
Journal of Computer Graphics Techniques Vol. 9, No. 1, 2020 http://jcgt.org

Performance Evaluation of Acceleration
Structures for Cone-tracing Traversal

Roman Wiche David Kuri

Virtual Engineering Lab, Volkswagen Group

Figure 1. STANFORD DRAGON and HAPPY BUDDHA heatmaps rendered by tracing primary
cones through a bounding volume hierarchy with varying cone aperture α. From left to right:
0.04◦, 0.5◦, 1.5◦, 2.5◦. Heat color corresponds to number of traversal steps and encountered
triangles.

Abstract

This paper focuses on the technical question of how to apply acceleration structures used for
polygonal scenes from ray tracing to cone tracing. We examine cone-traversal performance
for k-d trees and bounding volume hierarchies. Our results demonstrate which accelerator to
prefer for cone tracing given corresponding apertures and provide an estimation when cones
of varying sizes could replace a specified number of ray samples with the same traversal
performance but without subsampling.

1 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

1. Introduction

With the advent of NVIDIA RTX and DirectX Raytracing, ray tracing achieves prac-
tical relevance for demanding real-time applications. Its success lies in synthesizing
physically-based, photorealistic renderings. Overall, ray tracing and its underlying
operations like ray-scene intersections, shading points, and tracing secondary rays are
well-understood principles.

One major challenge is noise in path tracing for interactive scenes. The noise orig-
inates from undersampling when integrating over areas or higher-dimensional spaces
using a Monte-Carlo approach with infinitesimal rays. Solutions for this range from
tracing more rays (e.g., through acceleration structures [Stich et al. 2009]) to denois-
ing machine-learning algorithms [Chaitanya et al. 2017].

Another noteworthy approach uses higher-order primitives, also called general-
ized rays, for tracing. One example is cone tracing introduced by Amanatides [1984].
Although offering advantages like implicitly antialiased images, inherent soft shad-
ows, and glossy reflections, cone-tracing research is sparse and poses many chal-
lenges. Transforming a polygonal ray-tracing pipeline to cone tracing involves a
complete paradigm shift with many yet unanswered questions of how a polygonal,
purely cone-traced rendering would work. In contrast to rays, there is no consensus
about how to shade multiple triangles inside a cone, how to trace secondary cones, or
what the result of a cone-scene intersection in the scope of rendering should look like.

Given all these open questions, we focus on how to return a cone-scene intersec-
tion acquired by tracing cones through acceleration structures. We examine k-d trees
and bounding volume hierarchies (BVHs), as these are the most common accelerators
for rays. This may also prove valuable for applications outside of rendering (e.g., in
the fields of physics or AI).

Our contributions are:

• a common methodology for cone acceleration-structure traversal;

• a discussion on k-d tree traversal methods for cones;

• a cone-frustum-axis-aligned bounding box (AABB) intersection routine for BVH
traversal;

• an evaluation of ray vs. cone, and cone k-d tree vs. cone BVH traversal.

2. Related Work

Amanatides [1984] created the first cone-tracing renderings including antialiasing,
fuzzy shadows, and glossy reflections, without any acceleration structure. Crassin
et al. [2011] presented voxel cone tracing for real-time global illumination. They

2

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

avoid complex polygonal meshes by using a sparse voxel octree. Hence, they do not
intersect cones with triangle meshes, but look up prefiltered values while stepping
along cone axes. Qin et al. [2014] published the most recent work on cone tracing
for fur rendering. They employ a BVH but omit how they traverse it or compute
cone-AABB intersections in detail.

Besides cone tracing, there are a few other generalized ray approaches like hy-
percubes [Arvo and Kirk 1987], pencils [Shinya et al. 1987], beams [Overbeck et al.
2007], ray-bounds [Ohta and Maekawa 1990], or frusta [Teller and Alex 1998].

For recent and significant acceleration-structure developments, refer to Stich et
al. [2009], Karras et al. [2013], and Vinkler et al. [2016].

3. Acceleration Structures for Cone Tracing

An acceleration structure facilitates the tracing of a ray through a polygonal scene by
providing only triangles that can potentially be hit and need to be tested. Furthermore,
an accelerator allows the process to terminate when no more triangles closer than the
current closest hit are present.

In contrast, the result of a cone traversal through an acceleration structure is more
ambiguous. We define it as

I = ((i1, t1) , (i2, t2) , ..., (in, tn)) , (1)

where I is a depth-sorted list of user-defined length n with no duplicates and n pairs
containing a triangle ID i and parametric distance t from a cone origin to a represen-
tative position on the triangle projected onto the cone-direction axis.

We obtain I usng the following routine: As illustrated in Figure 2, we input a
cone with origin S, direction v̂, and aperture angle α (e.g., by casting a primary cone

d

n

S

t1

t2

v̂

Figure 2. Side view of a cone-split-plane intersection proposed by Tsakok [2008].

3

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

covering one pixel). Then, this cone traverses through an accelerator until n pairs
with the nearest t of all triangles in the accelerator are collected. We insert pairs into
I when accessing a leaf by insertion sorting, whereas t can be obtained after a positive
cone-triangle intersection (e.g., [Eberly 2008; Qin et al. 2014]).

The routine may be provided with an optional tnear−clipping and tfar−clipping for
more efficient traversals. In addition, this allows the routine to be called consecutively
for the same cone if n triangles from a preceding traversal are not sufficient for shad-
ing by setting tnear−clipping = tn. When I is filled with n pairs, further nodes can be
culled if tn is smaller.

Standard Stack-based k-d Tree Traversal

Tsakok [2008] described a standard stack-based k-d tree traversal with conic packets
without applying it to cone tracing. He derived the two intersection distances along a
cone direction where the outer cone edges intersect a split plane as

t1,2 =
d− n̂ · S

n̂ · v̂ ± tanα
√

1− (n̂ · v̂)2
, (2)

where d is the split-plane position, n̂ the normal of the split plane, S the cone ori-
gin, v̂ the cone direction, and α the aperture angle. Figure 2 illustrates this intersec-
tion. Then, t1 and t2 are integrated in a standard stack-based k-d tree traversal for
rays [Pharr et al. 2016]. The main difference is how to select which child node to
traverse next. Figure 3 illustrates how this works for cones, and Listing 1 contains
corresponding pseudocode.

Front Back

tmin
tmax

t2

t1

tmax

tmin

t1

t2

Figure 3. Node selection for the standard stack-based k-d tree traversal with a cone. If t1 >
tmax, only the front node is visited. If t2 < tmin, only the back node is visited. Otherwise,
the front node is visited next and the back node is pushed on a stack.

4

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

Prerequisite: We hit k-d tree box with cone in range [tmin, tmax]

While got node to process:

If InteriorNode:

Compute tmin−plane, tmax−plane according to Figure 2 and Equation (2)

tmin−plane = +∞ If < 0

tmax−plane = +∞ If < 0

t1 = min(tmin−plane, tmax−plane), t2 = max(tmin−plane, tmax−plane)

If t2 < tmin:

nextNode = backNode

Elif t1 > tmax:

nextNode = frontNode

Else:

If tmax >= tnear−clipping and max(t1, tmin) <= tn:

push (backNode, max(t1, tmin), tmax) to stack

nextNode = frontNode

tmax = min(tmax, t2)

Else:

Intersect cone with triangles in Leaf

Pop nodes from stack for processing until one is found which

satisfies tmax−pop >= tnear−clipping and tmin−pop <= tn. Then,

tmin = tmin−pop, tmax = tmax−pop

Listing 1. Standard stack-based k-d tree traversal for cones. For a HLSL implementation,
see [Wiche 2019].

Discussion of Advanced k-d Tree Traversals

The following considerations for advanced cone-traversal techniques beyond the stan-
dard lean on Santos et al. [2012].

Ropes++

Ropes++ searches for a current leaf by subsequently going down a tree with a ray-
k-d tree-box intersection position. Then, it tests a ray with all triangles in this leaf.
Finally, it computes which face a ray is leaving and follows a rope to a next node.

The first step could be executed with a cone by computing the min and max inter-
section positions. By hitting multiple nodes, a list of entering leaves would need to be
maintained. However, the most inherent problem arises when deciding which rope to
follow (see Figure 4). A cone might exit a leaf on five faces in the worst case. When
pursuing each rope, this creates an unmanageable, exponentially growing and fanned-
out node tree. Culling nodes by saving tmin generally fails due to a cone fanning-out
and being at different distances across the cone.

5

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

Figure 4. Complexity of fanned-out cone and choice of rope for ropes++ traversal.

8-byte-standard traversal

The 8-byte-standard traversal reduces the size of each stack element from 12 to eight
bytes by omitting tmin as it equals tmax of the previous node.

This approach cannot be used for cones because tmax of the previous node differs
from tmin of the next node, since a cone has two t-values for one plane, as demon-
strated in Figure 3.

Short-stack pushdown hybrid traversal

The short-stack pushdown hybrid traversal saves a smaller stack and falls back to a
pushdown traversal when exceeding the stack. A pushdown fallback performs better
than a complete k-d-restart by conservatively pushing down restart nodes. This is
always executed when just the front or back node is hit. A ray can skip reoccurring
nodes by setting tmin further, to the end of a last visited node.

This skipping logic fails similarly to the 8-byte traversal. If tmin is set to the fur-
ther value, next relevant nodes between both t are falsely skipped. If tmin is assigned
conservatively with the closer value, an infinite loop occurs, as the algorithm assumes
that the previously considered node was not processed yet.

Sequential traversal

The sequential traversal is similar to ropes++ but cannot use ropes referencing a next
node. Instead, it searches for each following node from the top. Being a predecessor
of ropes++, comparable problems arise when applied to cones.

Pushdown, k-d-restart, k-d-backtrack

Other algorithms like complete pushdown, complete k-d-restart, or k-d-backtrack are
likely to perform worse for cones because they have already been shown to run slower
for rays than the above-considered algorithms. The lack of performance of these algo-
rithms lies in their logic to consider next-possible nodes, independent of the concept
of a ray or cone.

6

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

BVH Traversal

Since BVHs are commonly built from AABBs, we must provide a cone-AABB inter-
section routine. Implementations may demand a range from a cone origin to AABBs
to consider closer nodes first or to cull. For our cone-scene intersection routine in
Section 3, a returned range is essential for culling nodes.

There is no well-known algorithm satisfying these requirements. Although there
is a cone versus oriented bounding-box intersection algorithm [Eberly 2015], it is
computationally expensive and requires a lookup table. Reshetov et al. [2005] de-
scribed a k-d tree traversal with frusta including an intersection test with leaf AABBs.
However, applying this to a frustum around cones would require to compute or save
more information for a cone, as planes and corner rays of a frustum are used in their
algorithm. Both algorithms return a boolean instead of a range.

Novel Cone-frustum-AABB intersection

We reduce cone-AABB to cone-frustum-AABB intersections to optimize the traver-
sal. A cone-frustum (i.e., square pyramid) implicitly built from α serves as a tight
bounding volume around a cone. Our proposed algorithm achieves an exact result of
a cone-frustum hitting an AABB and the resulting tmin and tmax provide a good range
estimation.

We extend the ray-slabs-AABB test [Shirley 2018] with t1 and t2 from Tsakok’s
cone-frustum-plane test [Tsakok 2008] (see Figure 2). For each axis, the new al-
gorithm computes four t-values, t1 and t2 for the min and max AABB plane, respec-
tively. However, the four t-values cannot be easily used to find tmin−axis and tmax−axis

by taking the overall min and max. Instead, we categorize cases where Equation (2)
assigns t negative values. Tsakok indicates a cone-edge-plane miss by setting nega-
tive t to +∞, but this is invalid for chaining cone-frustum-plane tests in our AABB
test because +∞ or negative values falsify tmin−axis and tmax−axis and thus tmin and
tmax. For correct tmin−axis and tmax−axis, the algorithm distinguishes between cases
depicted in Figure 5. Applying the new tmin−axis and tmax−axis to a ray-AABB test
scope results in a cone-frustum-AABB test. Listing 2 provides pseudocode.

Traversal Variants

In contrast to a ray, a cone can hit multiple nodes at one particular distance. Conse-
quently, cone traversals raise many sophisticated challenges absent for rays. Neither a
depth-first-search with a stack nor a breadth-first-search with a queue always performs
an ideal traversal.

We consider two forms of traversal for cone tracing. See Figure 6. In the end,
they return the same depth-sorted triangle list described in Section 3 but differ in the
traversal order of accelerator nodes.

7

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

tmin = 0, tmax = +∞
for each axis:

Compute float4 t4 with two cone-plane-intersections with

aabbMin[axis], aabbMax[axis] according to Figure 2 and

Equation (2)

Compute tmin−axis, tmax−axis from cases in Figure 5:

If S between planes:

If Case a.1: tmin−axis = 0, tmax−axis = +∞
Else: tmin−axis = 0, tmax−axis = max(t4)

Else:

If Case b.1: discard

Elif Case b.2: tmin−axis = min(t4), tmax−axis = max(t4)

Else: tmin−axis = min(positivesOf(t4)), tmax−axis = +∞

tmin = max(tmin, tmin−axis)

tmax = min(tmax, tmax−axis)

if tmin > tmax: discard

return true with range [tmin, tmax]

Listing 2. Cone-frustum-AABB intersection routine. For a basic and improved
implementation in HLSL refer to Wiche [2019].

tmin

tmax

tmintmax=+inf tmin

Case (a.1) Case (a.2)

tmax=+inf
tmin

tmax

discard

Case (b.1) Case (b.2) Case (b.3)

Figure 5. Cone-frustum-plane test cases for each axis. Case a: Cone origin is in between
AABB planes. Case (a.1): One cone edge hits one plane, the other edge hits the other plane.
Neither tmin−axis nor tmax−axis are updated. Case (a.2): Both cone edges hit only one plane.
Only tmax−axis is updated. Case b: Cone origin is outside of AABB planes. Case (b.1): Cone
does not hit any plane. The cone-frustum never hits the box. Case (b.2): Both cone edges hit
both planes. All t have to be considered for tmin−axis and tmax−axis. Case (b.3): One cone
edge hits both planes, the other edge hits none. Only the closer positive t is considered for
tmin−axis.

8

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

1

2
3

4

5

1

4
5

2

3

Stack Expected/sorted nodes

Figure 6. Cone traversal types. Stack: Depth-first, goes deep into closer node first. Sorted
nodes: Receiving nodes as expected.

Node-sorted traversal

A node-sorted list can be created by insertion sorting nodes while traversing. This
may provide better early outs because it is guaranteed to traverse the nodes in the
best order. For example, if tn is closer than a next node in a sorted list, the algorithm
can return because there is no nearer node and thus no nearer triangle due to a sorted
traversal. However, maintaining this list creates overhead, as a correct order needs to
be ensured in each traversal step.

Stack traversal

This variant only traverses roughly in correct order and is not guaranteed to be precise
regarding the node sequence. Early outs are harder to execute and more nodes on a
stack are considered. Nevertheless, a stack is easier to maintain than a sorted list.

4. Results

Experiment Setup

We built a modular ray- and cone-tracing framework where accelerators are created
offline on the CPU and traversal algorithms are executed on the GPU via DirectX
Compute Shaders.

Our goal is to compare the traversal performance only, without focusing on the
performance of ray- or cone-triangle intersections. Therefore, we set n = ∞ (Sec-
tion 3) to traverse a complete accelerator and sum the number of encountered triangles
in leaves without computing their intersections. The traversal result is visualized as
a heatmap that roughly depicts the total computational complexity of node traversal
and primitive intersection per pixel (see Figure 1).

We compare a standard stack-based k-d tree traversal of rays with a stack-based
k-d tree cone traversal. For the BVH traversal, we compare the ray-AABB algorithm

9

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

from Kensler [2018] with our novel cone-frustum-AABB algorithm. We perform the
stack-based cone-traversal variant.

A similar k-d tree as described by Pharr et al. [2016] and the hybrid SBVH by
Stich et al. [2009] were implemented. The number of bin planes was set to 32, and
the properties α = 10−5 and reference unsplitting were chosen [Stich et al. 2009].
The termination criterion to stop dividing the nodes was selected according to the
number of children ≤ 8 triangles. A surface-area heuristic stopped the dividing pro-
cess automatically when the cost for a split was higher than for an existing node. The
resulting acceleration structures are of similar complexity.

The experiments were executed on an Intel Core i7-6700K 4x4.0GHz with NVIDIA
GeForce GTX 1080. The thread group size was set to 16× 8× 1, and the resolution
was assigned to 10242 pixels. We launch one thread on the GPU for each pixel.
Single meshes of varying complexities and more holistic scenes with larger spaces
were tested. Three viewpoints encompassing different aspects of the test scenes were
selected and averaged.

Results Discussion

The results of our experiments are depicted in Table 1, Table 2, and Figure 7. We
compare eight test meshes with a BVH and k-d tree for a different number of ray
samples and cone apertures α. The measured time refers to the total rendering time
whereas the number of nodes and triangle encounters is averaged per pixel.

The selection of an accelerator for cone tracing seems to be highly dependent
on the cone aperture α. For primary cones with 0.04◦ (fully covering one pixel at
10242 pixel resolution), the k-d tree traversal time outperformed the BVH for each
test scene, up to a factor of 5. However, already for an aperture of 0.5◦, there is no
clear winner. Depending on the test scene, the BVH starts to outperform the k-d tree
from apertures 1.5◦ to 5◦. For the k-d tree, there seems to be a threshold depending on
the test scene, where the time increases drastically from one measurement to the next
one whereas the BVH time increases more smoothly. The average number of nodes
traversed per millisecond for the k-d tree drops by 67% whereas the same number for
the BVH just decreases by 34% (from 0.04◦ to 1.5◦). We observe that the summed
number of visited triangles in the k-d tree is higher than in the BVH. This would have
a significant impact when also computing ray- and cone-triangle intersections.

Regarding a comparison of rays and cones, neither of them are clearly superior.
For some meshes, a primary cone for the k-d tree requires the same computation time
as approximately eight rays. However, for other test scenes, a primary cone is as
computationally expensive as 16 to 64 rays. Moderately sized cones for the BVH
could potentially outperform rays, although it is hard to estimate the full potential as
it is unknown how many ray samples would be required to sample a volume of a cone
with a given aperture without subsampling in these cases. Still, the tables allow us to

10

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

Avg.
Millis.

Avg.
Nodes

Avg.
Inter.

Avg.
Millis.

Avg.
Nodes

Avg.
Inter.

Avg.
Millis.

Avg.
Nodes

Avg.
Inter.

Avg.
Millis.

Avg.
Nodes

Avg.
Inter.

B
V

H

R
ay

s 4 4.7 62.9 29.1 5.2 79.8 22.3 6.3 76.8 34.4 6.2 70 32
16 14.3 251.9 116.8 17.2 319.9 90.1 21 308 138 19 282 133
64 48.7 1007.8 467.3 60.3 1279 361 74 1235 553 69 1129 532

C
on

e
α

0.04◦ 18 18 10 34 24.6 10 94 39.6 53 116 50.6 82
0.5◦ 35 30 27 93 57.3 52 421 197 449 537 262 627
1.5◦ 93 71 88 337 198 256 2918 1010 2652 3513 1341 3570
2.5◦ 178 132 184 734 432 613 5496 2473 6699 6926 3266 8915
5◦ 497 370 573 3338 1426 2176 - - - - - -

k
-d

tr
ee

R
ay

s 4 4.7 132 48 9.5 183 48 34.6 184 90 41.4 163 36.6
16 14 532 196 21.4 736 195 79 739 249 98.6 654 148.6
64 48 2129 785 67.6 2946 783 164.5 2960 998 210 2621 596

C
on

e
α

0.04◦ 7 35 14 14 50 16 32 60.6 28 35 58.6 28
0.5◦ 47 54 64 61 136 126 492 516 737 760 751 1028
1.5◦ 275 170 259 365 534 727 4180 3387 5633 6615 5196 7964
2.5◦ 725 369 596 1611 1222 1825 - - - - - -
5◦ 1567 1369 2411 4685 4212 6744 - - - - - -

Table 1. TEAPOT, BUNNY, DRAGON, and HAPPY BUDDHA comparison.

Avg.
Millis.

Avg.
Nodes

Avg.
Inter.

Avg.
Millis.

Avg.
Nodes

Avg.
Inter.

Avg.
Millis.

Avg.
Nodes

Avg.
Inter.

Avg.
Millis.

Avg.
Nodes

Avg.
Inter.

B
V

H

R
ay

s 4 8.3 184 104.6 14.2 360 244 5.7 115 80 7.6 121 52
16 29.2 740 419.6 57 1443 980.3 19.3 464 322 25.6 485 209
64 107.5 2963 1679 211 4411 3923 70 1857 1289.6 93.5 1943 836

C
on

e
α

0.04◦ 20.6 46.6 28 68.3 93 67 43 30.3 22 93 41 37
0.5◦ 32 60 54 135 133.3 163 250 52.1 76 2142 264 639
1.5◦ 66 102 152 394 301 612 952 170.7 395 5368 1681 4658
2.5◦ 114 161 301 1154 578 1392 1130 387 989 - - -
5◦ 315 388 900 3669 1745 4779 3039 1357 2314 - - -

k
-d

tr
ee

R
ay

s 4 6.6 304 176 15.4 484 299.6 4.8 191 122 30.9 305.3 135
16 22 1219 707 41 1939 1201 15.3 765 490 75.6 1222 540
64 78 3515 2833 137.6 6395 3440.6 53 3062 1960 177 3522 2163

C
on

e
α

0.04◦ 7.6 77 46 25 128.6 85 8 47 32 45.6 95 59
0.5◦ 18 111 103 96 282 346 51 84.7 147 2596 1007 1718
1.5◦ 56 238 344 1023 1061 1831 156 259 870 9121 6808 12834
2.5◦ 121 435 745 2863 2450 3682 322 566 2241 - - -
5◦ 446 1234 2436 - - - 2298 1894 4373 - - -

Table 2. SIBENIK, CRYTEK SPONZA, CONFERENCE, and BUBS comparison.

11

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

Figure 7. TEAPOT and SIBENIK data from Table 1 and Table 2.

estimate when to replace a specified number of ray samples with a cone of a certain
size with a comparable traversal speed.

One factor which will significantly influence the obtained results in a real-world
rendering scenario are ray- and cone-triangle intersection tests. In many cases, the
rays and cones would not have traversed the acceleration structures as deeply as in the
conducted tests. With ray- and cone-triangle intersections, they would have detected
positive intersections earlier and aborted the traversal because they would have found
a closest hit triangle or filled a depth-sorted list already. Further research is required
to assess a more holistic comparison.

A complete traversal is especially a problem for cones since cones fan out and
start to hit more nodes. This can lead to the accelerator-in-a-cone problem illustrated
in Figure 8. In a ray tracing context, this result is counter-intuitive at first, because the
chance of a ray hitting many nodes decreases with its distance. However, in the worst-
case, a complete accelerator might lie in one cone, transforming into a decelerator.
There needs to be a fallback solution if a cone contains many nodes. One solution
might be to integrate a heuristic automatically selecting few representative triangles
in nodes. Furthermore, a similar approach to voxel cone tracing [Crassin et al. 2011]
could be employed when a cone encompasses too many triangles or nodes.

Figure 8. Accelerator-in-a-cone problem: Left and right image took the same rendering time.
Although only few cones hit the accelerator in the right image, they are forced to traverse
significantly more nodes than compared to the left side.

12

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

5. Conclusion

In this article, we focused on the cone traversal for k-d trees and BVHs. While the
k-d tree performed better with small cones, the BVH usually outperformed the k-d
tree quickly for growing cone apertures. The results estimate when a cone could re-
place multiple rays with comparable traversal performance but without subsampling.
Besides rendering, these findings might be of interest for cone casting in physics, AI,
or other computer graphics applications.

However, there are still many more open research questions to solve until cone
tracing for polygonal scenes can evolve into a practical rendering technique. Opera-
tions like cone-triangle intersections and shading multiple triangles inside a cone will
have a significant impact on the comparison between both tracing techniques.

With this article, we hope to spark interest in cone-tracing algorithms and inspire
more contributions in this field.

Acknowledgments

We would like to thank the Stanford Computer Graphics Laboratory for the HAPPY BUDDHA,
the STANFORD DRAGON, and the STANFORD BUNNY; Martin Newell for the NEWELL-
or UTAH TEAPOT; Frank Meinl for the CRYTEK SPONZA; Anat Grynberg and Greg Ward
for the CONFERENCE ROOM; Marko Dabrovic for the original SPONZA and the SIBENIK

CATHEDRAL; Ryan Vance for the BUBS; Morgan McGuire for providing most of these test
meshes [McGuire 2011]; Marc Olano and Patrick Cozzi for the support during the publication
process; and Eric Haines, Tomas Akenine-Möller, and the anonymous reviewers for their
supportive comments and reviews.

References

AMANATIDES, J. 1984. Ray Tracing with Cones. In Proceedings of the 11th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH ’84, 129–135.
URL: http://doi.acm.org/10.1145/800031.808589. 2

ARVO, J., AND KIRK, D. 1987. Fast Ray Tracing by Ray Classification. In Proceedings
of the 14th Annual Conference on Computer Graphics and Interactive Techniques, ACM,
SIGGRAPH ’87, 55–64. URL: http://doi.acm.org/10.1145/37401.37409.
3

CHAITANYA, C. R. A., KAPLANYAN, A. S., SCHIED, C., SALVI, M., LEFOHN, A.,
NOWROUZEZAHRAI, D., AND AILA, T. 2017. Interactive Reconstruction of Monte Carlo
Image Sequences Using a Recurrent Denoising Autoencoder. ACM Trans. Graph. 36, 4
(July), 98:1–98:12. URL: http://doi.acm.org/10.1145/3072959.3073601.
2

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISEMANN, E. 2011. Interactive
Indirect Illumination Using Voxel Cone Tracing: A Preview. In Symposium on Interactive
3D Graphics and Games, ACM, New York, NY, USA, I3D ’11, 207–207. URL: http:
//doi.acm.org/10.1145/1944745.1944787. 2, 12

13

http://jcgt.org
http://doi.acm.org/10.1145/800031.808589
http://doi.acm.org/10.1145/37401.37409
http://doi.acm.org/10.1145/3072959.3073601
http://doi.acm.org/10.1145/1944745.1944787
http://doi.acm.org/10.1145/1944745.1944787


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

EBERLY, D. 2008. Intersection of a Triangle and a Cone. Tech. rep., Geometric
Tools, LLC. URL: https://www.geometrictools.com/Documentation/
IntersectionTriangleCone.pdf. 4

EBERLY, D., 2015. Intersection of an Oriented Box and a Cone. https://www.

geometrictools.com/Documentation/IntersectionBoxCone.pdf. [Ac-
cessed 2017-03-23]. 7

KARRAS, T., AND AILA, T. 2013. Fast Parallel Construction of High-quality Bounding Vol-
ume Hierarchies. In Proceedings of the 5th High-Performance Graphics Conference, ACM,
HPG ’13, 89–99. URL: http://doi.acm.org/10.1145/2492045.2492055. 3

MCGUIRE, M., 2011. Computer Graphics Archive, August. URL: http://graphics.
cs.williams.edu/data. 13

OHTA, M., AND MAEKAWA, M. 1990. Ray-Bound Tracing for Perfect and Efficient Anti-
Aliasing. The Visual Computer 6, 3, 125–133. URL: http://dx.doi.org/10.
1007/BF01911004. 3

OVERBECK, R., RAMAMOORTHI, R., AND MARK, W. R. 2007. A Real-time Beam Tracer
with Application to Exact Soft Shadows. In Proceedings of the 18th Eurographics Con-
ference on Rendering Techniques, Eurographics Association, EGSR’07, 85–98. URL:
http://dx.doi.org/10.2312/EGWR/EGSR07/085-098. 3

PHARR, M., WENZEL, J., AND HUMPHREYS, G. 2016. Physically Based Rendering, Third
Edition: From Theory To Implementation, 3rd ed. Morgan Kaufmann Publishers Inc. URL:
http://pbr-book.org/. 4, 10

QIN, H., CHAI, M., HOU, Q., REN, Z., AND ZHOU, K. 2014. Cone Tracing for Furry Object
Rendering. IEEE Transactions on Visualization and Computer Graphics 20, 8 (Aug.),
1178–1188. URL: http://dx.doi.org/10.1109/TVCG.2013.270. 3, 4

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-level Ray Tracing Algorithm.
In ACM SIGGRAPH 2005 Papers, ACM, SIGGRAPH ’05, 1176–1185. URL: http:
//doi.acm.org/10.1145/1186822.1073329. 7

SANTOS, A., TEIXEIRA, J. M., FARIAS, T., TEICHRIEB, V., AND KELNER, J. 2012.
Understanding the Efficiency of kD-tree Ray-Traversal Techniques over a GPGPU Archi-
tecture. International Journal of Parallel Programming 40, 3, 331–352. URL: http:
//dx.doi.org/10.1007/s10766-011-0186-1. 5

SHINYA, M., TAKAHASHI, T., AND NAITO, S. 1987. Principles and Applications of Pencil
Tracing. In Proceedings of the 14th Annual Conference on Computer Graphics and Inter-
active Techniques, ACM, SIGGRAPH ’87, 45–54. URL: http://doi.acm.org/10.
1145/37401.37408. 3

SHIRLEY, P., 2018. New Simple Ray-Box Test from Andrew
Kensler. http://psgraphics.blogspot.com/2016/02/

new-simple-ray-box-test-from-andrew.html. [Accessed 2018-10-13]. 7,
10

14

http://jcgt.org
https://www.geometrictools.com/Documentation/IntersectionTriangleCone.pdf
https://www.geometrictools.com/Documentation/IntersectionTriangleCone.pdf
https://www.geometrictools.com/Documentation/IntersectionBoxCone.pdf
https://www.geometrictools.com/Documentation/IntersectionBoxCone.pdf
http://doi.acm.org/10.1145/2492045.2492055
http://graphics.cs.williams.edu/data
http://graphics.cs.williams.edu/data
http://dx.doi.org/10.1007/BF01911004
http://dx.doi.org/10.1007/BF01911004
http://dx.doi.org/10.2312/EGWR/EGSR07/085-098
http://pbr-book.org/
http://dx.doi.org/10.1109/TVCG.2013.270
http://doi.acm.org/10.1145/1186822.1073329
http://doi.acm.org/10.1145/1186822.1073329
http://dx.doi.org/10.1007/s10766-011-0186-1
http://dx.doi.org/10.1007/s10766-011-0186-1
http://doi.acm.org/10.1145/37401.37408
http://doi.acm.org/10.1145/37401.37408
http://psgraphics.blogspot.com/2016/02/new-simple-ray-box-test-from-andrew.html
http://psgraphics.blogspot.com/2016/02/new-simple-ray-box-test-from-andrew.html


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

STICH, M., FRIEDRICH, H., AND DIETRICH, A. 2009. Spatial Splits in Bounding Volume
Hierarchies. In Proceedings of the Conference on High Performance Graphics 2009, ACM,
HPG ’09, 7–13. URL: http://doi.acm.org/10.1145/1572769.1572771. 2,
3, 10

TELLER, S., AND ALEX, J. 1998. Frustum Casting for Progressive, Interactive Render-
ing. Tech. rep., Massachusetts Institute of Technology. URL: https://dl.acm.org/
citation.cfm?id=888662. 3

TSAKOK, J. A. 2008. Fast Ray Tracing Techniques. Master’s thesis, University of Water-
loo. URL: https://uwspace.uwaterloo.ca/bitstream/handle/10012/
3947/thesis.pdf. 3, 4, 7

VINKLER, M., HAVRAN, V., AND BITTNER, J. 2016. Performance Comparison of Bounding
Volume Hierarchies and Kd-Trees for GPU Ray Tracing. Computer Graphics Forum 35,
8, 68–79. URL: http://dx.doi.org/10.1111/cgf.12776. 3

WICHE, R., 2019. Supplemental Materials for Performance Evaluation of Acceleration Struc-
tures for Cone Tracing Traversal. Implementations in HLSL. https://github.com/
bromanz/Perf-Eval-Accel-Cone-Tracing. [Accessed 2019-08-27]. 5, 8, 15

Index of Supplemental Materials

HLSL reference code for a standard stack-based k-d tree traversal, and a basic and improved
cone-frustum-AABB intersection implementation is provided by Wiche [2019] and http://
jcgt.org/published/0009/01/01/Perf-Eval-Accel-Cone-Tracing.zip.
.

Author Contact Information
Roman Wiche
Virtual Engineering Lab, Volkswagen Group
Berliner Ring 2
38440 Wolfsburg, Germany
hello@roman-wiche.com

David Kuri
Virtual Engineering Lab, Volkswagen Group
Berliner Ring 2
38440 Wolfsburg, Germany
info@davidkuri.de

R. Wiche, D. Kuri, Performance Evaluation of Acceleration Structures for Cone-tracing Traver-
sal, Journal of Computer Graphics Techniques (JCGT), vol. 9, no. 1, 1–17, 2020
http://jcgt.org/published/0009/01/01/

Received: 2019-01-17
Recommended: 2019-08-19 Corresponding Editor: Patrick Cozzi
Published: 2020-01-13 Editor-in-Chief: Marc Olano

c© 2020 R. Wiche, D. Kuri (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND

15

http://jcgt.org
http://doi.acm.org/10.1145/1572769.1572771
https://dl.acm.org/citation.cfm?id=888662
https://dl.acm.org/citation.cfm?id=888662
https://uwspace.uwaterloo.ca/bitstream/handle/10012/3947/thesis.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/3947/thesis.pdf
http://dx.doi.org/10.1111/cgf.12776
https://github.com/bromanz/Perf-Eval-Accel-Cone-Tracing
https://github.com/bromanz/Perf-Eval-Accel-Cone-Tracing
http://jcgt.org/published/0009/01/01/Perf-Eval-Accel-Cone-Tracing.zip
http://jcgt.org/published/0009/01/01/Perf-Eval-Accel-Cone-Tracing.zip
mailto:hello@roman-wiche.com
mailto:info@davidkuri.de
http://jcgt.org/published/0009/01/01/


Journal of Computer Graphics Techniques
Performance Evaluation of Acceleration Structures for Cone-tracing Traversal

Vol. 9, No. 1, 2020
http://jcgt.org

3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

16

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

