which is
also based on a trilinear approximation, increasing the number of cases to 34 [Nielson
2003]; however, the described tests are more complex.

In the present work, the MC33 algorithm was programmed with the purpose of
generating isosurfaces of molecular and crystalline electronic charge density. The
first version of this implementation of MC33 was finalized in 2008. In 2012, an arti-
cle was published showing the errors in all the MC implementations available on the
web [Etiene et al. 2012]. At that time, we also decided to make our implementation
available on the web. This version can still be obtained at http://alfa.facyt.uc.edu.
ve/quimicomp/Descargar/marching_cubes_33.7z. Currently, we have optimized the
algorithm to reduce the processing time. The latest version can be downloaded from:
https://sourceforge.net/projects/facyt-quimicomp/files/marching_cubes_33_c_library.
7z.
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Figure 4. Two ways to connect the intersection points of the face edges with the isosurface
(small black dots). If the inequality Equation (2) is valid, it must be connected like (a), one

positive area (gray filled), or else like (b), separated positive areas.

2. Background

For simplicity, we set the isovalue to zero. This is equivalent to subtracting the iso-
value from the scalar function evaluated at each grid point.

The ambiguity on a face arises when the values of two opposite vertices are pos-
itive (greater than the isovalue) and the other two are negative (smaller than the iso-
value), which implies that the isosurface intersects the four edges. There are two
ways to connect the points of intersection of the isosurface with the face edges. This
ambiguity is resolved by verifying the inequality (2) [Chernyaev 1995].

AC — BD > 0, 2)

where A, B, C, and D are the function values at the face vertices. If the inequality (2)
is valid, then the A and C vertices are joined, otherwise the vertices are separated by
the isosurface (see Figure 4). An internal ambiguity arises when two opposite vertices
(which have the same sign) of a cube main diagonal are separated on the faces, but
they can be joined inside the cube. This ambiguity can also be resolved, by applying
the interior test [Chernyaev 1995].

The function F' varies bilinearly over a plane parallel to a cube face. If we fix any
variable (g, s, or t) in Equation (1), for example ¢, then F' takes the form

F(g,8) = (1—q)(1—-3)At+ (1 —q)sBt + qsC; + q(1 — 5)D¢ 3)
where
Ay = (1 —t)Fooo + tFoo1,
Bt = (1 — t)Fo10 + tFo11, @
Ct = (1 =t)Fi10 + tF111,
Dy = (1 —1t)Fi00 + tFio1-

Let Ag, By, Co, Dg be the function values at the cube vertices on the face with
t = 0, and Ay, By, C1, Dy the values at the vertices on the face with t = 1. Let Ag
and C; be the vertices that can be joined inside the cube (see Figure 5).
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Figure 5. If the Ay and C; vertices are joined inside the cube, then there is an intermediate

plane (at t = t,ax) Where A; and C; are joined (gray area).

If the Ap and C; vertices are joined inside the cube, then there is some ¢ value,
between 0 and 1, such that

ACy — BDy > 0. (5)
Applying linear interpolation (since function [’ varies linearly along the edges),
we have
Ay = Ao+ (A1 — Ap)t,
B; = Bo + (B1 — Bo)t, ©)
Gy = Co + (C1 = Co)t,

D; =Dg + (D1 — D())t.
Substituting Equation (6) in Equation (5), a second-degree equation is obtained:
at® + bt + ¢ > 0, @)

where
a = (A1 — A())(Cl - Co) - (Bl - BO)(Dl - DO):
b=Co(A1 —Ap) + Ag(C1 — Cg) — Do(B1 — Bg) — Bo(D1 — Do),  (8)

Calculating a, b, and c values, Equation (8), it is possible to know whether or not
the diagonally opposite vertices are joined inside the cube. The following conditions
must be verified:

» whether the parabola described by Equation (7) opens downward (a < 0),
» whether t = t;,ax = —b/2a belongs to the interval (0, 1),

* whether A; and C; have the same sign and the inequality (5) is valid,

* whether the sign of Ag or C; are the same as A; and C;.

If any of these conditions is not verified, the vertices Ay and C; are separated.
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The interior test can also be carried out using a plane perpendicular to the s- or
g-axis (Figure 3). However, the test gives the same result independently of the chosen
axis, except for the case 10.1 of MC33, which will be discussed later.

It is important to remark that the Chernyaev’s interior test [1995] describes a
method to check if the Ag and C; vertices are connected through a tunnel. If it is
intended to test another pair of opposite vertices, the sign of some parameters and the
sign of comparisons could change (this will be described in Section 4.1). The interior
test has been misinterpreted [Lewiner et al. 2003], and it has even been erroneously
reported that this test fails [Custodio et al. 2013].

3. Triangle Patterns of Other Implementations

Some MC algorithm implementations can be downloaded in the C [Bourke 1994] and
Java [Lingrand et al. 2002] languages, with the proper topological inconsistencies of
this algorithm. A previous implementation of the MC33 algorithm was published in
C++, which includes the source code [Lewiner et al. 2003]. However, the interior test
was not programmed correctly, and a later published correction [Custodio et al. 2013]
(C-MC33) is also defective.

We found two errors in the triangle patterns obtained from C-MC33. The first
one is for the case 13.5.2 of MC33'. This only occurs when the vertex [1, 1, 0],
the upper-right vertex not marked in Figure 6 (a), joins the center of the cube and its
value is negative. The C-MC33 implementation correctly recognizes the case, but the
triangle pattern is incorrect (see Figure 6). When the signs of all vertices are inverted,
C-MC33 displays the correct pattern.

X

x (@) (b)

Figure 6. The MC33 case 13.5.2. (a) Trilinear function isosurface with isovalue equal to
zero; the vertices with black spheres have positive values; (b) Correct MC33 triangle pattern
for the isosurface (a); (c) triangle pattern obtained by C-MC33.

'One to three numbers are used to label the MC33 cases [Chernyaev 1995]. The first number corre-
sponds to the original MC case (see Figure 2), the second is the number of one of the variants obtained
when the vertices of ambiguous faces are joined in different ways. When the internal ambiguity exists,
the third number is 2 if the diagonal vertices are joined inside the cube and 1 if they are not.
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Figure 7. The MC33 case 10.1.1. (a) Trilinear function isosurface with isovalue equal to
zero where the values of the vertices are {-7,-6, 2, 3, 2, 3,-7,-6}; (b) correct MC33 triangle
pattern for the isosurface (a); (c) triangle pattern obtained by C-MC33.

The other error is related to the interior test. For some vertex values, C-MC33
identifies incorrectly the case 10.1.1 (negative interior test, see Section 4.2) as 10.1.2
(positive interior test). For example, this happen for the following vertex values:
{-7,-6,2,3,2,3,-7,-6} and {-12,-10, 2, 3, 4, 6,-6,-5} (see Figure 7 for the vertex
labels).

Another tested MC implementation is TMC [Grosso 2016]. This algorithm is
based on the asymptotic decider and the interior ambiguity is solved by calculating
internal points. This improves the adjustment of the triangles to the isosurface of
the trilinear function, but increases the number of vertices and triangles and, as a
consequence, the calculation time. This article has a good summary of the various
methods proposed to deal with the ambiguities. The code for TMC is available online
[Grosso 2017].

In most cases, TMC does not produce any triangle pattern if the face test can
not predict whether the positive or negative vertices are joined. When the expres-
sion on the left side of inequality (2) is equal to zero, the positive and negative ar-
eas on the face are separated by two perpendicular lines where the function value is
zero. The algorithm could connect any of the both pairs of opposite vertices (see
Figure 8), but TMC indicates an error and aborts the determination of the triangle
pattern. This condition is uncommon and is more frequent in grids from MRI and
CT scans. For the Stag beetle dataset [Groller et al. 2005] with an isovalue equal to
500, TMC shows the error 48 times and does not determine the triangle pattern in
35 cubes.

Although there is no doubt about the triangle pattern for case 10.2 of MC33,
when the values at the vertices make the surface quite symmetrical (see Figure 9),
TMC indicates an error and does not determine the triangle pattern.
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Figure 8. MC33 case 3.1 or 3.2. For the vertex values {—6,-3,-3, 6, 4,-2,-2,—41}, (a) is the
isosurface of trilinear function with isovalue zero and the product of opposite vertex values
on the bottom face are equal. In the MC33 triangle pattern, the connected vertices can be 0
and 7, as in (b) (case 3.2), or 3 and 4, as in (c) (case 3.1). Either case is acceptable. For this

configuration TMC displays an empty cube.

6

Figure 9. For the vertex values {-4,-9, 5, 8, 8, 5,-9,—4}, (a) is the isosurface of trilinear
function with isovalue zero and (b) is the MC33 triangle pattern (case 10.2). When the values
of opposite vertices on each face where the face test must be applied (top and bottom faces in
this example) are equal, TMC displays an empty cube.

4. Algorithm

4.1. |Interior Test

Although the interior test of MC33 was described in 1995 [Chernyaev 1995], no other
versions of this algorithm are available with this test correctly implemented.

For the interior test, it is assumed that the diagonally opposite vertices have the
same sign (except for the case 13.5). There are four main diagonals in the cube; in
other words, there are four pairs of opposite vertices and, at least, four different ways
to apply the interior test. In the implemented algorithm, the diagonal must be specified
to perform the interior test. The notation of Figure 5 will be used for the vertices of
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the cubes in the four cases described below, and only one plane (of the three possible
orientations) will be used.

The algorithm of the interior test contains some common steps and other steps
that depend on the chosen diagonal:

The a and b values are calculated by Equation (8). If a is zero, the vertices will
not be joined, and if it is not zero then ¢t = ty,,x = —b/2a. If the ¢ value is outside of
interval (0, 1), the vertices will not be joined. If ¢ is inside, then A¢, B¢, C¢, and Dy are
calculated by Equation (6), and continues with one of the following cases (depending
on the selected diagonal):

Case 0: Test for Ag and C; vertices. The vertices are joined if all the
following conditions are verified: a < 0, A; C; > B; Dy, and Ay, C¢, and
Ag have the same sign.

Case 1: Test for By and D; vertices. The vertices are joined if all the
following conditions are verified: a > 0, A; C; < B; D¢, and B¢, D; and
B have the same sign.

Case 2: Test for Cy and A; vertices. The vertices are joined if all the
following conditions are verified: a < 0, Ay C; > B; Dy, and Ay, C¢, and
Cop have the same sign.

Case 3: Test for Dy and B; vertices. The vertices are joined if all the
following conditions are verified: a > 0, A; C; < B; Dy, and By, Dy, and
Dy have the same sign.

In our implementation, most of the triangle patterns of the LUT were ordered
based on the diagonal index that must be passed to the interior test function. In the
table of case 12, an auxiliary array of diagonal indices was used.

4.2. Case 10.1.1 and 10.1.2

In cases 10.1.1 and 10.1.2, there are two ambiguous faces which are opposite faces of
the cube. The cube vertices are joined in the same way on those faces, and the interior
test must be used to discriminate between the two cases. In contrast to the other
cases, the interior test can be applied to two diagonals. An additional complication
arises when the plane containing both diagonals is not perpendicular to the plane
t (A, By, C, Dy), in which case although both diagonals are joined inside of the cube
(case 10.1.2), one test will be negative and the other positive. In fact, when projecting
the involved vertices on the plane ¢, the points A; and C; for one of the diagonals, and
the points B; and D; for the other one are obtained. As shown in Figure 10, if A; and
C; are joined, then B; and D; are not, and vice versa. For one of the diagonals, the
test fails. Nevertheless, if the plane containing both diagonals is perpendicular to the
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Figure 10. Examples of trilinear function isosurfaces for cases 10.1.1 and 10.1.2 are shown

in (a), respectively, (b). The plane at ¢t = t,,,x is shown in red in both cubes. In (c), the
plane of (b) was drawn, filling the area where the function is positive in gray. The A; and Cy
vertices of one main diagonal of the cube are projected onto the plane at A,, respectively, C;,
and similarly, the By and D, vertices at B, respectively, D;. For (b), the interior test will be

positive if it is applied to the diagonal (A1, Cy) and negative for the (Bg, Dy).

plane ¢, then the involved vertices will be projected on only a pair of points, Ay, Cy, or
B, Dy, and the result of the test will be the same for both diagonals. See Figure 11.

In summary, if the plane containing the two diagonals to be tested is not perpen-
dicular to the plane ¢ (Figure 10), the interior test is considered positive if the result is
positive for any of the diagonals. If the plane of the diagonals is perpendicular to the
plane ¢ (Figure 11), it is sufficient to test only one diagonal.

(a) (b)

Figure 11. Examples of trilinear function isosurfaces for cases 10.1.1 and 10.1.2 are shown in
(a), respectively, (b). The plane at t = t,,,x 1S shown in red in both cubes. The same plane of
(b) is shown in (c). When projecting the vertices of the diagonals (Bg, D7) and (B, Dg) onto
the plane, only the B, and D, points are obtained. For (b), the interior test will be positive for

both these diagonals.
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4.3. Case 13.5.1 and 13.5.2

In the LUT, case 13 has the most number of variants. It is possible to choose some
variants with only the face tests. The subcase 13.5 (positive face tests for three faces
with a common vertex and negative for the other three faces) has two variants that
depend on the result of the interior test: negative for 13.5.1 and positive for 13.5.2
[Chernyaev 1995]. Despite the fact that the interior test was deduced for a case where
a couple of diagonally opposite vertices have the same sign, and that in the case 13,
all the opposite vertices have different signs, the interior test can be applied. Although
the interior test determines which variant (13.5.1 or 13.5.2) must be selected, still an
ambiguity persists: There are two versions for the 13.5.2 variant, Figures 12(b) and
12(c).

The interior test function was modified by adding a flag, equal to 1 when the test
is applied to case 13, and O to other cases. The function returns the value 0 if some of
the described conditions in Section 4.1 are not valid, except when comparing the sign
between one of the vertices (Ag, Bg, Cg or Dg) of a diagonal and the corresponding
point on the plane ¢ (A, By, C;, Dy). Then, if the flag is 1, the function returns 1
when the signs are different, and returns 2 if they are equal. A 0 value indicates that
both vertices of the diagonal are not joined to the cube center region (case 13.5.1,

C 1 C 1 C 1

Ay Ao Ag
(a) (b) ()
I (d) J (e) [ )

Figure 12. The 13.5.1 variant, (a) and (d), and the 13.5.2 variants (b), (c), (e) and (f). The
figures (a), (b) and (c) are isosurfaces from trilinear functions, and (d), (e) and (f) are the
respective triangle patterns. The marked vertices correspond to positive function values. The
results of the face tests are the same for (a), (b) and (c). The interior test result is O for (a), 1
for (b), and 2 for (¢).
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Figure 12(a)); a value of 2 indicates that the Ay, By, Cp, or Dy vertex is joined to the
center (case 13.5.2, Figure 12(c)), and a value of 1 means that the opposite vertex (Cy,
Di, Ay, or By) is joined to the center (Figure 12(b)).

5. Implementation Details

Some important details of our marching cubes implementation are described here.
The triangle patterns stored in the LUT (MC33_LookUpTable.h) were built using
Maple 7, starting from a pattern for each variant and automatically generating the
other ones. For each of the 24 rotation operations of the cubic system, three matrices
were built: one for the edges (to obtain the triangle pattern), another for the vertices
(cube index), and the third for the faces (face test results). The repeated triangle
patterns were discarded. For proper display of surfaces, all the triangle vertices were
placed in the LUT in a determined order.

In addition to the triangle patterns, the algorithm computes a unit vector normal
to the isosurface at each triangle vertex, using trilinear interpolation. This vector is
useful to shade the surface. The fast inverse squared root algorithm [Lomont 2003]
was used to normalize the vector.

In a similar way to other marching cubes implementations [Lewiner et al. 2003;
Watt and Watt 1992], auxiliary structures are used to prevent calculating the vertices
more than once. Unlike Lewiner’s implementation [2003], the grid is walked only
once, and the auxiliary structures require only a small fraction of memory compared
to that occupied by the grid. The indices of the vertices lying on the edges parallel to
the z- and y- axes are stored in four matrices of integers (The size of each matrix is
approximately equal to the size of a z-slice), and those corresponding to the z-axis in
two vectors. Meanwhile, the cubes are analyzed, the indices are simultaneously stored
and read from these structures. Finally the allocated memory for these structures is
released. For the bunny dataset [ Yoo 2000], the memory occupied by the grid and
the auxiliary structures is 374 MiB when using our code and about 1440 MiB using
the C-MC33 [Custodio et al. 2013] or TMC [Grosso 2017] code. For the stag beetle
dataset [Groller et al. 2005], the memory occupied in our implementation is 1.3 GiB
vs. 5.1 GiB for the other implementations.

When a vertex value is zero, the intersection point with the surface is the same
vertex. It is possible that this point is stored more than once, as belonging to more
than one edge of the cube. In this algorithm, when one of these intersection points is
stored, its index is stored in the temporary structures at the positions corresponding
to the other edges (which have that vertex in common), preventing it from being
recalculated when analyzing another of the edges. And before storing the triangles,
the vertex indices are verified, discarding the triangles with repeated vertices (zero
area).

12
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For most datasets, the number of cubes intersected by the surface is quite low.
For example, for the bunny dataset with an isovalue of 1500 or 1500.5, the isosurface
only goes through 1,703,733 cubes out of a total of 94,003,560 (1.81%). For the stag
beetle dataset with a isovalue of 500, 3,760,897 cubes from 340,446,573 (1.10%) are
intersected by the isosurface. In this implementation some tricks have been used to
reduce the time spent in moving through the cubes: The way of labeling the vertices
was changed, the vertices from 0O to 3 are in a plane parallel to the yz-plane, and also
the vertices from 4 to 7, but with a different z-value. In addition two pointers were
created, each one pointing to an array of four real values (float), where the differences
of each group of vertices with the isovalue are stored. For each increment in the
innermost counter (z-axis), the pointers are exchanged, so the vertices from 4 to 7 of
the previous cube are converted into the vertices from O to 3 of the new cube, and the
difference is not recalculated. The cube index value (eight bits corresponding to the
cube vertices, each bit is 1 if the vertex value is greater than the isovalue, else 0) was
calculated with the signbit function. Additionally, the bit shift operator was used
to move the bits from the position corresponding to the vertices 4 to 7 to the position
corresponding to the vertices 0 to 3, when the next cube index value is calculated.

To inspect the MC33 case identification, the corresponding triangle patterns, and
the test results, the Marching Cubes 33 case viewer application (Figure 1) was used; it
is available at https://facyt-quimicomp.neocities.org/Vega_en.html#case_viewer. By
using this software, the results of the interior test were extensively verified, and with a
modified version (to include the triangle patterns of other implementations), Figures 6
to 12 were generated. The Marching Cubes 33 case viewer was programmed in C++
using the FLTK (http://www.fltk.org/) and OpenGL libraries.

To avoid using large continuous memory space for the surface data, the algorithm
uses an array with an extra index. The point and normal coordinates, the color, and the
triangle indices are stored in groups of 4096 elements (default value, always a power
of two), and the extra index changes when the block of 4096 elements is filled. This
algorithm is able to handle and display isosurfaces with more than a million vertices
on a personal computer with only 512 MiB RAM.

The data type of the grid data stored in memory can be changed, before compiling
the code, by defining GRD_data_type. The default value is float.

Descriptions for the grid data (_GRD) and surface (sur face) structures, useful
functions, and usage of our Marching cubes 33 version are included in the source
code in the supplementary materials (http://jcgt.org/published/0008/
03/01/marching_cubes_33.zip). The library has been successfully com-
piled in Windows, macOS and Linux. The makefile is included.

13
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Figure 13. Surface with isovalue of 1500 extracted from the bunny dataset.

6. Testing the Implementation

The implementation was tested on two desktop computers, one with an Intel® Core™

17-4790 CPU @ 3.60 GHz (16 GiB RAM), Windows 10 64-bit operating system, and
the other with an Intel® Core™ i7-2600 CPU @ 3.40 GHz (8 GiB RAM), Debian
8.10 64-bit operating system. The algorithm was not parallelized.

To compare with other implementations, the bunny and the stag beetle dataset
were used. The bunny dataset has 512x512x361 points, and it was obtained from the
Stanford volume data archive [ Yoo 2000]. The stag beetle dataset has 832 x 832 x494
points, and it was obtained from the Institut fiir Computergraphik und Algorithmen
[Groller et al. 2005]. Routines for reading these datasets are included in the source
code. An application (MC33-UC) that uses our library was also programmed. Fig-
ures 13 and 14 are screenshots of this application. Figure 13 shows the isosurface of
the bunny dataset with isovalue of 1500, and Figure 14 shows the isosurface of the stag
beetle dataset with isovalue of 500. Information about MC33-UC and the download
link are available at https://facyt-quimicomp.neocities.org/Vega_en.html#MC33_UC.

Tables 1 and 2 compare the processing times of our MC33 against the C-MC33
[Custodio et al. 2013] and TMC [Grosso 2017], executed on the desktop computers
described above. The code was compiled with g++ (GCC 7.2 release for Debian PC
and MinGW-w64 7.2.0 for Windows PC), using the -Ofast compiler option. It can be
seen that there are fewer vertices and triangles in our implementation. When the data
set is composed of integers, unlike the other implementations, the elimination of re-
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#MC33-UC v1.5.2 - [stagbeetle832x832x494.dat] T

[ 3777215 Vertices [ 7863616 Triangles [min:  [max  [Processingfime: 1.1765
Figure 14. Surface with isovalue of 500 extracted from the stag beetle dataset.

peated vertices and zero-area triangles decreases the number of vertices and triangles
if the isovalue is also an integer (1500 vs. 1500.5 for bunny and 500 vs. 500.5 for stag
beetle). With an isovalue greater than all values in the dataset (100000) it is possible
to evaluate the time used to go through all the cubes only calculating their indices.
The processing speed of our implementation is at least 5 times faster than that of the
other two implementations.

Code Isovalue  Vertices Triangles Time A* (s) Time B* (s)
1500 1707100 3406866 1.984 3.919
C-MC33 1500.5 1706994 3406670 1.984 3.920
100000 0 0 1.687 3.556
1500 1707191 3407048 3.025 5.630
TMC 1500.5 1707088 3406858 3.019 5.656
100000 0 0 2.254 4.630
1500 1705560 3403806 0.391 0.564
Our MC33  1500.5 1706994 3406670 0.390 0.563
100000 0 0 0.227 0.387

*Average of 30 values.

Table 1. Comparison of isosurface processing from the bunny dataset for MC implementa-
tions on (A) a computer with an Intel® Core™ i7-4790 CPU @ 3.60 GHz, Windows 10 OS
and (B) another computer with an Intel® Core™ i7-2600 CPU @ 3.40 GHz, Debian 8.10 OS.
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Code Isovalue  Vertices Triangles Time A* (s) Time B* (s)
500 3793839 7596862 6.632 13.49
C-MC33 500.5 3792409 7594102 6.624 13.50
100000 0 0 6.129 12.92
500 3809556 7628004 10.04 19.72
TMC 500.5 3808140 7625411 10.04 19.72
100000 0 0 8.160 16.77
500 3777215 7563816 1.171 1.802
Our MC33  500.5 3792298 7593876 1.168 1.799
100000 0 0 0.812 1.402

*Average of 30 values.

Table 2. Comparison of isosurface processing from the stag beetle dataset for MC implemen-
tations on (A) a computer with an Intel® Core™ i7-4790 CPU @ 3.60 GHz, Windows 10 OS
and (B) another computer with an Intel® Core™ i7-2600 CPU @ 3.40 GHz, Debian 8.10 OS.

7. Conclusions

In this paper, we offer an implementation of the Marching Cubes 33 algorithm as a C
library, with the following characteristics.

 The interior test was correctly performed.
* The generated surfaces do not have repeated vertices or zero area triangles.

* The implementation does not require extensive memory, its processing times
are fast, and it can be adapted to several grid data types.

The application used to test our implementation (Marching Cubes 33 case viewer)
and an application that uses the library (MC33-UC) are available on the website:
https://facyt-quimicomp.neocities.org/Vega_en.html

The library source code can be obtained from the website: http://Jjcgt.
org/published/0008/03/01/marching_cubes_33.zip)
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