
Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021 http://jcgt.org

Scaling Probe-Based Real-Time Dynamic
Global Illumination for Production

Zander Majercik Adam Marrs

NVIDIA

Josef Spjut Morgan McGuire

Figure 1. Image rendered in a pre-release version of Unity with our global illumination tech-
nique. Most of the indirect lighting in this scene comes from emissives (the orange monitor
screens) which are integrated automatically by our technique.

Abstract

We contribute several practical extensions to the probe-based irradiance-field-with-visibility
representation [Majercik et al. 2019] [McGuire et al. 2017] to improve image quality, con-
stant and asymptotic performance, memory efficiency, and artist control. We developed these
extensions in the process of incorporating the previous work into the global illumination so-
lutions of the NVIDIA RTXGI SDK, the Unity and Unreal Engine 4 game engines, and pro-
prietary engines for several commercial games. These extensions include: an intuitive tuning
parameter (the “self-shadow” bias); heuristics to speed transitions in the global illumination;
reuse of irradiance data as prefiltered radiance for recursive glossy reflection; a probe state
machine to prune work that will not affect the final image; and multiresolution cascaded vol-
umes for large worlds.

1 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

1. Introduction

This paper discusses an algorithm to accelerate the evaluation of global illumination.
The acceleration happens in two parts. The main part creates and maintains a data
structure that allows a query of the form irradiance(location, orientation) (E(X,ω)),
which replaces a potentially expensive computation of diffuse global illumination
with a O(1) lookup into a data structure for locations anywhere in space. The sec-
ond part reuses that data structure to sample weighted average of incident radiance
for glossy global illumination (

∫
Γ L(X,ω) · W (X,ω)dω) and combines the result

with filtered screen-space and geometric glossy ray tracing.
We refine a previous version of the diffuse portion of this method [Majercik et al.

2019]. This refinement is the union of what we learned when incorporating that
algorithm into several products, including the Unity game engine, the Unreal En-
gine 4 game engine, the NVIDIA RTXGI SDK, and several unannounced commercial
games. These refinements include changes to the underlying algorithm to improve
quality and performance, advice on tuning the algorithm and content, expansion of
the algorithm to a complete solution that also accelerates glossy reflections, and sys-
tem integration best practices for these methods. This was driven by constraints from
various platforms, requests from game developers and game artists, and new research
on the problem. Because these improvements were developed across several different
productization efforts with different vendors, we believe that they are fairly universal

Term Definition
Probe A probe stores data at a point with values for directions

on the sphere.
Probe Query Trilinear interpolation (bilinear filtering and direction)

and a visibility and angle weighted interpolation between
multiple probes. The net result is an irradiance value that
estimates the irradiance field at a point relative to a nor-
mal.

Irradiance Incident power per unit area; the cosine-weighted integral
of radiance over the hemisphere of the sample direction.

Weighted sum of distance Weighted sum (a weighted average in our implementa-
tion) of the distance to the nearest surface seen from a
3D point in a particular direction. We weight our average
with a cosine raised to a power.

Direct lighting Light that is emitted from a light source, reflects from one
surface, and then reaches the viewer.

Indirect lighting Light that reflects off two or more surfaces before reach-
ing the viewer (all lighting that is not direct)

Global illumination (GI) Light that includes both direct and indirect lighting.

Table 1. Terms and definitions.

2

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

and robust, but they should not be construed as describing the features or performance
of any one in particular.

A key element of our algorithm is a probe that stores directional information at a
point. Environment maps are a type of probe—they store distant radiance as seen from
any point in the scene. Our probes store irradiance, weighted averages of distance,
and weighted averages of squared distance for a 3D grid-like structure of points in the
scene. See Table 1 for terms we use in relation to probes.

Our algorithm has several components related to the organization, computation,
and querying of probes. The new information described in this paper is indicated in
Table 2, where we indicate what is new relative to descriptions of previous versions
of this algorithm. In the following sections, we give a complete description of the full
algorithm so that readers will not need to consult descriptions of previous versions to
understand the algorithm.

2. Overview of the Algorithm

At the core of the algorithm are probes that store weighted sums of color, distance,
and squared distance. A 2D version of a probe storing a weighted average of distance
to nearest object is shown in Figure 2. This probe shows one “cell” (texel) as the bold
segment of the circle. The bold arrow is the direction associated with the cell. The cell
stores the weighted average of the hit distances of each of the sample directions. Note
that this weighted average includes directions “outside” the center cell. The weighting
function is larger for directions near the cell center, and the resulting weighted average
is thus influenced more by the longer directions in this particular example. The bold
dotted line represents the average “distance” stored across multiple cells. Note that a
direction can contribute to more than one cell, and we loop over directions updating
any cell to which a direction contributes.

Figure 2. A 2D probe for illustration.

3

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

2.1. Build and Initialization

Start by building a 3D grid. From that grid, optimize probe positions by moving
them outside of static geometry (Section 5). Then, classify all probes into “Off,”
“Sleeping,” “Newly Awake,” “Newly Vigilant,” “Awake,” or “Vigilant” (Section 6).
At the end of this stage, all probes are in their final positions and initial states.

2.2. Probe Query

Take a 3D point (within the probe volume) and normal direction. For every point
within the volume, there are eight probes (corners of a 3D box) that surround it. Loop
over those eight probes. For each one, compute a probe weight from a combination
of

• the trilinear weight from probe position;

• the backface weight (is the probe behind the point relative to the normal?);

• the visibility evaluation (can the probe see the point?). This includes a “self-
shadow bias” term for robust occlusion queries (Section 4.1).

Read the value from each probe in the direction of the normal and sum those using
the computed weights—this is the sampled irradiance value.

For multiple volumes, do this for each volume, and then weight between the vol-
umes as described in Section 7.4. Volume blending with tracking windows is dis-
cussed in Section 7.3.

2.3. Probe Update

For each probe that is “Awake” or “Vigilant” (Section 6), trace rays in a spherical
Fibonacci pattern, [Marques et al. 2013] rotating the pattern randomly every frame.
Shade these ray hits using the normal deferred-shading algorithm, including sampling
the probe volume to include the irradiance from the probes. The update then proceeds
for both irradiance and mean distance values as follows.

Irradiance. Compute a cosine-weighted average of the radiance values of these shaded
ray hits relative to the direction of each probe texel. Then, for each probe texel, blend
these newly computed values into the probe texel at a rate of (1 − α)—we refer to
this alpha term as hysteresis. We adjust this hysteresis per probe and per texel based
on our convergence heuristics, described in Section 4.3.

Mean Distance and Mean Distance-Squared. Compute a power-cosine weighted av-
erage of the distance values for each ray relative to the direction of each probe texel.
For each probe texel, blend these values as with irradiance above. We adjust the

4

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

hysteresis for mean distance separately from irradiance—details are provided in Sec-
tion 4.3.

As with the irradiance update, we update the probe texels by alpha blending in
the new shading results at a rate of 1 − α, where α is the hysteresis parameter (see
Equation (2)). The update equation for irradiance is as follows:

E′[n] = αE[n] + (1− α)
∑

ProbeRays

max(0, n · ω) · L(ω), (1)

where E is the old irradiance/visibility texel in direction n, E′ is the new texel value,
ω is the direction of the ray, and L(ω) is the radiance transported along the ray. The
update equation for mean distance/distance-squared weights with a power-cosine as
opposed to the clamped cosine show in Equation (1) but is otherwise the same.

3. Related Work

Interactive global illumination has been an active area of research for years. We re-
view the areas most relevant to our work.

Interactive Global Illumination with Light Probes. Image-based lighting solutions are
ubiquitous in modern video games [Martin and Einarsson 2010; Ritschel et al. 2009;
McAuley 2012; Hooker 2016]. A common workflow for such solutions involves
placing light probes densely inside the volume of a scene, each of which encodes
some form of a spherical (ir)radiance map. Prefiltered versions of these maps can
also be stored to accelerate diffuse and glossy runtime shading queries.

Variants of traditional light probes allow artists to manually place box or sphere
proxies in a scene. These proxies are used to warp probe queries at runtime in a
manner that better approximates spatially-localized reflection variations [Lagarde and
Zanuttini 2012]. Similarly, manually-placed convex proxy geometry sets are also
used to bound blending weights when querying and interpolating between many light
probes at runtime in order to reduce the light leaking artifacts common to probe-based
methods.

Practitioners agree that eliminating manual probe and proxy placement remains
an important open problem in production [Hooker 2016]. Without manual adjust-
ment of traditional probes, it is impossible to automatically avoid probe placements
that lead to light and dark (i.e., shadow) leaks or displaced reflection artifacts. Majer-
cik et al.’s [2019] light probes avoid light and dark leaking with ray-traced visibility
information, but placing these probes in a uniform grid still leads to suboptimal probe
locations (e.g., probes stuck in walls). To avoid these issues for glossy GI, some
engines rely instead on screen-space ray tracing [Valient 2013] for pixel-accurate re-
flections. These methods, however, fail when a reflected object is not visible from the
camera’s point of view, leading to inconsistent lighting and view-dependent (and so
temporally unstable) reflection effects.

5

http://jcgt.org

JournalofC
om

puter
G

raphics
Techniques

Scaling
Probe-B

ased
R

eal-Tim
e

D
ynam

ic
G

lobalIllum
ination

forProduction
Vol.10,N

o.2,2021
http://jcgt.org

Previous Approaches

[Martin and Einarsson 2010]
[Ritschel et al. 2009]
[McAuley 2012]
[Hooker 2016]
[Stefanov 2016]

Light-field probes

[McGuire et al. 2017]
[Wang et al. 2019]

DDGI

[Majercik et al. 2019]

This work

Spatial Organization 3D grid, with manually placed
probes and box proxies, algorithmi-
cally precomputed probe locations

3D grid, 4 × 4 × 4 probes [2017]
Non-uniform automatic placement
over static geometry [2019]

3D grid, varying resolutions 3D grid with offsets, multiple vol-
umes, tracking windows

Encoding Cube maps Octahedral encoding [Cigolle et al.
2014], 1024× 1024

Octahedral, varying resolutions Octahedral, 8 × 8 irradiance, 16 ×
16 visibility

Initialization Precomputed Static, precomputed Uniform initialization to 0, value
converges with update

Classified into states based on up-
date rate, converge “live” probes

Update Static. Dynamic lighting, static
geo [Stefanov 2016]

Static, precomputed Ray trace with alpha blending, pixel
shader with stencil buffer

Ray trace with dynamic alpha
blending (convergence and percep-
tion), Optimized convolution com-
pute shader

Query Shading weights based on manually
placed proxy geometry

Light field ray tracing using probes Raster for direct lighting. Use
world-space positions to query 8
probe cage with variance bias,
Chebyshev bias, loads of bias terms

Previous probe sampling + sin-
gle bias term (self-shadow bias),
multivolume blending, primary
hit glossy raycast + second-order
glossy reflection sampled from
probes

Table 2. Evolution of probe-based GI showing spatial organization, encoding, initialization, update, and query for the GI computation.

6

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

Light Field Probes [McGuire et al. 2017] automatically resolve many light/dark
leaking issues (in scenes with static geometry and lighting) by encoding additional
information about the scene geometry into spherical probes. A solution for dynamic
lighting is presented in Silvennoinen et al. [2017], but this solution only supports
coarse dynamic occluders and requires complex probe placement based on static ge-
ometry. As mentioned above, the irradiance probes of Majercik et al. [2019] avoid
most light/dark leaks in scenes with dynamic lighting and geometry, but probe place-
ment is still suboptimal. Suboptimal placement can lead to lighting results that, while
believable, are inferior to the correctly sampled result, and they sometimes exhibit
shadow leaking in sharp corners.

Interactive Ray Tracing and Shading. Correct shading with probe-based lighting
methods relies on point-to-point visibility queries. At a high level, one can inter-
pret our ray-tracing technique as tracing rays against a voxelized representation of the
scene (as in voxel cone tracing), but with a spherical voxelization instead of an oc-
tree. Two important differences that contribute to many of the practical advantages of
our representation are that (1) we explicitly encode geometric scene information (i.e.,
radial depth and depth squared) instead of relying on the implicit octree structure to
resolve local and global visibility details, and (2) that neither our spatial parameteriza-
tion nor our filtering relies on scene geometry. This prevents light (and dark) leaking
artifacts and allows us to resolve centimeter-scale geometry at about the same cost (in
space and time) as a voxel cone tracer that operates at meter-scale. As we target true
world-space ray-tracing in a pixel shader, and not just screen-space ray tracing, our
technique can be seen as a generalization of many previous, e.g., real-time environ-
ment map Monte Carlo integration methods[Stachowiak and Uludag 2015; Wyman
2005; Toth et al. 2015; Jendersie et al. 2016] .

Probe Representation. As in the work by Majercik et. al [2019], we apply Cigolle
et al.’s [2014] octahedral mapping from the sphere to the unit square to store and
query our spherical distributions. This parameterization has slightly less distortion
than cube maps and provides easier methods for managing seams. In this work, we
select resolutions for octahedral irradiance and mean distance/distance squared for
quality and performance.

GI in Production: A Motivating Example. In both offline and real-time rendering,
significant previous work has been devoted to adapting existing global illumination
algorithms for production. Path tracing in the film industry, which radically changed
both artist workflow and render-farm computation load, is a good example. The core
path-tracing algorithm has remained largely unchanged, but practical considerations
of the particular hardware and software systems required specialized updates to the
technique [Keller et al. 2015].

7

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

Similarly, our extensions to the previously published DDGI algorithm are a guide
for adapting it and other probe-based techniques to a production setting. We report
real changes that we made to the base algorithm to fit production constraints.

4. Qualitative Image Improvements

4.1. Self-shadow Bias for Correct Visibility

When querying the probe volume at a surface, variance in the visibility estimate will
be highest around the mean of the distribution—in other words, at the surface. To
avoid the shadow leaking that results from this, an additional bias away from the
mean of the distribution is added to the sample point during probe query. The pre-
vious technique [2019] used a combination of scene-tuned biases on the mean of the
distribution, the variance of the distribution, and the Chebyshev statistical test to move
the visibility query to a point of lower variance in the distribution. Intuitively, “a point
of lower variance in the distribution” can be thought of as a point slightly offset from
the surface (in world space). Based on this insight, we unify these statistical bias pa-
rameters into a single self-shadow bias term. The self-shadow bias is a world-space
vector pointing away from the initial sample point on the surface and is computed as
follows:

BiasVector = (n ∗ 0.2 + ωo ∗ 0.8)
∗ (0.75 ∗minDistanceBetweenProbes) ∗ TunableShadowBias,

(2)

where n is the normal vector at the sample point, ωo is the direction from the sample
point to the camera, 0.2 and 0.8 are empirically determined constants, minDistance

BetweenProbes is the minimum axial distance between probes, and TunableShadow

Bias is a user-tunable parameter (with a default value of 0.3). We add this bias vector
to the initial sample point to yield a new point which we use for the visibility test.

Our self-shadow bias is usually more robust than the previous biases: the default
value of the TunableShadowBias worked well for most scenes, whereas the previous
combination of biases each had to be specifically tuned for each scene. In cases where
scene-specific tuning is necessary, the self-shadow bias is easier to tune because it
presents a single tunable parameter instead of three. Generally, a higher self-shadow
bias is necessary when there is increased variance in the depth estimate, as would be
the case when lower ray counts are used to update the probes (which might be done
to improve performance).

To further decrease light leaking, probe-update rays that hit backfaces record a
value of 0 for irradiance and shorten their depth values by 80%. Shortening depth
values ensures that the probe will see backface surfaces as shadowed and not light
them. We set irradiance to 0 to ensure that any lighting that does come from that
probe does not cause light to leak where it should not. We do not set depth values

8

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

Figure 3. A night scene from our prototype. The wall entering the alley in the left image
shows light leaking due to overly high self-shadow bias. The correct self-shadow bias in the
right image computes proper occlusion.

to 0 for two reasons: (1) it would drive the computed Chebyshev weight towards 0,
which might be driven higher when the weights are normalized and (2) probes that see
some backfaces but are not stuck in walls (due to modeling idiosyncrasies) could have
overly skewed average depths. To minimize the number of probes stuck in walls as
much as possible, we offset probe positions using an iterative adjustment algorithm,
as described in Section 5.

4.2. Perception-based Exponential Encoding

If the irradiance probes are slow to converge, abrupt lighting changes in a scene can
create noticeable lag in the diffuse indirect illumination. The lag is most salient in
light-to-dark transitions. To combat this, we accelerate convergence by applying
a perception-based exponential gamma encoding to probe irradiance values. This
encoding interpolates perceptually linearly during lighting changes—faster light-to-
dark convergence reads perceptually as a linear drop in brightness. We determined
experimentally that an exponent of 5.0 leads to best results (lower does not converge
as fast, higher does not converge any faster). See Listings 1 and 2 for pseudocode as
well as our video supplement available at xxxxxxx for results.

float irradianceGamma = 5.0;

// Perception encoding during probe update

// Passed in or computed earlier in the shader

in vec3 sumOfCosineWeightedRayContributions;

in vec3 oldValue;

in float hysteresis;

vec3 newIrradiance =

pow(sumOfCosineWeightedRayContributions, 1.0 / irradianceGamma);

return lerp(newIrradiance, oldValue, hysteresis);

Listing 1. Perceptual encoding of probe irradiance during update and sampling.

9

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

float irradianceGamma = 5.0;

in float probeWeight;

// Perception decoding during probe sampling

vec3 irradiance = vec3(0);

// For the 8 probes in the surrounding cage

for (int i = 0; i < 8; ++i):

vec3 probeIrradiance = texture(irradianceTexture, texCoord).rgb;

// Decode the tone curve, but leave a gamma = 2 curve

// to approximate sRGB blending for the trilinear

probeIrradiance = pow(probeIrradiance,

vec3(irradianceGamma * 0.5));

irradiance += probeWeight * probeIrradiance;

// Go back to linear irradiance

irradiance = square(irradiance);

return irradiance;

Listing 2. Perceptual decoding of probe irradiance during update and sampling.

This perception-based encoding has the additional effect of reducing low fre-
quency flicker due to fireflies—bright flashes in the diffuse GI caused by an update
ray hitting a small, bright irradiance source.

4.3. Fast Convergence Heuristics

We further accelerate convergence with a new heuristic based on per-texel threshold-
ing for irradiance data. Our lower threshold detects changes with magnitude above
25% of maximum value and lowers the hysteresis by 0.15. Our higher threshold de-
tects changes with magnitude above 80% and lowers the hysteresis to 0.0—we assume
in this case that the distribution that the probe is sampling has changed completely.
These thresholds are active only for irradiance updates—we found them to be too
unstable when updating visibility.

We also implement scene-dependent, per-probe heuristics that adjust the hystere-
sis based on lighting or geometry changes (see Listing 3). These are as follows:

• Small lighting change (e.g., player-held flashlight turns on): reduce irradiance
hysteresis by 15% for four frames;

• Large lighting change (e.g., abrupt time of day shift): reduce irradiance hys-
teresis by 50% for 10 frames;

• Large object change (e.g., ceiling caves in): reduce irradiance hysteresis by
50% for 10 frames and visibility hysteresis by 50% for seven frames.

10

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

// Irradiance Probe Update With Per-Texel Hysteresis Adjustment

// Sum ray contributions

in vec3 sumOfCosineWeightedRayContributions;

in vec3 oldValue;

in float hysteresis;

float significantChangeThreshold = 0.25;

float newDistributionChangeThreshold = 0.8;

float changeMagnitude =

maxComponent(sumOfCosineWeightedRayContributions.rgb - oldValue.xyz);

// Lower the hysteresis when a large change is detected

if (abs(changeMagnitude) > significantChangeThreshold)

hysteresis = max(0, hysteresis - 0.15);

if (abs(changeMagnitude) > newDistributionChangeThreshold) {

hysteresis = 0.0;

}

return lerp(sumOfCosineWeightedRayContributions, oldValue, h);

Listing 3. Pseudocode for probe update with per-texel hysteresis adjustment.

In all our heuristics, we try to avoid low hysteresis for visibility updates as much
as possible to achieve the most stable result. In each of the scene-dependent heuristics,
hysteresis for all probes (not just the probes local to the change) is reduced.

Many effective heuristics exist for adjusting probe hysteresis per-texel and per-
probe on a scene-dependent basis—we have not explored this space in depth. For
example, it would probably be more effective to reduce hysteresis only for probes
affected by a lighting or object change rather than for all probes in the scene. While
exploring more specific and sensitive heuristics remains a fruitful subject for future
work, the heuristics presented here worked well enough for us as we integrated the
technique into multiple engines. We never came across content that forced us to adapt
them, but our survey was not exhaustive.

Note that temporal anti-aliasing (TAA) applies its own hysteresis, so the base
hysteresis for our technique can be lower if TAA is applied. In this case, the TAA
hysteresis should be adjusted according to scene heuristics just like the probe hystere-
sis, or else it will always add a large cost to convergence even on a dramatic lighting
or object change.

11

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

4.4. Second-order Glossy

We compute glossy reflections with a half-screen resolution wavefront ray trace.
These shaded ray hits are then blurred according to surface roughness and distance
from the camera before being integrated into the indirect radiance computation dur-
ing the deferred shading pass. These ray-traced reflections are more realistic than
screen-space reflections, but tracing rays for second through nth-order reflections is
infeasible on most scenes. We improve reflections by reusing the filtered radiance
data in the probes to shade second through nth-order glossy reflections, resulting in
better image quality with minimal performance overhead (see Figure 4).

Figure 4. A shiny robot against a mirror background. Both the mirror background and the
robot have high glossy reflectance. The left image shows no second-order glossy reflections,
while the right image shows second-order glossy reflections sampled from probes.

It is common practice in production path-tracing to reduce noise by roughening
surfaces (or otherwise truncating the BSDF evaluation) on recursive bounces [Fas-
cione et al. 2019]. Reusing the irradiance probes for second-order reflections is a
similar approximation, which here avoids noise by taking advantage of a data struc-
ture already available to us. Note, however, that the probe data structure stores the
cosine-weighted integral of radiance over the hemisphere—not cosine-weighted ra-
diance which is the correct measure for reflectance. These two quantities are equiv-
alent to a factor of 2π, but the units are different: irradiance (Wm−2) vs. radiance
(Ws−1m−2).

5. Probe-position Adjustment

The probe visibility information prevents light and shadow leaks from occluded probes,
but leaves some probes in total occlusion such that they never contribute to shading.
We present a simple, fast optimizer that iteratively shifts probes around static geom-
etry to maximize the number of useful probes and generate good viewpoints. During
initialization, our optimizer adjusts each probe through the closest backface it can see,

12

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

Figure 5. A view of the ceiling on our Greek Villa scene. Spheres are a visualization of the
irradiance probes. The black probes are correctly dark, but are not contributing to the final
image. The acute corner leads to shadow leaking (labeled with a green ellipse) with a default
probe grid (top). Our optimizer adjusts probes out of the wall and ceiling to remove the leak
(bottom).

then further adjusts probes away from close front faces to maximize surface visibility
(see Figure 5). We do not move probes around dynamic geometry because this causes
instability—a stable result is preferable to an unstable result with lower average error.

To correctly light dynamic objects, we leverage the fact that a uniformly sam-
pled probe is an approximation of the full irradiance field at its sample location. If

13

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

a probe passes through a dynamic object, our backface heuristics (described at the
end of Section 4.1) will prevent shadow leaking. When the probe emerges, our con-
vergence heuristics (Section 4.3) will quickly converge its value. Out of a desire to
maintain a uniformly sampled irradiance-field representation, we also did not imple-
ment more complex probe-sampling techniques, such as importance sampling, which
might speed probe convergence at the cost of stability and on-the-fly generalization to
moving geometry. Exploring these update techniques in detail is promising for future
work.

The purpose of the optimizer is to increase the number of probes that can con-
tribute to the final image. The following scenario, however, demonstrates that our
optimizer can sometimes add additional computation without increasing image qual-
ity. Consider an eight-probe cage surrounding a flat wall. The optimizer can cause
probes to “double cover” a surface if the four probes within the surface are adjusted
outside it. This causes the full probe cage to turn on and shade the surface, increasing
the number of actively tracing probes without appreciably affecting the image quality
(Figure 6). For our test scenes, this slight inefficiency was worth the added benefit of
optimizing probe positions globally.

Listing 4 shows code for our probe-position optimizer. To preserve the indexing
properties of the 3D grid, probes never move more than one half the minimum probe
spacing (relative to a grid axis) during optimization.

Figure 6. A corner of the Greek Villa scene. Spheres are visualizations of the probes, encir-
cled in green to denote the “Vigilant” state. Probes are marked “Vigilant” when the optimizer
adjusts them out of surfaces, leading to double coverage of surfaces when all eight probes of
a cage can see the front face of the point being shaded.

14

http://jcgt.org

JournalofC
om

puter
G

raphics
Techniques

Scaling
Probe-B

ased
R

eal-Tim
e

D
ynam

ic
G

lobalIllum
ination

forProduction
Vol.10,N

o.2,2021
http://jcgt.org

// Single iteration of probe position optimizer code

in float backfaceCount; // number of rays that hit backfaces
in vec3 closestBackfaceVector; // direction to closest backface scaled by distance
in vec3 farthestFrontfaceVector; // direction to farthest frontface scaled by distance
in vec3 closestFrontfaceVector; // direction to closest frontface scaled by distance

in vec3 offsetlimit; // A maximum offset computed from the probe grid spacing

// Current probe offset from the grid
inout vec3 currentOffset;

Vector3 fullOffset = vec3(inf);

// If there’s a close backface AND you see more than 25% backfaces, assume you’re inside something.
if (backfaceCount / RAYS_PER_PROBE) > 0.25) {

float scaleFactor = 2.0;
// Slowly ramp down the scale factor to move the maximum allowed distance through the closest backface.
// Give explicit bounds so the compiler can unroll the loop.
for (int i = 1; i <= 100; ++i) {

if (!all(lessThan(abs(fullOffset), offsetLimit))) {
fullOffset = currentOffset.xyz + closestBackfaceVector * (scaleFactor - (i * 0.01));

}
}

} else if
(!(dot(farthestFrontfaceVector, closestFrontfaceVector) > 0.5)) {

// The farthest frontface may also be the closest if the probe can only see one surface.
// If this is the case, don’t move the probe.

// Ensure that we never move through the farthest frontface by moving minimum distance possible.
vec3 farthestDirection = min(0.2, farthestFrontfaceDistance) * farthestFrontfaceVector;

fullOffset = currentOffset.xyz + farthestDirection;
}

if (all(lessThan(abs(fullOffset), offsetLimit))) {
currentOffset = fullOffset;

}

Listing 4. Pseudocode for an iteration of the probe position optimizer operating on a single probe.

15

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

The probe position optimizer runs for five iterations during probe-state classifica-
tion, which is enough for almost all probes to converge their locations. We cap the
number of iterations at five to prevent probes from moving back and forth (infinitely)
through tangent backfaces.

More work is needed to determine the best position-optimizer algorithm, and
many investigations in this vein exist (see, for example, Wang et al. [2019]). Our
optimizer worked well for multiple engines, but is almost certainly not optimal.

6. Probe States

In any scene with significant open space, even after adjustment, many probes in a
uniform 3D grid will not contribute to the final image. We introduce a robust set of
probe states to avoid tracing or updating from such probes to increase performance
with the same visual result. Our probe states separate probes that should not update
from probes that must, with an additional intermediate state to identify probes that
have just appeared (either at scene initialization or with a moving volume—see Sec-
tion 7.3) and adjust their hysteresis accordingly. The full set of states is shown in
Figure 7 and discussed in the following sections.

Figure 7. Probe states with transitions between each state; α is the hysteresis for the current
frame; α′ is the default hysteresis for the scene.

6.1. Deactivated Probes

As noted above, the constraints on probe movement imposed by the 3D grid indexing
make it impossible to move all probes out of walls (some probes are too constrained
by the grid structure). We identify probes that remain inside static geometry and turn
them “off” (never trace or update). As the optimizer only considers static geome-

16

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

try, probes that happen to spawn inside dynamic geometry are unaffected and will
correctly turn on when appropriate.

6.2. Probe-update States

Even probes that are outside static geometry are not used for shading at every frame:
when no geometry is within probeSpacing of a probe, that probe’s value is not used.
We set these probes to “Sleeping” and wake them up when a surface is about to use
them for shading. Note that a probe needs to be “Awake” if and only if it is shading a
surface or about to shade one. Lighting changes and camera proximity do not matter if
the probe is not shading a surface. The same is true for setting probes to “Sleeping”:
when the camera can’t see a probe, it still needs to be “Awake” if it is shading a
surface because it is propagating diffuse irradiance (with second through nth-order
visibility). Thus, probes that shade static geometry should be “Vigilant” (they should
always trace and update). Though probes near geometry must trace to propagate GI,
the grid resolution need not be as fine in regions that are far from the camera.

6.3. Full Probe-initialization Algorithm

Probe positions and states are computed in four steps (see Listing 5):

• For all uninitialized probes, trace rays for five frames to determine optimal
positioning and initial state. At the end of this pass, all previously uninitialized
probes are “Newly Vigilant,” “Off,” or “Sleeping.”

• Extend AABBs for all dynamic objects by a probe grid cell + the self-shadow
bias for a conservative estimate. Set all “Sleeping” probes inside the extended
AABB of a dynamic object to “Newly Awake.”

• Optionally trace a large number of rays for “Newly Vigilant” and “Newly
Awake” probes to converge them in a frame, setting hysteresis to 0. Set their
states to “Vigilant” and “Awake,” respectively.

• Trace rays from “Vigilant” and “Awake” probes to update their values with the
normal hysteresis value for the scene. This step can also be used to converge
“Newly Vigilant” and “Newly Awake” probe values if the previous step was
omitted.

The first step of the algorithm can be greatly accelerated with static geometry
bounding boxes, as a probe can be directly adjusted against those bounding boxes
rather than relying on distance and backface information from the spherical ray cast.
Many probes could be immediately classified “Newly Vigilant” with this approach,
though ray tracing would still be necessary to correctly determine which probes should
be set to “Off.”

17

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

for each uninitialized probe:

Trace rays (distance only, no shading)

Position optimizer iteration

if (still in wall):

OFF

if (frontfaceDistance < probeSpacing):

NEWLY VIGILANT

else

SLEEPING

for all dynamic geo:

Extend bounding boxes grid cell size + self shadow bias

for all SLEEPING probes:

if (probe inside bounding box):

NEWLY AWAKE

// Optionally converge probes in this frame...

for all NEWLY AWAKE and NEWLY VIGILANT probes:

Trace rays to converge value

NEWLY AWAKE -> AWAKE

NEWLY VIGILANT -> VIGILANT

// ...or let them converge in the update pass.

for all VIGILANT or AWAKE probes:

Trace rays and update value.

Listing 5. Pseudocode for probe state computation.

Participating media and probe states. The probe data structure encodes a 3D irradi-
ance field that is queryable at any point within its volume. Thus, it might be queried at
positions in empty space to provide global illumination in participating media. In this
case, even probes not shading a surface would need to be “Awake” if they are within
the participating medium.

Though the passes described in Listing 5 potentially run every frame, for the
majority of frames the first step will not run because no probes will be uninitialized.
If the optional convergence pass is omitted, then only the final update step will run
for most frames.

7. Quantitative Performance Improvements

7.1. Probe Sleeping Performance

Probe sleeping using our probe-state scheme leads to a 30–50% average performance
improvement (Figure 8). In addition to the performance improvement (shown in the
middle column), we also show corresponding increases in rays cast per probe for the
same performance. Casting more rays per probe makes new probe values more stable
and allows for a lower global hysteresis, which makes the GI converge faster.

18

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

Figure 8. Performance data for probe sleeping. The “Baseline” column shows the time for
probe trace and update without probe sleeping (all probes are marked “Vigilant”). The “Equal
Quality” and “Time Saved” columns show savings of probe sleeping as a percentage of time
and as absolute time, respectively. Finally, the “Better Quality” column shows the absolute
ray increase achievable by tracing more rays from active probes to match the baseline time.

7.2. Probe Update Shader Optimization

The approach of Majercik et al. [2019] updated probe texels using a pixel shader with
a stencil buffer (to avoid processing border texels in the update pass). Border texels
were updated in a separate pixel shader pass for correct bilinear interpolation. This
approach leverages the graphics hardware for alpha blending results. Despite this,
faster update can be achieved by using a general-purpose GPU (GPGPU) compute
operation optimized with GPU compute best practices. We give background and de-
tails of this approach below.

Modern GPU architectures dispatch thread groups to cover user-specified com-
pute grid dimensions. All threads in a group execute the same code in parallel, so
ensuring that threads do not take different control paths in the code (coherent exe-
cution) is vital for performance. By ensuring coherent execution, we achieve a 3x
performance improvement in the update pass over the pixel-shader approach with
careful indexing over thread blocks consisting of an integer number of groups. In
addition, we store incoming shaded sample ray hits in shared memory buffers so that
all threads can read it in parallel when computing a new probe texel value.

Previous work showed the effect of probe resolution on image quality and perfor-
mance. We maintain image quality while selecting probe resolution (8× 8 irradiance,
16 × 16 visibility) for a combination of bandwidth, memory footprint, fast convolu-
tion, efficient index computation, and most important: mapping to SIMD instructions
(thread lanes on a GPU) for peak occupancy on our target hardware. At powers of
two, a probe can be updated by an integer number of 32 or 64 thread groups (common
hardware-defined minimum sizes) for maximum possible occupation and coherence.
Arbitrary resolution values offer the highest flexibility at the cost of efficiency.

19

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

(a) Octahedral representation and border-copy texels. Colors denote faces on the collapsed
octahedron. Letters in border cells denote copy destinations for cells inside the border labeled
with the same letter.

(b) Thread-block alignment for probe update on an 8 × 8 irradiance probe (left) and a 16×16
visibility probe (right).

(c) Thread-block alignment for probe-border copy. One block of 32 threads copies corners for
four irradiance and four visibility probes (orange). Four blocks copy edges for four irradiance
probes (green). Eight blocks copy edges for four visibility probes (blue).

Figure 9. Octahedral probe layout and probe update thread indexing.

20

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

Figure 9 shows details of our compute shader indexing, including an example
octahedral probe encoding to illustrate border-texel copy for correct hardware bilinear
interpolation. Our optimized compute shader is included alongside the update shader
of the previous technique [2019] in the supplemental material.

7.3. Tracking Windows

Conceptually, a probe grid covers all space in the scene. In practice, however, we do
not have the compute or ray-tracing budget to update and trace a level-sized, high-
resolution probe grid as it may contain tens of thousands of probes. To maintain high
probe resolution where it is most necessary, we implement a 3D tracking window of
probes. We used this window to track the camera, though any object can be tracked
with the same strategy. Our window begins centered on the camera. As the cam-
era moves, if it moves further from the center than the distance between two probes
in a cage (along any axis), a new plane of probes spawns in front of it (relative to
its direction of motion), and the plane furthest behind it disappears. We implement
this behavior using a 3D fixed-length circular buffer. When a new probe plane ap-
pears and is initialized, its new values are written to the memory of the plane in the
last row behind the camera: the probes “leapfrog” over the camera in discrete steps
(Figure 10). A discretely stepping probe window necessitates careful interpolation
between multiple probe volumes—our strategy for this is discussed in Section 7.4.

(a) Default grid (b) Offset grid

Figure 10. Conceptual layout of the camera tracking window indexing with phase offset in
2D. The row of probes that moves is colored in green. When the camera passes the center
bounding threshold moving in the +X direction, the leftmost row of probes leapfrogs to the
+X face of the volume. The newly computed grid index is shown in green. The corresponding
phase offset change is shown on the right.

7.4. Multiple Probe Volumes

Multiple probe volumes at differing resolutions can be used to efficiently implement
progressively decreasing grid resolutions that cascade out from the camera, thus sav-

21

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

Figure 11. Shaded ray data for multiple volumes packed into a single texture. This texture
is irradiance data taken from our multivolume scene in the supplemental video. The texture
includes shaded update rays for the camera-locked volume, the city-scale volume, and the
level-scale volume—these are labeled in the figure and delineated within the texture by the
red lines (which are not part of the irradiance data).

ing performance without effecting image quality. The same approach is used in
geoclipmaps [Losasso and Hoppe 2004], light-propagation volumes [Kaplanyan and
Dachsbacher 2010], and voxel cone volumes [Crassin et al. 2011]. Additional high-
resolution volumes can also be used to efficiently cover hero assets with complex
geometry that require higher resolution diffuse irradiance. Multiple volumes can be
efficiently updated in one trace by packing all update rays into a single texture (see
Figure 11).

(a) Multiple probe volumes (b) Transition start (marked in
green)

(c) Dense volume hidden

Figure 12. A dense volume (smaller spheres) within a sparse volume (larger spheres). The
spheres are sized based on the probe spacing within each volume. On the far left, the pink
region shows the area fully shaded by the dense volume, which gradually falls off to blue, the
area shaded by the sparse volume. The center image marks the start of this transition. The
rightmost image hides the dense probes to clearly visualize the transition.

We blend between volumes by linearly falling off from 1.0–0.0 at the last grid
cell (starting at the second-to-last plane of probes) along each axis of the 3D grid
(Figure 12). In the deferred shader, a weight is computed for each volume starting
from most to least dense. We sample in density order because the densest volume
will have the best approximation of the local light field at a point it contains. Volume
weights are accumulated at each volume sample. After the weight total reaches 1.0,
further volumes are skipped.

22

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

(a) Initial camera position. Labels show the blending region for the camera tracking win-
dow, the camera boundary that will cause the volume to move, and the volume weights for
a point being shaded by the camera volume (brown circles) and a surrounding volume (not
visualized).

(b) Camera moves. Without camera-aware blending, volume weights on the point change
dramatically in one frame.

(c) Camera moves. With camera-aware blending, the volume weights change slowly over the
course of multiple frames, leading to smoother transitions.

Figure 13. 2D illustration of volume blending using the static volume method vs. a camera-
aware volume blending.

23

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

The weighted volume blending described above yields smooth transitions for
static volumes, but can cause popping in the GI when applied to camera-locked vol-
umes. When a plane of probes leapfrogs in front of the camera, some points can go
from being fully shaded by a sparse cascade to being heavily shaded by the camera
cascade (Figure 13). When computing blending weights for camera-locked volumes,
we address this by tightening the transition region by one grid cell (along each axis)
then centering it on the camera. When the new plane appears at the front of a vol-
ume, points that are newly within that volume will not immediately be shaded by it
because of the tightened transition region. Instead, those points will gradually transi-
tion between volumes as the camera moves towards them. Results are shown in our
supplemental video.

The prototype multivolume code passes all probe volumes to the deferred shader,
and then per-pixel iterates through them to figure out which ones contain the point
being shaded. Though not the optimal approach for performance, this provides the
highest flexibility in tweaking the blending algorithm to evaluate image quality. For
a production implementation, the usual solutions for the deferred shading light-loop
issue (considering the volumes as lights) are available:

• Do the full brute-force light loop—for fewer than 10 volumes, the point-in-
OBB test to determine which volumes contain the shaded point is fast to evalu-
ate;

• Rasterize each volume’s bounds to find the covered pixels;

• Make a spatial data structure (e.g., octree, BVH) over the volumes and then
traverse that at runtime in the pixel shader to find in which volumes the pixel is
located. This method requires more bookkeeping and potentially costly data-
dependent fetches;

• Use tiles [Olsson et al. 2012] set up on the CPU or with a GPU pass to conser-
vatively approximate one of the previous methods.

For the pure cascaded method, these optimizations are not necessary because vol-
umes are axis-aligned in world space and nested in a regular pattern.

7.5. Inline Shading

Previous probe schemes required an extra shader pass to gather the indirect contri-
bution over the frame. We present a simpler framework that optimizes the global-
illumination gather step to directly sample the probe data structure during shading,
yielding reduced bandwidth requirements. Our code is included in the supplemental
material in GIRenderer_deferredShade.pix.

24

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

8. Conclusion and Discussion

We present multiple extensions to the dynamic diffuse global-illumination algorithm
[Majercik et al. 2019] to improve image quality, performance, and ease of deploy-
ment in a production setting. These extensions were developed in response to produc-
tion constraints encountered when integrating the technique into the NVIDIA RTXGI
SDK, the Unity game engine, the Unreal Engine 4 game engine, and several commer-
cial games.

The base algorithm of Majercik et al. [2019] is inherently practical due to its im-
age quality and performance. This paper covers the gap between a practical algorithm
and one that is ready for production deployment. Extensions like our “self-shadow
bias” make the algorithm easier to tune, and our performance optimizations to the
update pass make it feasible for the render budget of production games. For all of our
extensions, we sought solutions that were robust, easy to understand, and easy to tune
without fundamentally changing the algorithm.

8.1. Limitations and Future Work

Though our proposed convergence heuristics increase convergence over the previous
approach, there is still some ghosting in the indirect illumination for small, bright
light sources (like flashlights—see our video supplement at 7:05). This lag could be
addressed by intensifying our specific hysteresis-reduction heuristics on small lights
known to cause ghosting, though doing this globally may cause instability in other
regions of the image. While more specialized methods like reflective shadow maps
yield less ghosting [Dachsbacher and Stamminger 2005], an advantage of our method
is that all light sources can be handled generically to produce global illumination—we
trade some quality for generality.

In addition to our performance improvements, a per-frame ray budget could be
implemented to allow more control over the render budget of the technique. For our
applications, we found that controlling (a) the rays per probe and (b) the number of
probes in a volume was enough to hit our performance targets. A more sophisti-
cated treatment of ray budget would trace different ray amounts on a per-probe basis,
adding a lot of complexity to the implementation. We chose simplicity over a more
optimized ray budget, but a study of optimal ray apportioning between probes (taking
into account lighting and geometry changes, the camera position, etc.) is interesting
future work.

Our algorithm covers a large space of rendered effects and thus suggests many
possible directions for future work. For instance, our technique forces second-order
glossy reflections to maximum roughness in order to reuse the irradiance values as
cosine-filtered radiance. Second-order glossy reflections could be improved by us-
ing multiple higher-resolution filtered radiance textures with different cosine power
weighting—like the weighting for visibility probes, but with multiple octahedral rep-

25

http://jcgt.org

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

resentations per sample point instead of one. These could be used to render second-
order glossy reflections of varying roughness.

Acknowledgements

Foremost, we thank Peter Shirley for his invaluable feedback and editing. Thanks to Corey
Taylor and Mike Mara for the initial probe implementation. Thanks to Derek Nowrouzezahrai
and Jean-Philippe Guertin for their effort in the original DDGI paper. Thanks to Paul Hodg-
son, Peter Featherstone, Jesper Mortensen, Kuba Cupisz, and the rest of the Unity Copen-
hagen lighting team for their help with Unity. Thanks to Kelsey Blanton and Alan Wolfe for
their work on the NVIDIA RTXGI SDK. Thanks to Pablo Palmier at Ninja Theory for his
help with Unreal Engine 4.

References

CIGOLLE, Z. H., DONOW, S., EVANGELAKOS, D., MARA, M., MCGUIRE, M., AND

MEYER, Q. 2014. A Survey of Efficient Representations for Independent Unit Vec-
tors. Journal of Computer Graphics Techniques (JCGT) 3, 2 (April), 1–30. URL:
http://jcgt.org/published/0003/02/01/. 6, 7

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISEMANN, E. 2011. Interactive
Indirect Illumination Using Voxel Cone Tracing. Computer Graphics Forum 30, 7, 1921–
1930. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1467-8659.2011.02063.x. 22

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective shadow maps. In Proceedings
of the 2005 Symposium on Interactive 3D Graphics and Games, Association for Computing
Machinery, New York, NY, USA, I3D ’05, 203–231. URL: https://doi.org/10.
1145/1053427.1053460. 25

FASCIONE, L., HANIKA, J., HECKENBERG, D., KULLA, C., DROSKE, M., AND

SCHWARZHAUPT, J. 2019. Path Tracing in Production: Part 1: Modern Path Tracing. In
ACM SIGGRAPH 2019 Courses, Association for Computing Machinery, New York, NY,
USA, SIGGRAPH 19. URL: https://doi.org/10.1145/3305366.3328079.
12

HOOKER, J. 2016. Volumetric Global Illumination at Treyarch. In Advances in Real-Time
Rendering 2016, SIGGRAPH 2016. ACM, New York, NY, USA. URL: https://www.
activision.com/cdn/research/Volumetric_Global_Illumination_

at_Treyarch.pdf. 5, 6

JENDERSIE, J., KURI, D., AND GROSCH, T. 2016. Real-Time Global Illumination
Using Precomputed Illuminance Composition with Chrominance Compression. Jour-
nal of Computer Graphics Techniques (JCGT) 5, 4 (December), 8–35. URL: http:
//jcgt.org/published/0005/04/02/. 7

KAPLANYAN, A., AND DACHSBACHER, C. 2010. Cascaded Light Propagation Volumes
for Real-Time Indirect Illumination. In Proceedings of the 2010 ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, Association for Computing Machinery, New

26

http://jcgt.org
http://jcgt.org/published/0003/02/01/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02063.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2011.02063.x
https://doi.org/10.1145/1053427.1053460
https://doi.org/10.1145/1053427.1053460
https://doi.org/10.1145/3305366.3328079
https://www.activision.com/cdn/research/Volumetric_Global_Illumination_at_Treyarch.pdf
https://www.activision.com/cdn/research/Volumetric_Global_Illumination_at_Treyarch.pdf
https://www.activision.com/cdn/research/Volumetric_Global_Illumination_at_Treyarch.pdf
http://jcgt.org/published/0005/04/02/
http://jcgt.org/published/0005/04/02/

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

York, NY, USA, I3D 10, 99107. URL: https://doi.org/10.1145/1730804.
1730821. 22

KELLER, A., FASCIONE, L., FAJARDO, M., GEORGIEV, I., CHRISTENSEN, P., HANIKA,
J., EISENACHER, C., AND NICHOLS, G. 2015. The path tracing revolution in the movie
industry. In ACM SIGGRAPH 2015 Courses. ACM, New York, NY, USA, 1–7. URL:
https://dl.acm.org/doi/10.1145/2776880.2792699. 7

LAGARDE, S., AND ZANUTTINI, A. 2012. Local Image-based Lighting With Parallax-
corrected Cubemap. SIGGRAPH 2012. ACM, New York, NY, USA. URL: https:
//seblagarde.wordpress.com/2012/11/28/siggraph-2012-talk/. 5

LOSASSO, F., AND HOPPE, H. 2004. Geometry Clipmaps: Terrain Rendering Using Nested
Regular Grids. ACM Trans. Graph. 23, 3 (Aug.), 769776. URL: https://doi.org/
10.1145/1015706.1015799. 22

MAJERCIK, Z., GUERTIN, J.-P., NOWROUZEZAHRAI, D., AND MCGUIRE, M. 2019. Dy-
namic Diffuse Global Illumination with Ray-Traced Irradiance Fields. Journal of Com-
puter Graphics Techniques (JCGT) 8, 2 (June), 1–30. URL: http://jcgt.org/
published/0008/02/01/. 1, 2, 5, 6, 7, 8, 19, 21, 25, 28

MARQUES, R., BOUVILLE, C., RIBARDIÈRE, M., SANTOS, L. P., AND BOUATOUCH, K.
2013. Spherical Fibonacci Point Sets for Illumination Integrals. Computer Graphics Forum
32, 8, 134–143. URL: https://hal.inria.fr/hal-01143347. 4

MARTIN, S., AND EINARSSON, P. 2010. A Real Time Radiosity Architecture for Video
Games. In Advances in Real-Time Rendering 2010, SIGGRAPH 2010. ACM, New York,
NY, USA. URL: https://www.ea.com/frostbite/news/a-real-time-
radiosity-architecture. 5, 6

MCAULEY, S. 2012. Calibrating Lighting and Materials in Far Cry 3. In Practical Physi-
cally Based Shading in Film and Game Production, SIGGRAPH 2012. ACM, New York,
NY, USA. URL: https://blog.selfshadow.com/publications/s2012-
shading-course/. 5, 6

MCGUIRE, M., MARA, M., NOWROUZEZAHRAI, D., AND LUEBKE, D. 2017.
Real-Time Global Illumination using Precomputed Light Field Probes. In ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM, New York,
NY, USA, February, 11. URL: http://casual-effects.com/research/
McGuire2017LightField/index.html. 1, 6, 7

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012. Tiled and Clustered Forward
Shading: Supporting Transparency and MSAA. In ACM SIGGRAPH 2012 Talks, Associ-
ation for Computing Machinery, New York, NY, USA, SIGGRAPH 12. URL: https:
//doi.org/10.1145/2343045.2343095, doi:10.1145/2343045.2343095. 24

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approximating Dynamic Global
Illumination in Image Space. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, ACM, New York, NY, USA, I3D ’09, 75–82. URL: http://doi.
acm.org/10.1145/1507149.1507161. 5, 6

27

http://jcgt.org
https://doi.org/10.1145/1730804.1730821
https://doi.org/10.1145/1730804.1730821
https://dl.acm.org/doi/10.1145/2776880.2792699
https://seblagarde.wordpress.com/2012/11/28/siggraph-2012-talk/
https://seblagarde.wordpress.com/2012/11/28/siggraph-2012-talk/
https://doi.org/10.1145/1015706.1015799
https://doi.org/10.1145/1015706.1015799
http://jcgt.org/published/0008/02/01/
http://jcgt.org/published/0008/02/01/
https://hal.inria.fr/hal-01143347
https://www.ea.com/frostbite/news/a-real-time-radiosity-architecture
https://www.ea.com/frostbite/news/a-real-time-radiosity-architecture
https://blog.selfshadow.com/publications/s2012-shading-course/
https://blog.selfshadow.com/publications/s2012-shading-course/
http://casual-effects.com/research/McGuire2017LightField/index.html
http://casual-effects.com/research/McGuire2017LightField/index.html
https://doi.org/10.1145/2343045.2343095
https://doi.org/10.1145/2343045.2343095
http://doi.acm.org/10.1145/1507149.1507161
http://doi.acm.org/10.1145/1507149.1507161

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

SILVENNOINEN, A., AND LEHTINEN, J. 2017. Real-time Global Illumination by Pre-
computed Local Reconstruction from Sparse Radiance Probes. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 36, 6 (11), 230:1–230:13. URL: https:
//doi.org/10.1145/3130800.3130852. 7

STACHOWIAK, T., AND ULUDAG, Y. 2015. Stochastic Screen-Space Reflections. In Ad-
vances in Real-Time Rendering 2015, ACM, New York, NY, USA, SIGGRAPH 2015,
EA DICE. URL: https://www.ea.com/frostbite/news/stochastic-
screen-space-reflections. 7

STEFANOV, N. 2016. Global Illumination in Tom Clancy’s The Division. Presented at
Game Developers Conference, 2016. URL: https://www.youtube.com/watch?
v=04YUZ3bWAyg&feature=youtu.be&t=657. 6

TOTH, R., HASSELGREN, J., AND AKENINE-MÖLLER, T. 2015. Perception of Highlight
Disparity at a Distance in Consumer Head-mounted Displays. In Proceedings of the 7th
Conference on High-Performance Graphics, ACM, New York, NY, USA, HPG ’15, 61–66.
URL: http://doi.acm.org/10.1145/2790060.2790062. 7

VALIENT, M. 2013. Killzone Shadow Fall Demo Postmortem. Sony Devstation
2013, Guerilla Games. URL: https://www.guerrilla-games.com/read/
killzone-shadow-fall-demo-postmortem. 5

WANG, Y., KHIAT, S., KRY, P. G., AND NOWROUZEZAHRAI, D. 2019. Fast Non-Uniform
Radiance Probe Placement and Tracing. In Proceedings of the ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, Association for Computing Machinery, New
York, NY, USA, I3D 19. URL: https://doi.org/10.1145/3306131.3317024.
6, 16

WYMAN, C. 2005. An Approximate Image-space Approach for Interactive Refraction. ACM
Trans. Graph. 24, 3 (July), 1050–1053. URL: http://doi.acm.org/10.1145/
1073204.1073310. 7

Index of Supplemental Materials

The supplemental material contains video results for each of our extensions. as well as rele-
vant C++ and shader code and is available at http://jcgt.org/published/0010/
02/01/supplement.zip. Where appropriate, we have included code from Majerick et
al. [2019] for comparison.

28

http://jcgt.org
https://doi.org/10.1145/3130800.3130852
https://doi.org/10.1145/3130800.3130852
https://www.ea.com/frostbite/news/stochastic-screen-space-reflections
https://www.ea.com/frostbite/news/stochastic-screen-space-reflections
https://www.youtube.com/watch?v=04YUZ3bWAyg&feature=youtu.be&t=657
https://www.youtube.com/watch?v=04YUZ3bWAyg&feature=youtu.be&t=657
http://doi.acm.org/10.1145/2790060.2790062
https://www.guerrilla-games.com/read/killzone-shadow-fall-demo-postmortem
https://www.guerrilla-games.com/read/killzone-shadow-fall-demo-postmortem
https://doi.org/10.1145/3306131.3317024
http://doi.acm.org/10.1145/1073204.1073310
http://doi.acm.org/10.1145/1073204.1073310
http://jcgt.org/published/0010/02/01/supplement.zip
http://jcgt.org/published/0010/02/01/supplement.zip

Journal of Computer Graphics Techniques
Scaling Probe-Based Real-Time Dynamic Global Illumination for Production

Vol. 10, No. 2, 2021
http://jcgt.org

Author Contact Information
Zander Majercik
NVIDIA Corporation
2788 San Tomas Expy
Santa Clara, CA 95051
amajercik@nvidia.com

Adam Marrs,
NVIDIA Corporation
2788 San Tomas Expy
Santa Clara, CA 95051
amarrs@nvidia.com

Josef Spjut
NVIDIA Corporation
2788 San Tomas Expy
Santa Clara, CA 95051
jspjut@nvidia.com

Morgan McGuire
NVIDIA Corporation
2788 San Tomas Expy
Santa Clara, CA 95051
mcguire@nvidia.com

Majercik et al., Scaling Probe-Based Real-Time Dynamic Global Illumination for Production,
Journal of Computer Graphics Techniques (JCGT), vol. 10, no. 2, 1–29, 2021
http://jcgt.org/published/0010/02/01/

Received: 2020-08-10
Recommended: 2020-11-30 Corresponding Editor: Yoshiharu Gotanda
Published: 2021-05-03 Editor-in-Chief: Marc Olano

c© 2021 Majercik et al. (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

29

http://jcgt.org
mailto:amajercik@nvidia.com
mailto:amajercik@nvidia.com
mailto:amajercik@nvidia.com
mailto:amajercik@nvidia.com
http://jcgt.org/published/0010/02/01/
http://creativecommons.org/licenses/by-nd/3.0/

