
Journal of Computer Graphics Techniques Vol. 10, No. 1, 2021 http://jcgt.org

Fast Radius Search Exploiting

Ray-Tracing Frameworks

I. Evangelou G. Papaioannou K. Vardis A. A. Vasilakis

Dept. of Informatics, Athens University of Economics and Business, Greece

Figure 1. Several graphics applications that require intensive spatial search operations can

be significantly accelerated by our method. Left: global illumination via progressive photon

mapping. Photons are highlighted in green. Right: local point-cloud registration of partial

surface scans shown as red and green points.

Abstract

Spatial queries to infer information from the neighborhood of a set of points are fre-

quently performed in rendering and geometry-processing algorithms. Traditionally,

these are accomplished using radius and k-nearest neighbors search operations, which

utilize kd-trees and other specialized spatial data structures that fall short of deliver-

ing high performance. Recently, advances in ray-tracing performance, with respect

to both acceleration data-structure construction and ray-traversal times, have resulted

in a wide adoption of the ray-tracing paradigm for graphics-related tasks that spread

beyond typical image synthesis. In this work, we propose an alternative formulation

of the radius-search operation that maps the problem to the ray-tracing paradigm in

order to take advantage of the available GPU-accelerated solutions for it. We demon-

strate the performance gain relative to traditional spatial search methods, especially

on dynamically updated sample sets, using two representative applications: geometry

processing of point-wise operations on scanned point clouds and global illumination

via progressive photon mapping.

25 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

1. Introduction

Many rendering and geometry-processing algorithms rely on spatial neighborhood

queries on large point sets. Image-synthesis algorithms, like photon-mapping vari-

ants and many-light or radiance-caching methods are typical examples. In the context

of geometry processing, point-cloud registration and local feature extraction are also

prominent intensive tasks that operate on spatial neighborhoods or require the dis-

covery of correspondence between nearest points. If performed frequently, all these

operations can introduce a significant computational overhead, an issue that needs to

be addressed in order to allow for fast performance and scalability of the intended

application.

Most neighborhood queries utilize spatial hierarchies, such as kd-trees or regu-

lar structures (uniform or hash grids), to hierarchically subdivide sample points and

accelerate query performance. Building high-quality data structures directly trans-

lates to higher query performance but generally impacts construction time negatively.

Needless to say, from a development standpoint, the process of implementing an op-

timized data structure can become challenging.

Motivated by the importance of this problem, in this paper we demonstrate how to

leverage a highly-optimized existing ray-tracing framework in order to efficiently map

the radius-search task to ray traversal. Central to our approach is the idea of relating

the query radius with samples and, as a result, treating them as regular primitives of

known bounds instead of simple points. This allows us to store the point samples in an

optimized data structure for ray tracing, available right off the shelf from the respec-

tive API and map the radius-search problem to the ray-tracing paradigm, relying on

optimized and hardware-accelerated APIs to perform the queries fast and effortlessly.

We demonstrate the significant performance boost and simplicity of such a generic ap-

proach through the implementation of an NVIDIA OptiX-based neighborhood-search

mechanism and its application to various representative application scenarios, such as

progressive photon mapping, point-cloud correspondence, and point-cloud normal es-

timation.

2. Related Work

Early literature reveals the need for efficient radius-search queries in image-synthesis

tasks, such as irradiance caching [Ward et al. 1988], but perhaps the most representa-

tive family of image-synthesis methods that relies heavily on the efficiency of radius

search, is photon mapping [Jensen 1996] and its variants. The need for exploring

neighbor samples was also demonstrated in the context of bidirectional path-tracing

methods [Georgiev et al. 2012] and virtual point lights [Sriwasansak et al. 2018].

More recently, nearest-neighbors searches have also been used to derive a selection

probability for a candidate light during next event estimation [Vorba et al. 2019].

26

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

In the context of geometry processing and analysis, many local geometric descrip-

tors, i.e., scalar or multi-dimensional quantities that characterize the geometric shape

of a (sampled) neighborhood on a 3D surface or volume, require the extraction of ei-

ther the k-nearest samples or the samples within a specific sphere radius that defines

the scale of the operator. Since the family of actively used local descriptors is quite

large, we refer the interested reader to the Point Cloud Library, where implementa-

tions of the most typical geometric descriptors and local feature-extraction methods

on point clouds are provided [Rusu and Cousins 2011]. Another common task that

heavily uses 1-nearest neighborhood search is local point-cloud registration, or the

Iterative Closest Point algorithm [Besl and McKay 1992] and its derivative methods.

Below we briefly summarize the typical generic data structures used for the above

tasks and present recent work on how ray tracing has been employed to assist in them.

2.1. Spatial Data Structures

The most prominent hierarchical data structure for nearest-neighbors searches is the

kd-tree [Bentley 1975], which is extensively used in a variety of global-illumination

tasks, especially those related to the photon-tracing scheme [Jensen 1996]. Kd-trees

are also frequently employed in geometry-processing and recognition tasks, including

the inference of local features [Hoppe et al. 1992] and point-cloud alignment [Zhang

1994]. Additionally, the performance of the hierarchy construction has been greatly

improved by adapting it to a GPU architecture [Zhou et al. 2008] as well as its fi-

nal tree quality based on the voxel volume heuristic [Wald et al. 2004]. Finally, the

octree [Meagher 1982] and its many GPU implementations have also been exploited

for nearest-neighbors searches in illumination tasks [Ward et al. 1988; Křivánek et al.

2008; Wang et al. 2019].

Attempts to optimize radius and nearest-neighbors searches were also demon-

strated with grid-based data structures. Hash maps [Ma and McCool 2002] exploit

a locality-sensitive hashing scheme to approximate nearest neighbors in a coherent

and parallel manner. Despite the benefits, this approach suffers from efficiency issues

when samples are not uniformly distributed, which is the typical case.

2.2. Hardware-accelerated Ray Tracing

Ray tracing on the GPU typically employs some specific type of a bounding volume

hierarchy (BVH) as a ray-geometry acceleration data structure (ADS). With the in-

creased popularity of ray tracing, several high-performance BVH data structures have

been proposed that benefit from the GPU’s parallel architecture [Lauterbach et al.

2009; Karras and Aila 2013; Domingues and Pedrini 2015]. In our case, this is par-

ticularly beneficial for many methods that utilize spatial neighborhood queries, since

a BVH can have both a fast construction time and a competitive query performance,

making it suitable for dynamic updates of the queried sample set. Even thought spatial

27

http://jcgt.org
https://pointclouds.org/

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

grids, like hash-grids, perform well on construction, the query performance can dete-

riorate in cases with uneven distribution of samples, which is rather common. On the

other hand, while kd-trees solve this problem, they lack efficient construction algo-

rithms for GPUs, whereas BVHs have been successful in balancing the performance

of both tasks.

2.3. Applying Ray Tracing to Other Tasks

Recent enhancements in ray tracing, even at the hardware level, inspired researchers

to creatively map problems to the ray-traversal paradigm, in order to exploit the fast

performance and optimized emerging implementations.

First of all, treating point samples as primitives with volume in hierarchical data

structures is not new. Fabianowksi et al. [2009] stored and queried photons, extended

by an estimated splat radius, in a linear bounding-volume hierarchy [Lauterbach et al.

2009]. Here we generalize and abstract this idea further.

In the same spirit as in our work, Wald et al. [2019] exploit the OptiX frame-

work to perform point-in-tetrahedron queries for volume visualization of unstruc-

tured shapes. Recently, Knoll et al. [2019] demonstrated how to exploit the OptiX

API and hardware ray-tracing cores to render large particle data using marching rays

that progressively accumulate intersected particles that are stored as generic primi-

tives in a BVH. Concurrently and independently from our work, Zellmann [2020]

proposed an efficient implementation of the spring-embedders algorithm, an itera-

tive graph-drawing technique mapped to the ray-tracing paradigm. Similar to the

previous methods, the OptiX framework is exploited for radius-search queries in the

two-dimensional domain for all the vertices of a graph.

In this work we focus on solving spatial queries as a general-purpose task in a

three-dimensional domain and show how this can be a competitive alternative to a

regular GPU-accelerated kd-tree, both in terms of implementation convenience and

overall performance.

3. Radius Search using Ray Tracing

3.1. Radius Search Formulation

A radius-search operation is defined by a set of points S = {s1, s2, . . .} ⊆ R
3 that

represent the sample space and a set of points Q = {q1,q2, . . .} ⊆ R
3 that encom-

passes the queries to be performed. For every qi ∈ Q, the task is to find the subset

of samples Sqi
that resides within a maximum search radius ri ∈ R, according to an

indicator function:

Iq(s) =

{

1, d(s,q) ≤ r,

0, otherwise,
(1)

28

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

s2
s1

q1

r1

r2

q
2

Qs1={q
1
,q

2
} Qs2= Ø Sq1={s

1
} Sq2= Ø

r~
s2

s1

q1

q2
s2

s1

q1

q2

r~

Radius search Inverse mapping

d(s
1
,q

1
)

Figure 2. The forward and inverse radius-search process. The sample in query point-radius

formulation (left) can be mapped to an inverse spatial query (middle), followed by a sample

rejection step (right).

where d(s,q) is a distance function. Typically, this is the ℓ2 norm. From Equation (1)

and the symmetry property of d(s,q), the problem can be equivalently defined as

locating for every sj ∈ S all query points Qsj
⊆ Q according to the following

indicator function:

Is(q) =

{

1, d(s,q) ≤ r̃,

0, otherwise.
(2)

In simple terms, the query can be inverted by assigning a sufficiently large radius

r̃ = max
qi∈Q

(ri) for each sample sj . A subsequent rejection step is then performed

to compute Sqi
from Qsj

by ensuring that the original search radius is satisfied:

d(sj ,qi) ≤ ri, when qi ∈ Qsj
. A simple example of the inverse-mapping process is

illustrated in Figure 2. Obviously, if the search radius is constant for all queries, we

can set r̃ = ri, omitting the last check and greatly simplifying the query.

The above transformation of a gathering operation into an assignment one, has

been also used in the case of photon mapping [Stürzlinger and Bastos 1997], where

instead of determining the irradiance by gathering photons within a radius ri around a

camera ray-hit point qi, a photon-splatting operation assigns a photon s to hit points

within a splat radius r̃.

In the same spirit as in the work of [Fabianowski and Dingliana 2009], here we

exploit the inverse-search procedure in order to embed the set of samples S as points

with radius r̃ in a fast spatial-acceleration structure, but we further take advantage of

the hardware-accelerated ray-tracing mechanism to evaluate Equation (2). The partic-

ular problem re-formulation enables us to treat samples as primitives and, therefore,

exploit existing BVH builders to store samples and accelerate queries (Sections 3.2

and 3.3) as well as explore different cost models that optimize them.

Typically, the final tree quality in terms of traversal performance is quantified

using the surface area heuristic [MacDonald and Booth 1990] (SAH). On the other

hand, a reasonable and often used criterion for spatial queries is the minimization of

29

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

the volume heuristic (VH), as we are interested in a point-in-volume probability mea-

sure according to our formulation in Section 3.1. In order for a BVH to be consistently

efficient for spatial queries, we must guarantee that a structure that is optimized ac-

cording to the SAH cost function also bounds the total volume heuristic cost. This

turns out to be true, and an elementary proof can be found in the Appendix. Simply

put, by minimizing the SAH, we always implicitly minimize the VH, meaning that

by exploiting a fast-built SAH-based BVH, query performance does not fall short.

Obviously, SAH is only an upper bound and therefore, a tree optimized with the VH

can perform better, in theory.

Internal structure and indexing mechanics of trees built by modern BVH algo-

rithms have some additional beneficial characteristics, aside from the parallel con-

struction. First, the spatial coherence near the leaves offers infrequent tree-level

changes on the lower tree levels during traversal. Second, since the input samples

have relatively small bound extents, defects arising from node overlap during node

splitting are less frequent, especially when the radius takes relatively small values

and is progressively reduced, as is the case in progressive variants of photon map-

ping [Hachisuka et al. 2008]. Finally, an often incorrect assumption in the applica-

tion of the SAH cost function, which requires that rays march unoccluded through

the scene before hitting the target (internal) bounding volume, is actually true in our

problem, which yields a more realistic and predictable performance.

In the following sections, given a set of query points qi, we explain how to identify

either all samples, or only the k-nearest ones that reside within a query radius ri, using

an off-the-shelf ray-traversal framework.

3.2. Radius Search via Ray Traversal

Constructing and traversing the acceleration data structure is a two-step process. First,

an axis-aligned bounding box (AABB) is constructed for every sample sj based on r̃

and forwarded for a regular BVH tree construction. Second, for each query qi, a ray is

defined with origin at qi and an infinitesimal ray extent. For implementation purposes,

we provide an arbitrary non-zero ray-direction vector #»v , since only the ray origin is

required. A radius-search operation can then be directly mapped to an “intersection”

ray-tracing event, and it is completed in a single ray-traversal invocation through ray-

bounds intersection between the tree nodes and the ray. Since sample AABBs that are

potentially within range of ri must enclose it, by definition of our problem, the ray

will eventually reach the leaves and correctly classify potential in-radius samples sj

according to d(sj ,qi). We summarize this method in Algorithm 1. Assuming object-

based splits as well as sequential traversal, unique primitive records are guaranteed to

be retrieved and, therefore, no additional modifications are required.

An alternative valid approach to the problem would be to store every query qi and

its associated search radii ri as primitives in the BVH, instead. Rays constructed with

30

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

each one of the sample positions as origin would then be used to determine to which

query points the samples contribute. However, this would require a BVH query for

every sample, followed by an atomic update of the query’s list of results, an overhead

that is clearly avoided in the previous approach. GPU-accelerated BVH-traversal im-

plementations are ray-parallel, with the traversal itself being sequential, which favors

query-“gathering” operations, such as the one proposed here. On the other hand, par-

allel sample traversals attempting to concurrently update multiple query-result lists

are inefficient.

Algorithm 1: Radius Search using BVH.

Input: Queries Q = {qi}, Samples S = {sj}.

Output: Search set Sqi
⊆ S, ∀qi ∈ Q.

begin

r̃ ← max
qi∈Q

(ri);
#»v ← (eps, eps, eps); {Sqi

← ∅};

bvh← BuildBVH(S, r̃);

forall qi ∈ Q do

ray ← (qi,
#»v , 0, eps); ⊲ (origin,direction, tmin, tmax)

RayTrace(bvh, ray, Sqi
, Intersect);

end

return {Sqi
};

end

Function BuildBVH(S, r):

bvh← EmptyBVH();

forall s ∈ S do

aabb ← (s− r · 1T , s+ r · 1T);

bvh.AddElement(s, aabb);

end

return bvh;

end

Function Intersect(s, ray, Sqi
):

(o,d, tmin, tmax)← ray;

if ||s− o|| < ri then
Sqi
← Sqi

∪ s;

end

end

31

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

3.3. Truncated k-nn Search via Ray Traversal

In the same spirit, we can exploit a BVH containing samples sj , each associated with

a bound of radius r̃, for k-nearest-neighbors searches with a truncation distance r̃,

beyond which all queried samples are rejected. Although this truncation comes out of

necessity rather than choice, since r̃ affects the BVH construction and query perfor-

mance and cannot be infinite, many practical algorithms already employ a truncation

strategy to reject outliers and boost convergence rate. A typical example is the widely-

used Iterative Closest Point alignment method, which frequently employs distance-

based nearest-point culling for convergence speed and outlier rejection [Rusinkiewicz

and Levoy 2001]. Since every sample is scanned over the predefined radius, as we al-

ready described in Section 3.2, an internal structure per query point of maximum size

k can be maintained and we can track the k-nearest samples, effectively collecting the

appropriate samples.

4. Evaluation

We assess the efficiency of the proposed radius-search method using the publicly

available OptiX [Parker et al. 2010] ray-tracing API (version 7.2), on an NVIDIA

GeForce RTX 2080 Ti graphics card with 11GB video memory and CUDA ver-

sion 10.1.

#define FLT_EPSILON 1.e-16f

extern "C" __global__ void __raygen__radSearch(void) {

const uint3 index = optixGetLaunchIndex();

const query_t & query = getQuery(index);

const float3 dir = make_float3(FLT_EPSILON, FLT_EPSILON,

FLT_EPSILON);

const float tmin = 0.f;

const float tmax = FLT_EPSILON;

payload_t payload;

payload.query = query;

optixTrace(ADSHandle, query.pos, dir, tmin, tmax,

0.f, OptixVisibilityMask(1),

OPTIX_RAY_FLAG_DISABLE_CLOSESTHIT |

OPTIX_RAY_FLAG_DISABLE_ANYHIT,

0, 1, 0, payload);

}

Listing 1. OptiX program that invokes the radius-search process of each query.

32

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

extern "C" __global__ void __miss_radSearch(void) {/*Empty*/}

extern "C" __global__ void __closesthit__radSearch(void) {/*Empty*/}

extern "C" __global__ void __anyhit__radSearch(void) {/*Empty*/}

extern "C" __global__ void __intersection__radSearch(void) {

query_t & query = payload.query;

const uint32_t primIndex = optixGetPrimitiveIndex();

const sample_t & sample = getSample(primIndex);

const payload_t & payload = getPayload();

const float3 & ray_origin = optixGetWorldRayOrigin();

const float3 diff = sample.pos - ray_origin;

const float t = dot(diff, diff);

if(t < payload.query.radius * payload.query.radius) {

#ifdef TRUNC_KNN // See Section 3.3

if (t < payload.maxDistElem) {

// Cache the current sample into k-closest array

replaceFurthestElem(payload, query);

// Find the element with the maximum distance

// and record its index

recordFurthestElem(payload, query);

}

#else // Radius search, Section 3.2

// Process sample within query radius...

#endif

}

}

Listing 2. OptiX programs that issue query-sample intersections and record them.

As described in Section 3.2, we calculate the AABB for each sample, based on

the input-radius parameter. These samples are then used to construct an OptiX ac-

celeration data structure for which we enable compaction and fast-trace flags. Query

points can then index it through the ray-generation program shown in Listing 1. In

order to apply radius and truncated k-nn search as described in Section 3.2 and Sec-

tion 3.3, only the intersection program is required. The latter will both validate and

cache potential intersections between query and sample points effectively omitting

any additional callable programs (see Listing 2). This is accomplished by disabling

the closest and any-hit programs through the OptiX trace function during the ray-

generation phase. The source code of our OptiX-based implementation can be found

in the supplemental material 5. It should be noted that despite the API-specific flags

used in our specific implementation, the process is generic enough to be applied to

any other ray-tracing API, as long as custom primitive AABBs can be computed for

the ADS construction stage and the intersection callable is a user-modifiable function.

33

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

We further evaluate our approach with the publicly available GPU-accelerated

FLANN kd-tree [Muja and Lowe 2009], where we use the default hyper-parameters

for each radius-search invocation, unless otherwise stated. In Section 4.1, we evalu-

ate both frameworks in two distinct configurations of randomly generated point sets.

Next, in Section 4.2, we evaluate the performance of our method in two common geo-

metric operations that require k-nearest-neighbors searches. Finally, in Section 4.3 we

validate the performance of our radius-search approach in progressive photon map-

ping [Hachisuka et al. 2008].

To level the ground for the comparison as much as possible, we perform the fol-

lowing steps: (1) In order to closely replicate the caching strategy of FLANN, we also

use custom buffers storing per-query result sets for sample indices as well as distances

for which we apply truncated k-nn as described in Section 3.3 and Listing 2; (2) we

disable FLANN heap usage as well as the sorting operation of the resulting buffer.

4.1. Generic Radius-Search Evaluation

In this section, we measure the efficiency of radius search using the OptiX BVH and

the FLANN kd-tree for storing and querying sample points under two generic configu-

rations that build the corresponding hierarchy according to (1) a uniform distribution

and (2) a Gaussian distribution with eight spherical modes. These two configura-

tions serve as a qualitative baseline for both data structures. Typically, uniformly

distributed samples will result in balanced trees which, in turn, greatly improve load

balance and tree-search overhead of query invocations. On the other hand, trees gen-

erated according to the second configuration are generally less balanced. To assess the

query performance of the constructed trees, we generate only uniformly distributed

queries. The distribution of the query points is irrelevant to our tests; they are not

stored in an acceleration structure and can be sorted and batched according to the

specific requirements of an application, if further speedup is desired.

We evaluate and report the radius search performance for the above configurations

in experiments of increasing radius values and two sets of sample populations, a low-

density one, ranging from 104 to 105 and a high-density one, ranging from 105 to 106.

For sake of fairness, we pre-compute the maximum neighbor capacity needed

among the queries prior to the execution of both frameworks in order to pre-allocate

per-query index and distance matrices and, therefore, gather every potential sample.

Uniform sample distribution. Figure 3 summarizes the results for the radius search

on uniformly distributed samples with low- and high-density sample populations, re-

spectively. When the radius is relatively small, we can clearly observe that our ap-

proach outperforms FLANN in every setup between query and sample size (Figure 3

(top- and bottom-left)). In contrast, for larger radii, when samples and query size

increase simultaneously (Figure 3 (top- and bottom-right)), the overall performance

34

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

Ours FLANN

m
s

m
s

m
s

m
s

1% 2%

0

20

40

60

2% 4%

10 28 46 64 82 10samples (x104) queries (x105)
10 28 46 64 82 10

10 28 46 64 82 10samples (x105) queries (x105)
10 28 46 64 82 10

0

2

4

6

0

5

10

15

20

0

10

20

30

Figure 3. Radius search performance evaluation of uniformly distributed low-density sam-

ples (top row) and high-density samples (bottom row). The radius bandwidth, relative to the

sample space bounding-box side, is indicated on top of each contour.

gain via the ray-tracing traversal is immediately negatively affected and as a result,

the FLANN kd-tree becomes more efficient.

In Figure 4, we demonstrate the effect of the search radius for a relatively small

fixed query (215) for both low- and high-density sample sets, in order for the gath-

ering buffers to fit into GPU memory. In the first case (Figure 4 (left)), our method

outperforms FLANN, despite the aggressive radius size. However, as the sample

density increases, the performance deteriorates rapidly even for small radius values

(Figure 4 (right)). Performance degradation is mainly caused by the increased overlap

10% 20% 25% 1% 2% 4%FLANN Ours

samples (x104) samples (x105)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

m
s

High Density

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

m
s

Low Density

Figure 4. Radius of increasing size with constant query size
(

215
)

, for uniformly distributed

samples of low density (left) and high density (right).

35

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

of sample AABBs as opposed to FLANN, which performs near optimal point-wise

splits due to the spatial median split strategy it employs, effectively generating higher

quality trees.

Gaussian sample distribution. In the second configuration, we measure the perfor-

mance of simulating non-uniform distributions of samples; the results are presented in

Figure 5. The multi-modal Gaussian distribution reflects a more realistic dispersion of

samples in the queried space than the uniform case, since in practical-application sce-

narios, samples are either concentrated on the geometry surfaces (e.g., object point-

clouds, particles) or form volumetric concentrations (e.g., particle systems and sam-

ples in participating media). As we can observe, our method performed better than

FLANN in every combination of sample population and number of queries. Addi-

tionally, in contrast to the case of the uniform sample distribution, our method outper-

formed FLANN in all tests with varying radius, as shown in Figure 6 under similar

query size configuration. In part, the significant performance gap is due to the differ-

ent splitting strategies during the creation of the acceleration data structures as well

as a relative overhead introduced, especially in the case of the FLANN kd-tree, from

incoherent memory access during the result-set updates.

Ours FLANN

m
s

m
s

0

2

4

6

0

2

4

6

m
s

m
s

1% 3%

0

40

80

0.5% 1%

10 28 46 64 82 10samples (x104) queries (x105)
10 28 46 64 82 10

10 28 46 64 82 10samples (x105) queries (x105)
10 28 46 64 82 10

0

20

40

60

Figure 5. Radius-search evaluation for multi-modal Gaussian distributed samples with low

density (top row) and high density (bottom row). The radius size, relative to the sample space

bounding-box side, is depicted on top of each contour.

36

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

10% 20% 25% 1% 2% 4%FLANN Ours

1 2 3 4 5 6 7 8 9 10

samples (x104)

0

50

100

150

200

250

300

350
m

s

Low Density

1 2 3 4 5 6 7 8 9 10

108 167 233 291

samples (x105)

0

20

40

60

80

100

m
s

High Density

Figure 6. Radius-search timings as bandwidth progressively increases for multi-modal Gaus-

sian samples with low density (left) and high density (right), with fixed size of queries
(

215
)

.

4.2. Geometry Processing Tasks

The task of point-cloud registration requires efficient nearest-neighbors searches. Given

a set of points as a sample reference and a set of points as the query point-cloud, the

objective is to evaluate for every point in the query subset, the closest corresponding

point in the reference set and record the point-wise distance. The latter operation is

often invoked via truncated k-nn search, based on a predefined radius and k = 1.

In many modern applications, such as interactive digitization, the point clouds must

be aligned and incrementally updated during the process, which demands both fast

queries and short acceleration-structure build time.

We assess the performance of our method with the OptiX BVH builder compared

to the FLANN kd-tree on this task in four distinct densely distributed point clouds that

vary in size from 100K to 1M points. For each point cloud, we randomly subtract half

the points and use them as the queries, while the remaining ones serve as the sample

set from which we construct our tree hierarchy. This arrangement effectively models

the scenario of nearest-point queries for partial surface-scan registration, where points

in the dataset have similar populations and largely represent the same surface, albeit

with different samples. The radius hyper-parameter is identical and pre-tuned for both

frameworks to match the radius required to gather one sample on average. It should

be noted that in these experiments, for both frameworks, we only allocate buffers

corresponding to k = 1 for each query point, instead of trying to accommodate all

samples in the query radius.

From the performance measurements presented in Figure 7 for k = 1, we can

observe that our method’s inference time is consistently faster in every case by at least

2.0×. Additionally, we can observe that, due to the superior tree-construction timings

of OptiX BVH, as opposed to FLANN kd-tree, our method can produce interactive

frame rates, when construction of the query point cloud is also necessary, in order to

37

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

points k = 1 k = 4 k = 8

Build

Lionhead 100K 1.4/21.4 (14.9×) 2.4/26.2 (10.8×)

Metope 350K 3.3/29.1 (8.6×) 4.9/37.4 (7.5×)

Dora block 500K 4.5/35.2 (7.7×) 6.5/42.4 (6.5×)

Hermes 1M 7.8/45.4 (5.8×) 11.8/59.6 (5.0×)

Search

Lionhead 100K 0.1/0.4 (3.3×) 0.2/0.7 (2.8×) 0.5/0.9 (1.7×)

Metope 350K 0.2/0.7 (2.8×) 1.0/1.7 (1.5×) 1.9/2.6 (1.3×)

Dora block 500K 0.3/0.9 (2.7×) 1.6/2.6 (1.5×) 3.4/3.7 (1.1×)

Hermes 1M 1.1/2.2 (2.0×) 4.3/6.4 (1.4×) 8.1/8.2 (1.0×)

Figure 7. Build and Gather measurements comparing our OptiX-based radius-search method

and FLANN on four point clouds tracking different number of nearest neighbors. The num-

bers in the parentheses indicate the performance improvement of our method over FLANN.

perform bi-directional point-wise closest point queries and when the query subset is

progressively adapted (e.g., for live progressive surface scanning).

Another family of common geometric operations on point clouds is the estimation

of local geometric features, such as curvature or surface normal orientation [Guen-

nebaud and Gross 2007; Hoppe et al. 1992]. This task also typically requires local

neighborhood determination on point clouds. For the simplest case of normal estima-

tion, a reasonable approximation is often achieved when, for every point, the normal

is estimated using the three-closest neighboring points. We evaluate the performance

of the latter operation on the same set of point clouds described earlier. The radius

hyper-parameter is tuned in a similar manner to the previous experiment. For this

task, every point serves as a query and a sample at the same time and, therefore, we

set the maximum number of neighbors required, k, equal to 4. We also repeat the

experiment for k = 8 and set the radius for each point cloud accordingly.

Due to the small number of result records k per query (k > 1) allocated, buffer

traversals and frequent updates are invoked from both frameworks during the search

phase. However, as shown in Figure 7, for k = 4, we observe that our approach is still

faster in every test. Setting k = 8, closed the gap in terms of relative inference time

over FLANN. Nevertheless, data structure construction time for every point cloud

remained significantly lower.

38

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

4.3. Progressive Photon Mapping

We further evaluated our radius-search method on progressive photon mapping by

Hachisuka et al. [2008], extended with the global statistics formula proposed by

Knaus et al. [2011]. This method invokes a bidirectional tracing scheme, from both

the light sources and the virtual sensor, in order to approximate the energy equilib-

rium. A data structure, the photon map, is responsible for caching and indexing the

particles that iteratively emanate in batches from the light sources.

Typically, due to multiple surface-scattering events, the total number of active

photon records can vary from a few thousand to over a million in each frame. Addi-

tionally, in almost every case, the photon distribution after the end of the light-tracing

phase will be highly non-uniform, due to convergent light paths and the termination

of photons on scene-geometry surfaces. Consequently, several efficiency issues arise,

making the gathering stage a non-trivial task to handle, since an additional data hierar-

chy is required in order to maintain these photons. Furthermore, progressive variants

of the photon-mapping algorithm that process a new batch of photons in each itera-

tion, require a reconstruction step of the whole hierarchy in every progressive step.

This signifies the importance of efficiently performing both the initialization of the

data structure and the gathering process, in the form of radius-search queries.

For our case study, we ran experiments mainly on indoor scenes and did not em-

ploy any path-length reduction strategy, such as Russian Roulette. As such, we main-

tained as many active photons as possible per frame and stressed the data-structure

construction and access. Similar to the previous applications, we used the OptiX

BVH to store the photon samples, which we queried with the camera-recorded hits

and evaluated the performance of our gathering variant against the FLANN kd-tree

on the same task.

For this set of experiments and for the OptiX approach only, we fully exploited the

structure of this algorithm during the gathering phase and evaluated the photon den-

sity in-place during the intersection-program invocation (see Listing 2), effectively

omitting the index and distance buffers, altogether. This greatly simplified the imple-

mentation and allowed the gathering of an arbitrary number of samples in the local

neighborhood, as compared to the FLANN framework. This is also the reason why

Gather times in the OptiX implementation are significantly smaller than the FLANN

case. Please bear in mind that the same modifications could in theory be applied to

the FLANN framework, but would require significant customization and algorithm

insight to optimize, whereas in our case, they were implemented in a few lines of

CUDA kernel code.

Since FLANN requires pre-allocated GPU buffer pointers for the radius-search

phase, we invoke this method with a fixed maximum capacity of photons, a value

that we independently tune prior to the rendering phase based on the maximum num-

ber of gathered photons recorded with OptiX. We observed in experiments that al-

39

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

Figure 8. Example renderings that demonstrate our approach in closed environments of ar-

bitrary light complexity. From left to right: glass, pool, bathroom and fireplace. All scenes

were rendered with path length equal to five, for both eye and light sensors.

locating a tight array effectively minimizes potential overheads induced by memory

incoherence. Furthermore, we set the gathering method for the FLANN invocations

to Flann undefined, which forces FLANN to decide internally whether to employ an

iterative or a heap-based update strategy during the radius search. All experiments

use path segments of length five from both the eye sensor and the lights, in order to

capture every dominant global-illumination effect. For every scene, the rendering res-

olution is 1920× 1080 and the photon batch size per iteration is set to 500K. Figure 8

presents the example scenes used in our tests.

In Figure 9, we investigated the impact of employing different photon-batch sizes.

Specifically, we measured the performance of construction and gathering for photon

batches between 100K and 1000K emitted per frame, averaged over 50 frames. We

did not include tracing performance since this component is handled from OptiX for

both cases. Table 1 summarizes the photon-map construction timings with respect

to different photon-batch sizes. Naturally, both data structures were negatively af-

fected by the increase of active photons, however, OptiX construction times remained

0

50

100

150

200

250

Ours FLANN

Fireplace

FLANNOurs

Bathroom

Ours FLANN

Pool

Ours FLANN

Glass

100K 200K 500K 1000K

R
e

n
d

e
r

T
im

e
s

(m
s)

Build Gather

7
.0

7
.3

1
1

.0

1
5

.8

5
0

.1

8
9

.8
1

4
8

.3

2
6

6
.4

7
.0

1
0

.7

1
5

.9 2
7

.3
5

1
.8 7

1
.1

1
4

8
.8

2
6

8
.4

9
.4

1
2

.9 2
4

.0 4
8

.0 6
8

.8

1
1

5
.0

2
0

7
.1

3
6

1
.8

1
0

.2

1
4

.8 2
9

.3

5
5

.3 7
1

.5

1
1

5
.7

2
1

3
.7

3
2

8
.9

Figure 9. Cumulative performance evaluation of Build and Gather timings averaged over

the first 50 iterations, comparing our proposed method and FLANN with increasing size of

photon-batch emission for each scene of Figure 8.

40

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

100K 200K 500K 1000K

Build

Glass 1.3/42.0 (31.3×) 2.0/61.9 (29.7×) 5.2/99.9 (19.2×) 9.4/175.9 (18.5×)

Pool 1.9/47.1 (23.6×) 3.7/63.3 (16.7×) 7.9/123.7 (15.5×) 15.1/222.2 (14.7×)

Bathroom 2.0/53.1 (26.1×) 3.2/68.9 (21.3×) 7.6/123.4 (16.0×) 14.6/229.9 (15.7×)

Fireplace 1.8/56.8 (31.1×) 3.7/73.5 (19.3×) 6.7/141.6 (20.9×) 12.2/220.3 (18.0×)

Gather

Glass 5.6/8.0 (1.4×) 5.3/27.9 (5.2×) 5.8/48.4 (8.3×) 6.3/90.4 (14.2×)

Pool 5.8/4.7 (0.8×) 6.9/7.8 (1.1×) 8.0/25.1 (3.1×) 12.2/46.1 (3.7×)

Bathroom 7.3/15.6 (2.1×) 9.6/46.1 (4.7×) 16.3/83.7 (5.1×) 33.4/131.9 (3.9×)

Fireplace 8.4/14.7 (1.7×) 11.0/42.1 (3.8×) 22.6/72.1 (3.1×) 43.0/108.6 (2.5×)

Table 1. Detailed Build and Gather timings of our OptiX implementation vs FLANN on four

test scenes using different photon batch sizes. The numbers in the parentheses denote the total

improvement over FLANN.

consistently faster than FLANN in every test case, due to the framework’s highly-

parallel build process as opposed to the less efficient top-down FLANN builder. In

the same table, we demonstrate the gathering performance of each framework un-

der the same photon-batch size for every scene. Photon density immediately affects

performance for both data structures during the gathering process. Still, our radius-

search method performed better in almost every test case. An exception is the pool

scene, with photon-batch size equal to 100K, for which performance difference is

marginal.Despite the negative impact of the batch size on the relative performance

gain of our method, the latter does not drop as fast as in the case of the previous

experiments in Sections 4.2 and 4.1. This is mainly due to FLANN’s excessive num-

ber of gather buffer updates in dense photon regions, in contrast to our method that

directly accumulates photon density, without storing intermediate photons.

Finally, it is worth noting that for relatively small photon batches (100K−200K),

the total build and gathering operations will consume less than 15ms of the total com-

putation time on every scene. This potentially enables the use of progressive variants

of photon mapping for rendering tasks at interactive frame rates.

4.4. Other Experiments

Finally, we re-evaluated the performance of both frameworks using a non-RTX GPU

hardware, such the NVIDIA GeForce GTX 1080 with 8GB video memory.

In the case of geometric queries (see Section 4.2), we use an identical configura-

tion for both k = 1 and k = 4 cases. In Table 2 (left), we present relative perfor-

mance gains for each GPU card independently for the case of a medium-sized point

cloud (350K samples) and a dense one (1M samples). As measurements indicate, the

gathering inference time favors our approach in almost all settings. Additionally, the

construction performance of the index remains consistently superior.

41

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

k = 1 k = 4

Build

Metope 8.6×/2.2× 7.5×/2.1×

Hermes 5.8×/1.5× 5.0×/1.6×

Gather

Metope 2.8×/1.1× 1.5×/0.9×

Hermes 2.0×/1.5× 1.4×/1.2×

200K 1000K

Build

Bathroom 19.3×/4.4× 18.0×/4.3×

Fireplace 21.3×/5.1× 15.7×/4.9×

Gather

Bathroom 4.7×/4.5× 3.9×/3.5×

Fireplace 3.8×/4.4× 2.5×/3.3×

Table 2. Relative performance gain of Build and Gather stages for geometry-processing tasks

(left) and progressive photon mapping (right) of our OptiX implementation vs FLANN on an

RTX 2080 Ti (red) and a GTX 1080 (blue).

Similarly, in the progressive photon-mapping task (see Section 4.3) and under

the same configuration, we measured the performance in two scenes with complex

illumination effect such as the bathroom and the fireplace. In Table 2 (right), we show

the relative performance gain for low-density and high-density photon-batch sizes

(200K and 1M) in which our approach remains superior in all cases.

Due to the underlying hardware improvements specifically targeting hierarchi-

cal data-structure construction on the Turing micro-architecture, the corresponding

Build-stage gain is significantly higher on the RTX card. However, the relative gain

of the Gather stage is not significantly larger on the RTX compared to the non-RTX

card. This is to be expected, since the queries do not utilize the triangle-intersection

hardware of the former and only take advantage of generic improvements in the newer

architecture.

5. Conclusion

In this work, we proposed a mapping of the general radius-search task to the ray-

tracing paradigm. Our approach outperforms a GPU implementation of FLANN, a

widely used kd-tree option, in all but the most extreme scenarios. Even in those cases,

by dramatically reducing the construction time of the supporting spatial-queries index

due to the use of highly-optimized ray-tracing acceleration data-structure builders, our

approach can quickly close the negative performance gap that might be induced from

searching invocations. The superior performance combined with the implementation

simplicity, makes our approach a suitable and elegant replacement for any intensive

application on the image synthesis or geometric-processing context. The fast accel-

eration data-structure build time also makes our approach especially appealing for

applications where the sample set is continuously updated, such as progressive pho-

ton mapping and incremental, live 3D scanning.

The main limitation of our approach is that it cannot be used with arbitrarily large

radii, e.g., for performing unbounded k-nearest neighborhood queries. This would

imply that each sample bounding-box volume is occupying most of the available total

42

http://jcgt.org

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

space with the worst case being the total sample space itself. This effectively elim-

inates any possible object-based splitting strategy, resulting in a single flat 1-level

tree hierarchy that would render our approach completely ineffective. Still, in most

practical applications, this extreme case is seldom required, as most neighborhood

queries impose some sensible limit beyond which samples returned are deemed in-

valid anyway. Another, more subtle potential limitation is the inherent inability of

this method to shrink the radius parameter during the search of k-nearest samples,

since the radius is used for the determination of the node bounds of the hierarchical

data structure. This may lead to queries in dense areas searching for a limited num-

ber of point samples performing redundant operations, compared to a typical kd-tree.

However, throughout our experiments, and especially in the photon-mapping tests,

we did not encounter any noticeable performance degradation.

Acknowledgments

The Bathroom scene was based on a model from https://www.cgtrader.com/ and

the Fireplace was downloaded from McGuire’s Computer Graphics Archive [McGuire 2017].

The remaining scenes were created by the authors. This research is co-financed by Greece and

the European Union (European Social Fund-ESF) through the Operational Programme ”Hu-

man Resources Development, Education and Lifelong Learning 2014-2020” in the context of

the project ”Modular Light Transport for Photorealistic Rendering on Low-power Graphics

Processors” (5049904).

Appendix: Surface Heuristic as an Upper Bound to the Volume Heuristic

In this section, we discuss and establish theoretical guarantees about the final tree quality of a

SAH-optimized tree builder for our radius-search task. The SAH function is defined as

Csah(T) = Ci

∑

n∈I

SA(n)

SA(root)
+ Cl

∑

l∈L

SA(n)

SA(root)
+ Ck

∑

l∈L

SA(l)

SA(root)
N(l), (3)

where Csah(T) is the expected cost of the constructed tree T and I, L account for the set of

interior and leaf nodes, respectively. For any given node n of T , function SA(n) calculates

the surface area of an AABB and if n ∈ L, function N(n) returns the number of primitives

records enclosed by it. The quantity root stands for the bounding box of the entire scene. The

ratio of the surface areas is the conditional probability that an un-occluded ray starting from

the scene root will also hit the node. Finally, Ci, Cl, and Ck measure the intersection cost of

an interior and leaf node as well as the primitive at a leaf, respectively. Typically, Ck ≥ Ci

and Cl = 0. Similarly, the volume heuristic (VH) cost function is

Cvh(T) = Ci

∑

n∈I

V (n)

V (root)
+ Ck

∑

l∈L

V (l)

V (root)
N(l), (4)

where V (·) is the volume of a node. The rest of the parameters are identical to the surface-area

heuristic cost.

We want to prove the following statement :

Csah(T) ≥ Cvh(T). (5)

43

http://jcgt.org
https://www.cgtrader.com/

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

Let S be an arbitrary set of samples sj , each with an AABB. Let also T be the set of all

possible binary trees formed for the hierarchical storage of the above sample bounds. For any

node n in any T ∈ T the surface area and volume are

SA(n) = 2(wh+ hd+ wd),

V (n) = whd,

where w, h and d corresponds to the width, height and depth of AABB, respectively. Given

also the root-node dimensions w̃, h̃, d̃, with the obvious property d̃ ≥ d, h̃ ≥ h, w̃ ≥ w, the

following relations hold:

d̃ ≥ d⇔ wh(w̃h̃d̃) ≥ w̃h̃(whd),

h̃ ≥ h⇔ wd(w̃h̃d̃) ≥ w̃d̃(whd),

w̃ ≥ w ⇔ hd(w̃h̃d̃) ≥ h̃d̃(whd).

Summing up each side of the above inequalities we get

(wh+ wd+ hd)(w̃h̃d̃) ≥ (w̃h̃+ w̃d̃+ h̃d̃)(whd)⇔

wh+ wd+ hd

w̃h̃+ w̃d̃+ h̃d̃
≥

whd

w̃h̃d̃
⇔

SA(n)

SA(root)
≥

V (n)

V (root)
.

Since every component of the cost models in Equations (3) and (4) is non-negative and Ci,

Ck, and N(l) are identical in both cost models, it is straightforward to show that Equation (5)

holds, which now concludes our proof.

References

BENTLEY, J. L. 1975. Multidimensional binary search trees used for associative search-

ing. Commun. ACM 18, 9 (Sept.), 509–517. URL: https://doi.org/10.1145/

361002.361007. 27

BESL, P. J., AND MCKAY, N. D. 1992. A method for registration of 3-D shapes. IEEE

Trans. Pattern Anal. Mach. Intell. 14, 2 (Feb.), 239–256. URL: https://doi.org/

10.1109/34.121791. 27

DOMINGUES, L. R., AND PEDRINI, H. 2015. Bounding volume hierarchy optimization

through agglomerative treelet restructuring. In Proceedings of the 7th Conference on High-

Performance Graphics, Association for Computing Machinery, New York, NY, USA, HPG

’15, 13–20. URL: https://doi.org/10.1145/2790060.2790065. 27

FABIANOWSKI, B., AND DINGLIANA, J. 2009. Interactive global photon mapping. Com-

puter Graphics Forum 28, 4, 1151–1159. URL: https://onlinelibrary.wiley.

com/doi/abs/10.1111/j.1467-8659.2009.01492.x. 28, 29

GEORGIEV, I., KŘIVÁNEK, J., DAVIDOVIČ, T., AND SLUSALLEK, P. 2012. Light transport

simulation with vertex connection and merging. ACM Trans. Graph. 31, 6 (Nov.). URL:

https://doi.org/10.1145/2366145.2366211. 26

GUENNEBAUD, G., AND GROSS, M. 2007. Algebraic point set surfaces. ACM Trans. Graph.

26, 3 (July). URL: https://doi.org/10.1145/1276377.1276406. 38

44

http://jcgt.org
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/34.121791
https://doi.org/10.1145/2790060.2790065
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01492.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01492.x
https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/1276377.1276406

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

HACHISUKA, T., OGAKI, S., AND JENSEN, H. W. 2008. Progressive photon mapping.

ACM Trans. Graph. 27, 5 (Dec.). URL: https://doi.org/10.1145/1409060.

1409083. 30, 34, 39

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W. 1992.

Surface reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26, 2 (July),

71–78. URL: https://doi.org/10.1145/142920.134011. 27, 38

JENSEN, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eu-

rographics Workshop on Rendering Techniques ’96, Springer-Verlag, Berlin, Heidelberg,

21–30. 26, 27

KARRAS, T., AND AILA, T. 2013. Fast parallel construction of high-quality bounding

volume hierarchies. In Proceedings of the 5th High-Performance Graphics Conference,

Association for Computing Machinery, New York, NY, USA, HPG ’13, 89–99. URL:

https://doi.org/10.1145/2492045.2492055. 27

KNAUS, C., AND ZWICKER, M. 2011. Progressive photon mapping: A probabilistic ap-

proach. ACM Trans. Graph. 30, 3 (May). URL: https://doi.org/10.1145/

1966394.1966404. 39

KNOLL, A., MORLEY, R. K., WALD, I., LEAF, N., AND MESSMER, P. 2019. Efficient

particle volume splatting in a ray tracer. In Ray Tracing Gems: High-Quality and Real-Time

Rendering with DXR and Other APIs. Apress, Berkeley, CA, 533–541. URL: https:

//doi.org/10.1007/978-1-4842-4427-2_29. 28

KŘIVÁNEK, J., GAUTRON, P., PATTANAIK, S., AND BOUATOUCH, K. 2008. Radiance

caching for efficient global illumination computation. In ACM SIGGRAPH 2008 Classes,

Association for Computing Machinery, New York, NY, USA, SIGGRAPH 08. URL:

https://doi.org/10.1145/1401132.1401228. 27

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D., AND MANOCHA,

D. 2009. Fast BVH construction on GPUs. Computer Graphics Forum 28, 2,

375–384. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/

j.1467-8659.2009.01377.x. 27, 28

MA, V. C. H., AND MCCOOL, M. D. 2002. Low latency photon mapping using block hash-

ing. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graph-

ics Hardware, Eurographics Association, Aire-la-Ville, Switzerland, HWWS ’02, 89–99.

URL: http://dl.acm.org/citation.cfm?id=569046.569059. 27

MACDONALD, D. J., AND BOOTH, K. S. 1990. Heuristics for ray tracing using space

subdivision. Vis. Comput. 6, 3 (May), 153–166. URL: https://doi.org/10.1007/

BF01911006. 29

MCGUIRE, M., 2017. Computer graphics archive, July. URL: https://

casual-effects.com/data. 43

MEAGHER, D. 1982. Geometric modeling using octree encoding. Computer Graphics

and Image Processing 19, 2, 129 –147. URL: http://www.sciencedirect.com/

science/article/pii/0146664X82901046. 27

45

http://jcgt.org
https://doi.org/10.1145/1409060.1409083
https://doi.org/10.1145/1409060.1409083
https://doi.org/10.1145/142920.134011
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/1966394.1966404
https://doi.org/10.1145/1966394.1966404
https://doi.org/10.1007/978-1-4842-4427-2_29
https://doi.org/10.1007/978-1-4842-4427-2_29
https://doi.org/10.1145/1401132.1401228
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01377.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01377.x
http://dl.acm.org/citation.cfm?id=569046.569059
https://doi.org/10.1007/BF01911006
https://doi.org/10.1007/BF01911006
https://casual-effects.com/data
https://casual-effects.com/data
http://www.sciencedirect.com/science/article/pii/0146664X82901046
http://www.sciencedirect.com/science/article/pii/0146664X82901046

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

MUJA, M., AND LOWE, D. G. 2009. Fast approximate nearest neighbors with automatic

algorithm configuration. In VISAPP International Conference on Computer Vision Theory

and Applications, INSTICC Press, 331–340. 34

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H., HOBEROCK, J., LUEBKE,

D., MCALLISTER, D., MCGUIRE, M., MORLEY, K., ROBISON, A., AND STICH, M.

2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29, 4 (July). URL:

https://doi.org/10.1145/1778765.1778803. 32

RUSINKIEWICZ, S., AND LEVOY, M. 2001. Efficient variants of the ICP algorithm.

In Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

IEEE, New York, NY, USA, 145–152. URL: https://ieeexplore.ieee.org/

document/924423. 32

RUSU, R. B., AND COUSINS, S. 2011. 3D is here: Point Cloud Library (PCL). In 2011 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, New York, NY, USA,

May 9-13, 1–4. URL: https://doi.org/10.1109/ICRA.2011.5980567. 27

SRIWASANSAK, J., GRUSON, A., AND HACHISUKA, T. 2018. Efficient energy-compensated

VPLs using photon splatting. Proc. ACM Comput. Graph. Interact. Tech. 1, 1 (July). URL:

https://doi.org/10.1145/3203189. 26

STÜRZLINGER, W., AND BASTOS, R. 1997. Interactive rendering of globally illuminated

glossy scenes. In Proceedings of the Eurographics Workshop on Rendering Techniques

’97. Springer-Verlag, Berlin, Heidelberg, 93–102. URL: https://link.springer.

com/chapter/10.1007/978-3-7091-6858-5_9. 29

VORBA, J., HANIKA, J., HERHOLZ, S., MÜLLER, T., KŘIVÁNEK, J., AND KELLER, A.

2019. Path guiding in production. In ACM SIGGRAPH 2019 Courses, Association for

Computing Machinery, New York, NY, USA, SIGGRAPH ’19. URL: https://doi.

org/10.1145/3305366.3328091. 26

WALD, I., GÜNTHER, J., AND SLUSALLEK, P. 2004. Balancing considered harmful - Faster

photon mapping using the voxel volume heuristic -. Computer Graphics Forum 23, 3,

595–603. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/

j.1467-8659.2004.00791.x. 27

WALD, I., USHER, W., MORRICAL, N., LEDIAEV, L., AND PASCUCCI, V. 2019. RTX

beyond ray tracing: Exploring the use of hardware ray tracing cores for tet-mesh point

location. In High-Performance Graphics - Short Papers, M. Steinberger and T. Foley, Eds.

The Eurographics Association, Aire-la-Ville, Switzerland. URL: https://diglib.

eg.org/handle/10.2312/hpg20191189. 28

WANG, Y., KHIAT, S., KRY, P. G., AND NOWROUZEZAHRAI, D. 2019. Fast non-uniform

radiance probe placement and tracing. In Proceedings of the ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games, Association for Computing Machinery, New York,

NY, USA, I3D 19. URL: https://doi.org/10.1145/3306131.3317024. 27

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A ray tracing solution for

diffuse interreflection. SIGGRAPH Comput. Graph. 22, 4 (June), 8592. URL: https:

//doi.org/10.1145/378456.378490. 26, 27

46

http://jcgt.org
https://doi.org/10.1145/1778765.1778803
https://ieeexplore.ieee.org/document/924423
https://ieeexplore.ieee.org/document/924423
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1145/3203189
https://link.springer.com/chapter/10.1007/978-3-7091-6858-5_9
https://link.springer.com/chapter/10.1007/978-3-7091-6858-5_9
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1145/3305366.3328091
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2004.00791.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2004.00791.x
https://diglib.eg.org/handle/10.2312/hpg20191189
https://diglib.eg.org/handle/10.2312/hpg20191189
https://doi.org/10.1145/3306131.3317024
https://doi.org/10.1145/378456.378490
https://doi.org/10.1145/378456.378490

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

ZELLMANN, S., WEIER, M., AND WALD, I. 2020. Accelerating force-directed graph draw-

ing with RT cores. In IEEE Visualization (Short Papers). IEEE, New York, NY, USA.

URL: https://virtual.ieeevis.org/paper_s-short-1027.html. 28

ZHANG, Z. 1994. Iterative point matching for registration of free-form curves and surfaces.

Int. J. Comput. Vision 13, 2 (Oct.), 119152. URL: https://doi.org/10.1007/

BF01427149. 27

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time KD-tree construction on

graphics hardware. ACM Trans. Graph. 27, 5 (Dec.). URL: https://doi.org/10.

1145/1409060.1409079. 27

Index of Supplemental Materials

The full source code of this work can be found at https://github.com/cgaueb/

fast_radius_search

Author Contact Information

Iordanis Evangelou

Department of Informatics

Athens University of Economics

& Business

76 Patission St

Athens, 10434 Greece

iordanise@aueb.gr

Georgios Papaioannou

Department of Informatics

Athens University of Economics

& Business

76 Patission St

Athens, 10434 Greece

gepap@aueb.gr

Konstantinos Vardis

Department of Informatics

Athens University of Economics

& Business

76 Patission St

Athens, 10434 Greece

kvardis@aueb.gr

Andreas A. Vasilakis

Department of Informatics

Athens University of Economics

& Business

76 Patission St

Athens, 10434 Greece

abasilak@aueb.gr

Iordanis Evangelou, Georgios Papaioannou, Konstantinos Vardis, Andreas A. Vasilakis, Fast

Radius Search using Bounding Volume Hierarchies, Journal of Computer Graphics Tech-

niques (JCGT), vol. 10, no. 1, 25–48, 2021

http://jcgt.org/published/0010/01/02/

Received: 2020-07-07

Recommended: 2020-11-24 Corresponding Editor: Eric Haines

Published: 2021-02-05 Editor-in-Chief: Marc Olano

c© 2021 Iordanis Evangelou, Georgios Papaioannou, Konstantinos Vardis, Andreas A. Vasi-

lakis (the Authors).

47

http://jcgt.org
https://virtual.ieeevis.org/paper_s-short-1027.html
https://doi.org/10.1007/BF01427149
https://doi.org/10.1007/BF01427149
https://doi.org/10.1145/1409060.1409079
https://doi.org/10.1145/1409060.1409079
https://github.com/cgaueb/fast_radius_search
https://github.com/cgaueb/fast_radius_search
mailto:iordanise@aueb.gr
mailto:gepap@aueb.gr
mailto:kvardis@aueb.gr
mailto:abasilak@aueb.gr
http://jcgt.org/published/0010/01/02/

Journal of Computer Graphics Techniques

Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021

http://jcgt.org

The Authors provide this document (the Work) under the Creative Commons CC BY-ND 3.0

license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors fur-

ther grant permission for reuse of images and text from the first page of the Work, provided

that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly

venues and that any reuse is accompanied by a scientific citation to the Work.

48

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

