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Figure 1. Unit vectors shown here as their representative points on the surface of the unit
sphere are (a) grouped, then, for each group (b), called a window, we apply a uniform mapping

that (c) relocates subparts to the whole surface of the unit sphere. Finally, (d), the vectors can
be compressed with an improved precision by using any existing unit vector quantization.

Abstract

We present a new on-the-fly compression scheme for unorganized unit-vector sets that, using
a hierarchical strategy, provides a significant gain in precision compared to classical indepen-
dent unit-vector quantization methods. Given a set of unit vectors lying in a subset of the unit
sphere, our key idea consists in mapping it to the surface of the whole unit sphere, for which
collaborative compression achieves a high signal-over-noise ratio. During the compression
process, the unit vectors are grouped in a way that makes them more coherent, a property that
is often used in ray-tracing scenarios. The achieved compression ratio is superior to entropy-
encoding methods while being easy to implement. Moreover, the constant complexity of the
mapping with respect to the number of unit vectors makes our method fast. For ease of use
and replication, we provide a pseudo-code along with the C++ source code. Our scheme
is instrumental for applications requiring on-the-fly compression of unorganized sets of unit
vectors, such as the direction of batch or wavefront of rays for rendering engines working
in a distributed fashion, or the local surface orientations in an acquired 3D point cloud. The
present manuscript is an extended version of a method previously published as a Technical
Brief at the ACM SIGGRAPH Asia 2017 Conference.
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1. Introduction

Unit vectors are a simple way to express directions and are extensively used in several
fields, including astrophysics [Górski et al. 2005] and computer graphics. Recently,
the significant increase in the amount of manipulated data has motivated compact rep-
resentations, to ease storage, transmission, and processing. For instance, in computer
graphics, unit vectors are typically used to represent the normal, measured or esti-
mated, from a captured 3D point cloud, which may contain up to billions of samples
for a single object [Levoy et al. 2000].

Over the last decade, Monte Carlo rendering has become the de-facto standard in
high-quality visual special effects and computer animation productions [Christensen
and Jarosz 2016]. The resolution of the generated images and the typical complexity
of the input 3D scenes—including geometry, materials, and lighting conditions—
have continuously increased and, today, billions of rays—embedding directions—
are required to simulate light propagation when generating a single image. While
the memory footprint of the rays is not necessarily an issue when working with a
render farm, it becomes critical when building a rendering engine over distributed
computing nodes [Kato and Saito 2002] [Somers and Wood 2012] [Northam et al.
2013] [Günther and Grosch 2014]. In such scenarios, the number of traceable rays
(or photons) can quickly be bounded by the transfer performance between the nodes.

In this paper, we address this issue with a new on-the-fly method to compress
sets of unorganized unit vectors, demonstrating its usage for rendering. Our method
is designed to improve the data-transfer times over the network and is not suitable
for local transfers i.e., GBuffer compression, in its presented form. We also make
available our reference C++ implementation on GitHub under the MIT license.

1.1. Related Work

Data compression algorithms can be categorized based on different performance met-
rics. In our case, we target on-the-fly algorithms, meaning that the compression speed
is more important than the optimal compressed size, tailored by the Kolmogorov com-
plexity. LZ4 [Collet 2011] is a popular lossless on-the-fly compression method for
general data. However, it is oblivious to the particular nature of the input data and
turns out to not be very efficient, in practice, at compressing ray directions, composed
of floating-point coordinates, penalizing significantly the compression ratio. To ad-
dress this problem, one can look into common floating-point compression algorithms.
For instance, Lindstrom [Lindstrom 2014] introduced a specific compression scheme
for general floating-point data that proves to be highly effective at compressing the
origins of the rays but whose generality prevents high compression ratios for the ray
directions, with their particular unit nature. Indeed, several quantization methods have
been developed to efficiently compress such unit-length data. We refer the reader to
the work by Cigolle et al. [Cigolle et al. 2014] who provide a complete review of
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these methods. These methods are based on one core principle: for an unknown set
of unit vectors, the best compression one can achieve is to quantify them in a set of
known directions. That is analogous to image compression with a fixed palette—here,
the palette maps indices to directions instead of colors. Most previous methods focus
on choosing a good universal direction palette, in terms of encoding and decoding
performance, size, and maximization of the linear independence between directions.

Since the publication of [Cigolle et al. 2014]’s survey, Keinert et al. [Keinert et al.
2015] proposed an inverse mapping for the spherical Fibonacci point set, which is a
quasi-uniformly distributed point set on the surface of the unit sphere. As introduced
in their article, this inverse mapping can help quantize ray directions in constant time.

Normal mesh compression provides a good way to compress sets of normal vec-
tors, but requires an underlying mesh connectivity. In such a case, one can use several
methods based on self-similarities or high coherency between neighbors to more effi-
ciently compress the data [Maglo et al. 2015].

Alternatively, one can use quantization methods, which are are fast and provide
high compression ratio, but at the cost of a loss in data fidelity. Our approach falls
in this category and brings an increased precision in the case of unorganized sets of
unit vectors, instrumental for a distributed Monte Carlo rendering engine, where rays
needs to be sent through a network. Our approach is generic, in the sense that a
number of quantization algorithms can be injected into our scheme. We compare
our method to alternatives (see Section 3), including the entropy encoding for sets of
coherent independent unit vectors developed by Smith et al. [Smith et al. 2012].

2. Algorithm

2.1. Overview

The input for our algorithm is an unorganized set of unit vectors. In the first step
(Section 2.2), we start by reordering them to form windows (groups) of spatially
coherent vectors. These windows delimit subparts of the unit sphere and are mapped
to the whole surface of the unit sphere using the mapping introduced in Section 2.3
that preserves a uniform distribution to minimize the maximal error. Then, we encode
the unit vectors of each window by quantization, storing the windows with the pattern
defined in Section 2.5. This increased precision is due to the fact that instead of having
a universal direction palette, we compress small groups of coherent unit vectors, so the
mapping can create a better direction palette for each group of vectors to compress.
This is similar to the image compression schemes that store deltas from the palletted
values to reduce residual error. In our case, the palletted value is the ID of the windows
and the offset of the mapped quantized vector. The output of the algorithm consists
of both the array of compressed windows and the array containing position indices of
the vectors in the original unit-vector array. We target applications in which the order
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of the samples is not relevant. This is, for instance, the case in distributed rendering,
where the ray’s order in the original set is not relevant, i.e., each ray comes from a
different light path, this array being maintained by the master node of the cluster and
used to register the returned data in the correct path. If an ID is sent with the ray, this
second array can even be omitted.

2.2. Grouping

Our compression algorithm for unit vector sets draws inspiration from methods ex-
ploiting small windows (groups) of data to encode samples as offsets w.r.t. the win-
dow average. In the rendering context, the order in which rays are sent is not rele-
vant, which offers us an opportunity to reorganize them in a spatially coherent way to
maximize window sizes. Note that some engines already sort the rays during render-
ing [Eisenacher et al. 2013] [Van Antwerpen 2011] [Novák et al. 2010] [Laine et al.
2013], which can be exploited for our grouping step. We present here two alterna-
tives based on the Gauss sphere parameterization of the directions: the first method
requires minimal additional memory, while the second one improves the uniformity
of the groups using a lookup table.

Grouping using Discrete Spherical Coordinates (DSC)

A simple and fast way to group consists in building windows of vectors sharing the
same N most significant bits in the Morton code [Morton 1966] of their normalized
and discretized spherical coordinates. Figure 2 (a) shows a color-coded representation
of this grouping. The linear complexity in the number of vectors, the memory used,

(a) (b) (c)

Figure 2. Unit vectors can be grouped using different techniques. We present the result of
our algorithm with two different groupings: using (a) discrete spherical coordinates (DSC)
which is the fastest one and (b) using the closest spherical Fibonacci point (CSF) which gives
lower maximal error at the cost of a slower grouping step. The latter can be used with (c) a
lookup table to improve efficiency. We denote this alternate version as CSF-LUT in the results
section.

24

http://jcgt.org


Journal of Computer Graphics Techniques
Quantization of Unorganized Unit-Vector Sets

Vol. 9, No. 4, 2020
http://jcgt.org

and the speed of this method make it a good candidate for the grouping step, even if
the non-uniformity of the groups reduces the compression performance. Interestingly,
the average vector of the windows can be easily computed. All vectors in a window
share the same N most significant bits that we call the key of the window. The
average vector can be approximated by the unit vector with its Morton code equal to
key + ((∼ mask)/4), with mask being a bit field with its N most significant bits set
to 1 and the others set to 0. The coordinates of this approximated average vector can
be computed by (i) extracting the discretized spherical coordinates from this Morton
code, (ii) un-normalizing it, and (iii) switching back to Cartesian coordinates. With
this grouping strategy, odd values of N give more uniform windows and should be
favored because of the stepping effect.

Grouping using Spherical Fibonacci Point Sets (CSF)

The windows are approximated in the next step as spherical caps. To reduce the
maximal error, the size of the largest spherical cap should be as small as possible so
we seek as uniform and as small a group as possible. A dual version of this problem
is to seek a uniform distribution of the centers of the spherical caps, for which a
state-of-the-art solution is given by the spherical Fibonacci point set that generates
the positions of these centers. Therefore, we perform the grouping by assigning each
unit vector to the window represented by the closest spherical Fibonacci point. We
considered the inverse mapping introduced by Keinert et al. [Keinert et al. 2015], but
this method alone turns out to be too slow for an on-the-fly execution. Consequently,
we combine it with a precomputed lookup table such as the one shown in Figure 2 (c).

2.3. Uniform Mapping

Our on-the-fly compression scheme is entirely based on a specific quantization pro-
cess. The best quantization to minimize the maximal error in the case of an unknown
distribution is a uniformly distributed point set over the space in which the data is
defined. The error is defined by the angle between the original and the decompressed
unit vector. However, in practice, the range of directions associated with a local set of
rays spans only a region of the Gauss sphere. Therefore, we propose to use a uniform
mapping from a region of the surface to the whole surface of the unit sphere.

In Figure 3, we illustrate our notation. We define in Equation (1), dS1 (respec-
tively, dS2), the red (respectively, green) surfaces in Figure 3. In Equation (2), we
define Scap, the surface of the spherical cap, i.e., the region of the sphere defined
by all the points that form an angle with a given vector that is smaller than a given
threshold Θ. In the following, we refer to the average unit vector as the vector at the
center of the window:

dS1 = 2πr2 sin(θ1)dθ1,

dS2 = 2πr2 sin(θ2)dθ2.
(1)
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Figure 3. Notation used in Section 2.3.

Scap = 2

∫
θ∈[0,Θ]

πr2 sin θdθ

= 2πr2(1− cos Θ).

(2)

We want to find a mapping such that

dS1

Ssphere
=
dS2

Scap
. (3)

The density can be rewritten as

dS1

Ssphere
=

2πr2 sin θ1dθ1

4πr2
=

sin θ1dθ1

2
,

dS2

Scap
=

2πr2 sin θ2dθ2

2πr2(1− cos Θ)
=

sin θ2dθ2

1− cos Θ

Thus, we seek a mapping function h : θ1 → θ2. Using Equation (3), we find

sin θ2dθ2 =
1− cos Θ

2
sin θ1dθ1,

−d(cos θ2) =
1− cos Θ

2
(−d(cos θ1)),

cos θ2 =
1− cos Θ

2
cos θ1 + c.

We define h(0) = 0, a unit vector equal to the average that will be mapped to itself.
We then obtain

c = 1− 1− cos Θ

2
.
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We can compute θ2 in terms of θ1:

cos θ2 = 1 +
1− cos Θ

2
(cos θ1 − 1),

θ2 = acos
(

1− 1− cos Θ

2
(1− cos θ1)

)
. (4)

Equation (4) gives us the mapping from θ1 to θ2 as illustrated in Figure 3. This can
be written as

h(θ1) = acos
(

1− 1− cos θ1

k

)
with k =

2

1− cos Θ
.

The inverse function for decompression has the following form:

h−1(θ2) = acos(1− k(1− cos θ2)). (5)

Interestingly, as we can see in Equation (5), the exact same mapping function is used
for compression and decompression, using k for compression and 1

k for decompres-
sion.

With h providing a mapping from an angle to another angle, we can apply this
mapping to the unit vector directly. Let x be the original unit vector, x′ the mapped
one, and P0 the normalized average vector. We define

l0 = acos < P0,x >,

l1 = h(l0)

= acos
(

1− 1− < P0,x >

k

)
.

We define P1, a vector orthogonal to P0 in the same plane as x:

P1 =
x− < x,P0 > P0

||x− < x,P0 > P0||
.

Using P0 and P1 as axes, x′ is defined as

x′ = cos(l1)P0 + sin(l1)P1,

which gives us the mapping from a point x to a point x′:

x′ = cP0 +
√

1− c2P1 with c = 1− 1− < P0,x >

k
. (6)

This mapping is easy to implement (see Listing 1). Its use on a hemispherical
Fibonacci point set is shown in Figure 4

27

http://jcgt.org


Journal of Computer Graphics Techniques
Quantization of Unorganized Unit-Vector Sets

Vol. 9, No. 4, 2020
http://jcgt.org

vec3 mapping ( vec3 & x , vec3 & p0 , d ou b l e r a t i o )
{

do ub l e k = r a t i o ;
do ub l e d = d o t ( x , p0 ) ;
vec3 p1 = n o r m a l i z e ( x − d ∗ p0 ) ;
do ub l e c = (1 − ( ( 1 − d ) / k ) ) ;
r e t u r n p1 ∗ s q r t (1 − ( c ∗ c ) ) + ( c ∗ p0 ) ;

}

Listing 1. C++ code for the uniform mapping

Figure 4. Mapping applied to hemispherical Fibonacci point sets. From left to right: original
point set, mapping with k = 0.75, 0.5, and 0.25.

2.4. Ratio

For a group (window) of points contained in a spherical cap S, the parameter k in the
uniform mapping (Equation (6)) must be set to the value of the ratio of the length of
the projection of S on the

−−→
OP0 axis (with O the center of the sphere) to the diameter

of the sphere. When using DSC, the grouping is not uniform, i.e., the shape and
the area of each group are not the same and the value of the ratio is variable. For a
given group with average vector P0 and vertices of the spherical quadrilateral of the
representing area Bi with i ∈ 1, 2, 3, 4, the ratio is: 1−(min(A·Bi))

2 . This value may
be under-evaluated because of numerical issues and quantization, which can lead to
vectors located outside of this spherical cap. Therefore, for the general case, we use
a safety threshold ε in our DSC implementation. When grouping using the spherical
Fibonacci point set, we precompute k during the generation of the lookup table and
use it for all the windows.

2.5. Compression Scheme

The previous step maps a region of the unit sphere to the entire sphere. At this point,
any quantization defined on the surface of the sphere can be used with an improved
precision thanks to our mapping. If a minimal error on a small number of bits is re-
quired, the state-of-the-art in uniform distribution over the surface of the sphere is the
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spherical Fibonacci point set. Exploiting this mapping as a quantization method can
be done by using Keinert et al.’s algorithm [Keinert et al. 2015]. Because of numeri-
cal instabilities in the inverse mapping, doing computation with double precision, this
approach is limited to about eight million spherical Fibonacci points. If speed is the
main concern, and higher precision is required, the octahedral quantization [Meyer
et al. 2010] is a good tradeoff between error and performance. Given a quantization
scheme, we store, for each window, the number of compressed unit vectors and the
quantizations associated to the mapped unit vectors. The ID of the window (position
in the final array) corresponds to the key of the group. As the average vector can be
retrieved from this ID (see Section 2.2), as well as the ratio, we do not need to store
them in the window. The complete algorithm can be summarized as: (i) building
windows of vectors lying in subparts of the surface of the unit sphere; (ii) for each
window, storing the number of unit vectors in the corresponding compressed win-
dow and applying the mapping from a subpart to the whole surface of the sphere to
each vector; (iii) storing the quantization of the mapped vectors in the compressed
windows. The compressed pattern is shown in Figure 5.

Window 1 ... Window n
N1 C1 1 ... C1 N1

... Nn Cn 1 ... Cn Nn

Figure 5. Windows compression pattern. Ni (respectively, Ci) is the number of compressed
unit vectors (respectively, the compressed vectors) in the ith window.

3. Implementation and Results

3.1. Implementation

We implemented a CPU version of our scheme in C++ using GLM and OpenMP.
We benchmark it using an Intel Xeon E5-1630 v4 (quad core, 3.7 GHz). When the
grouping based on spherical coordinates is used, we use LibMorton for fast Morton
code computation with the BMI2 instruction set. Due to numerical imprecision, the
mapping should be done in double precision. Each test has been performed using
the same ten million uniformly distributed random unit vectors. The implementation
provided by Cigolle et al. [Cigolle et al. 2014] was used for the octahedral quantiza-
tion. The ZFP library was used for comparison to Lindstrom’s algorithm [Lindstrom
2014]. Our implementation of the spherical Fibonacci quantization is provided in the
supplemental material. Two application scenarios are shown in the source code—a
detailed one, that could typically be used in the case of, for example, a distributed ray
tracing detailed in example.cpp, and a simpler one, that could be used, for example,
to compress the normals of a point cloud in example simple.cpp.
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3.2. Speed and Error

We choose to measure the error using the angle, in degrees, between the original
vector and the compressed vector once decompressed, as this is the error metric used
in the survey on independent unit-vector quantization by Cigolle et al. [Cigolle et al.
2014]. The shown results are computed using the octahedral quantization, but the
generality of the proposed method makes it applicable to any unit-vector quantization
technique. We evaluate the precision using the maximal and the mean error, where the
maximal error is the largest compression error of the ten million compressed vectors
and the mean error is the average of these errors.

The results that are shown in Table 1 demonstrate that the algorithm chosen for
the grouping step has an important impact on the overall performance of the map-
ping. For example, with 213 groups, a compression realized using the closest spherical
Fibonacci point (CSF) for the grouping step divides the maximal error by a factor of
about 3 and the mean error by a factor of about 4.3 compared to a compression real-
ized using the discrete spherical coordinates (DSC) for the grouping step. As shown
in Table 1, using the CSF grouping with 213 groups divides the mean error by a factor
of about 60 and the maximal error by a factor of about 42. While using a 16-bit quan-
tization with the DSC grouping and mapping gives us performances slightly better
than a classical 22-bit quantization, the CSF grouping gives slightly better perfor-
mance than a 26-bit quantization as shown with the highlighted cells (respectively, in
green and red) in Table 1.

Method Simple Quantization DSC and Mapping CSF and Mapping CSF-LUT and Mapping
Error mean max mean max mean max mean max
16 bits 3.4×10−1 9.5×10−1 2.4×10−2 6.9×10−2 5.6×10−3 2.3×10−2 5.6×10−3 5.4×10−2

22 bits 4.1×10−2 1.2×10−1 3.0×10−3 8.6×10−3 7.0×10−4 2.8×10−3 7.0×10−4 7.7×10−3

26 bits 1.0×10−2 3.0×10−2 7.5×10−4 2.2×10−3 1.7×10−4 7.4×10−4 1.7×10−4 1.6×10−3

32 bits 1.3×10−3 3.7×10−3 9.4×10−5 2.7×10−4 2.2×10−5 8.7×10−5 2.2×10−5 2.2×10−4

Table 1. Quantization error (in degrees) over ten million random unit vectors, depending on
the precision of the quantization and the method used for the grouping step prior to mapping.
The grouping was performed using 13 bits for DSC and the equivalent number of clusters
for CSF/CSF-LUT; CSF-LUT corresponds to the CSF mapping used jointly with a 500×500
lookup table.
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Without Mapping With Mapping
Method mean max mean max
Octahedral (16 bits) 3.4× 10−1 9.5× 10−1 2.4× 10−2 6.9× 10−2

Spherical Fibonacci (16 bits) 3.0× 10−1 5.9× 10−1 2.1× 10−2 6.7× 10−2

Octahedral (22 bits) 4.1× 10−2 1.2× 10−1 3.0× 10−3 8.6× 10−3

Spherical Fibonacci (22 bits) 3.8× 10−2 7.0× 10−2 2.8× 10−3 7.2× 10−3

Table 2. Comparison of quantization error using a 13-bit DSC grouping and two different
quantization methods.

In terms of performance, the mapping step alone processes more than 1GB of data
and the grouping of the ten million unit vectors takes 1.0 second using DSC and 3.86
seconds using CSF. The CSF timing can be significantly improved using a lookup
table. For instance, using a 500 × 500 lookup table, the grouping can be done in 1.35
seconds. Depending on the requested precision, the available computational power,
and the network, the grouping choice helps optimize bit-per-second gain with respect
to the network bandwidth. Note, however, that this lookup table reduces the precision
of our mapping as shown in Table 1 (CSF-LUT). When applied to ten million random
uniform vectors, using the CSF grouping with 8192 groups, our method can encode
30.99 MB into 19.10 MB of raw data, reducing by about 38% the space needed to
store the data.

Using any grouping method, a smaller number of groups speeds up the grouping
step but decreases the benefit of our mapping. Moreover, we need to encode the
number of unit vectors that each window contains. Therefore, the number of groups
should depend on the number of unit vectors to compress. The compression of the unit
vectors relies on the grouping technique used, and while DSC or CSF-LUT grouping
are performed in 0.2 seconds for the ten million unit vectors, this timing increases to
0.30 seconds when using the CSF grouping. The decompression is oblivious to the
grouping and takes 0.18 seconds in this example.

In Table 2, we show that our mapping can be used with different quantization
methods to give improved precision. We compared our method to entropy encoding
for multiple coherent unit vectors [Smith et al. 2012] for octahedral quantization.
Smith et al. improve the compression by 26 to 34% while, with our method, we reach
38% (213 groups with CSF grouping).

4. Impact of the Compression on Monte Carlo Rendering

To study the error introduced by our improved quantization process and by direction
quantization in general, when applied to all the non-shadow rays (shadow rays can
be more efficiently compressed using the light target) in a Monte Carlo rendering en-
gine, we implemented our quantization scheme in a pathtracer in order to analyze the
rendering quality with respect to the different parameters of our method. We used
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Figure 6. Scenes used to test the impact of the algorithm on the rendering. From left to right:
staircase, a mainly diffuse scene, glass a mainly specular scene, and living room, with a mix
of different types of materials.

quantization 16 bits 24 bits 32 bits without
mapping with without with without with without without
staircase 0.983 0.592 0.984 0.975 0.984 0.984 0.984

glass 0.838 0.566 0.872 0.808 0.873 0.873 0.873
living room 0.941 0.721 0.942 0.934 0.942 0.941 0.942

Table 3. Comparison to ground truth. Structural similarity between the images rendered
with quantization at 512 samples per pixel and the ground truth. We use the octahedral quan-
tization [Meyer et al. 2010] and the vectors are grouped using the CSF grouping with 213

groups. The last column shows the result when comparing the non-compressed rendering
with the ground truth.

the PBRTv3 rendering engine [Pharr et al. 2016] to render the three different scenes
presented in Figure 6 going from a mostly diffuse one (staircase) to a mostly specular
one (glass). We rendered images at 512 samples-per-pixel (spp) with different lev-
els of quantization, with and without our mapping. We also rendered non-quantized
(512 spp) and ground truth (65536 spp) versions. We use the structural similarity
metric [Wang et al. 2004] (SSIM) to compare the renderings and provide peak signal-
to-noise ratio (PSNR) comparison in the supplemental materials.

Figure 7 shows the SSIM between the quantized and non-quantized renderings,
for the same spp count. We can clearly see that reducing mean and maximum quan-
tization error produces images that closely match non-quantized rendering. We can
also observe that, even with a low number of bits, our quantization scheme leads to
images extremely close to non-quantized rendering for a diffuse scene like the living
room. For scenes exhibiting multiple specular bounces, such as the glass one, more
bits are required to obtain a reasonable result. Interestingly, as reported in Table 3,
activating our quantization scheme does not necessary imply a significant difference
in structural similarity when compared to ground truth.
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Figure 7. Quantization impact. All images were rendered using 512 spp. For each scene pre-
sented in Figure 6 (left), the first row shows quantized rendering using octahedral quantization
with 16, 24, and 32 bits per direction vector, and the second row shows quantized rendering
using our new mapping strategy, with 213 groups and the CSF grouping, with the same bit
budget. For each image we display its structural similarity (SSIM) to the non-quantized ren-
dering output in the bottom-right corner. All quantized results are obtained by quantizing all
the rays except the shadow rays.
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5. Conclusion and Future Work

We have presented a new on-the-fly quantization method for unorganized sets of unit
vectors which, combined with state-of-the-art positional compression, can be used
to compress rays in a distributed Monte Carlo rendering framework with lower error
in the final image. The extra computational cost is small in comparison to classical
quantization techniques and can be even reduced when used in a rendering engine that
already sorts ray batches. In the future, our method could also be used to quantize
other kinds of unit-vector data sets, such as of surfels or normal maps. We showed
that quantized path tracing with a high enough bit count, although different from non-
quantized rendering, is not necessarily further away from ground truth. However, the
resulting noise has different statistical properties, and a study on how this can affect
popular denoising techniques would be interesting.
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