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Figure 1. Four analytic signed distance functions (SDFs) from our dataset, whose zero level

sets are detailed 3D shapes. These are visualized in our real-time SDF explorer, with isosur-

faces in space shown on a cutting plane.

Abstract

Reference datasets are a key tool in the creation of new algorithms. They allow us

to compare different existing solutions and identify problems and weaknesses during

the development of new algorithms. The signed distance function (SDF) is enjoying

a renewed focus of research activity in computer graphics, but until now there has

been no standard reference dataset of such functions. We present a database of 63

curated, optimized, and regularized functions of varying complexity. Our functions

are provided as analytic expressions that can be efficiently evaluated on a GPU at

any point in space. We also present a viewing and inspection tool and software for

producing SDF samples appropriate for both traditional graphics and training neural

networks.

1. Introduction

The quest for efficient, accurate, flexible, and compact representations of 3D shapes

is an enduring research goal in computer graphics. In this article we focus on signed
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distance fields, or SDFs, as a representation for surfaces that describe the boundary

of volumes. To facilitate the adoption of SDFs in production and to ease the research

and development of new algorithms related to this representation, we have developed

a rich reference SDF dataset, a visual explorer, and a collection of point evaluators

for these surfaces.

The remainder of this introduction gives a general overview of SDFs, compares

them to other representations, and provides references to relevant literature. Readers

already familiar with SDFs may wish to jump to Section 3 describing the dataset and

Section 4 describing the SDF explorer tool and SDF batch-sampling code.

1.1. Explicit Representations

An explicit representation of a shape can be used to generate points on its surface.

For example, consider the infinite right circular cylinder in Figure 2.

An explicit function R
2 → R

3 that maps two real numbers (u, v) to three real

numbers (x, y, z) identifying a point on this surface is given in Equation (1),

x = cosu,

y = sinu,

z = v,

(1)

where u ∈ [0, 2π] and v ∈ R.

Figure 2. An infinite right cir-

cular cylinder along the Z-axis.

The explicit formulation in Equation (1) has a lot

of appeal. Evaluating pairs of u and v produces sur-

face points in a predictable way (for example, u pa-

rameterizes points along a circular cross-section of

the cylinder). The (u, v)-parameterization is helpful

for mapping textures of any kind and can be inverted

to identify (u, v)-values corresponding to a point on

the surface. We could render the cylinder directly

from Equation (1) by evaluating many (u, v)-pairs and

drawing the resulting point cloud. More traditionally,

we could render a mesh created from those points.

Explicit formulas become unwieldy when we want to represent complex and or-

ganic shapes, so we usually break up such shapes into collections of simpler shapes.

Perhaps the most ubiquitous of such approach today is a polygonal mesh and, in

particular, a triangular mesh. Triangular meshes are simple to understand and manip-

ulate, compact to store, and efficient to render. Unfortunately, due to their discrete

nature, polygonal meshes can only approximate smooth curves and organic shapes.

This approximation can result in undesirable image properties, such as piecewise-

linear silhouettes. Curved patches, and meshes of patches, can accommodate com-
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plex, curved geometry more closely than a polygonal mesh. Modern graphics systems

often support a wide array of explicit representations, such as subdivision surfaces,

finite element meshes, and voxels.

Explicit representations are good descriptors for many different kinds of shapes.

They offer a clear parameterization of their surfaces, may be stored compactly, and

are efficient to render. Explicit meshes are the dominant form of shape representation

for most 3D graphics today.

1.2. Implicit Representations

Figure 3. A bumpy landscape on a 2D domain.

The points with the z-value of 0 are marked

with a thick black line. We call each set of

points with the same height an isocontour.

In contrast, implicit representations de-

scribe surfaces as a set of points which

have a desired value in a scalar field de-

fined in space. For example, consider

the bumpy height field in Figure 3. The

function we are plotting is R2 → R; that

is, each pair of x- and y-input values re-

turns a single z-value.

Each point on the surface of Fig-

ure 3 has a height z, or distance from the

(x, y)-reference plane. The collection of

points with a single given z-value form

a shape, called an isocontour. Note that this contour can have multiple pieces. In the

figure, we have marked the two isocountour pieces formed by points with the value

z = 0.

We can identify such points using any reference height, and in any number of

dimensions, producing an isosurface. In particular, we can evaluate points in 3D space

using a function that maps triples of real numbers to a single real number. All points

that evaluate to the same value collectively form an isosurface or level set, as shown

in Figure 1. The set of points with a value of 0, called the kernel of the function, is

also referred to as the function’s level-0 isosurface, or more simply its zero set [Osher

et al. 2004; Bloomenthal et al. 1997]. Following convention, in this paper and in our

dataset, we consider the zero set to be the shape corresponding to each function. Note

that the zero set may be thick if many connected points all evaluate to zero.

The cylinder of Figure 2 may be represented implicitly as the set of points that

evaluate to 0 in Equation (2).

scylinder(x, y, z) = x2 + y2 − 1. (2)

Using zero sets of functions to represent shapes is a highly versatile approach.

The functions don’t need to be differentiable, invertible, or even continuous. Point
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clouds are an important example of a discontinuous surface that is easily represented

by an implicit function.

Implicit functions can naturally represent organic and curved shapes, are easily

composed using constructive solid geometry [Zhou et al. 2016], and have no prede-

termined precision or level of detail. Implicit functions are widely used in physics

simulation [Zhu and Bridson 2005; Adams et al. 2007; Hu et al. 2018], computa-

tional fabrication [Dunning et al. 2015; Fernandez et al. 2020], robotics path planning

[Adams et al. 2007; Han et al. 2019], and other applications. Implicit functions are

also good fits with optimization methods like the interior point method, which is used

in computational fabrication [Fernandez et al. 2020].

2. Signed Distance Functions

We now turn our attention to a particular class of implicit functions that make up

our dataset and may be viewed with our interactive explorer. Our discussion will be

facilitated by some common terms and ideas, so we review these first.

2.1. Sidedness

A useful concept associated with implicit functions is sidedness. Every orientable

surface partitions the space into three subspaces, which we call positive, zero, and

negative, or outside, on, and inside, respectively. An important example is a plane,

which we can represent implicitly as

splane(x, y, z) = ax+ by + cz + d. (3)

The positive subspace contains those points that evaluate to a positive value in Equa-

tion (3). We also say these points are those that are pointed to by the plane’s direction

vector (a, b, c), as in Figure 4(a). Those points that lie on the plane evaluate to zero,

so by convention, those points on the plane are the shape defined by the function.

Figure 4. (a) A segment of a plane (thickened for clarity). The surface normal points to

the positive subspace (in green). Points in the plane itself form the zero subspace, and the

remaining points form the negative subspace (in red). (b) A sphere cut in two. The points

outside form the positive subspace (in green), points on the surface form the zero subspace,

and points inside form the negative subspace (in red).
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Figure 5. (a) The space on the negative side of all six planes forms the inside, or negative

subspace, of the composite cube. (b) Using CSG to start a face. The purple sphere has two

smaller spheres (blue) removed with subtraction, and a cone (orange) added with union.

The remaining points form the plane’s negative subspace. In Figure 4(b) we show the

three subspaces for a sphere.

In contrast, meshes are notoriously difficult to work with from a subspace per-

spective in practice, because meshes need to be manifold and watertight (i.e. no self

intersections or gaps) in order to define partitions. Recent work on generalized wind-

ing numbers for meshes attempt to more robustly define space partitioning for noisy

meshes [Jacobson et al. 2013; Barill et al. 2018]. Signed distance functions, on the

other hand, robustly define sidedness by construction.

2.2. Constructive Solid Geometry

Multiple implicit functions can be combined to create more complex surfaces (and the

subspaces they induce) using constructive solid geometry (CSG) [Quilez 2008]. For

example, we can use six planes to create a cube by orienting the normals outward, as

in Figure 5(a). We can treat this collection of planes as a single new implicit function.

The set of points that are negative with respect to every plane form the inside of the

cube. Such points may be identified by evaluating them with respect to each of the

planes and taking the maximum of the results. Those points with a negative maximum

are inside the cube, those with a maximum of zero are on the cube itself, and the rest

are outside the cube. This process is equivalent to finding the intersection of the

six spaces defined by the planes. Similarly, the union can be defined by taking the

minimum. Figure 5(b) shows the beginning of a head model that started with a large

sphere, using subtraction of smaller spheres to form the eyes, and union with a cone

to form the nose.

2.3. Signed Distance Functions (SDFs)

We can make implicit functions more useful by requiring their returned value to carry

not just the sign illustrated by Figure 4, but also some kind of distance information.

That is, the magnitude of the real number returned by the function for any point
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describes the distance, under some measure, from that point to the surface. The notion

of distance used here is flexible and may be adapted to suit different needs.

The most common variety of distance is the shortest path in space from the input

point to the nearest point on the zero set. In a Euclidean metric space, this is the

Euclidean distance from the point to the nearest point on the surface (which may not

be unique).

We call an implicit function that combines an input point’s sidedness with its

distance to the surface (represented by the magnitude of the returned value) a signed

distance function, or SDF. In this paper, we focus exclusively on SDFs in their most

common environment, a 3D Euclidean metric space.

In symbols, an SDF is a function s(P ) : Rk → R that accepts a point P in k

dimensions and returns a scalar. As usual, the zero set of s(P ) defines the shape we

want to represent.

Much more information on SDFs is available online [Quilez 2008; McGuire

2013].

2.4. Classes of SDFs

There are two important classes of SDFs: exact and approximate. Exact SDFs return

the distance to the surface exactly. This means that (except at singularities) they

satisfy Equation (4), known as the Eikonal equation.

|∇f | = 1 (4)

This property is also related to the Lipschitz constant, which is the upper bound on

the gradient of the function. The Eikonal equation guarantees the Lipschitz constant

to be one, which is a useful property for rendering [Hart 1996].

Exact SDFs are more useful in theory and analysis than in practice. One problem

with exact SDFs is that most floating-point calculations are inherently inexact on real

hardware. Another problem is that procedural combinations of SDFs, such as the

CSG shapes in Section 2.2, can introduce additional precision issues.

As a result, many graphics applications are designed to also support SDFs that are

not exact. A popular type of inexact SDF returns a magnitude that is only guaranteed

to be a lower bound on the distance to the nearest point on the zero set. These are

known as approximate or conservative SDFs. Conservative SDFs do not satisfy the

Eikonal equation, but still have a Lipschitz constant of one.

Approximate SDFs where the distances are clipped to some maximum magnitude

are known as truncated SDFs [Curless and Levoy 1996]. Truncated SDFs have im-

portant use cases in robotics, where only near-surface distance values are useful, and

real-world measurements introduce uncertainty [Canelhas et al. 2013; Whelan et al.

2015].
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Although most SDFs used in practice for graphics applications are conservative,

exact SDFs have properties that make them desirable in specific applications where

one can account for the numerical issues. One example is that isosurfaces and iso-

contours of an exact signed distance function taken at regular intervals are equidistant

from each other in Euclidean space. Such surfaces are useful for computer numerical

control (CNC) tool-path planning applications in computational fabrication [Fernan-

dez et al. 2020].

2.5. Rendering SDFs

Rendering an SDF by ray marching is particularly straightforward. Consider a ray

r(t) = P0 + td that starts at a point P0 and travels in a normalized direction d (that

is, d is a vector of length 1), parameterized by a value t ∈ R which is 0 at P0. We

can evaluate an SDF s(P ) at any point P in space. Applying s(P ) to the ray function

gives us a new function, g(t) = s(r(t)), also parameterized by t. The intersections of

the ray with the zero set of the SDF are the points on the ray where the SDF evaluates

to zero: g(t) = 0. This lets us conveniently consider finding the intersection of a ray

and surface as a root-finding problem.

A simple and fast (but flawed) method for finding these roots is called ray march-

ing. We step (or march) along the ray by adding a constant amount ∆t to the ray’s t

parameter to produce each new point, where we evaluate the SDF. When the sign of

two sequential values is different, we can binary search for the zero between them, as

shown by the red ray in Figure 6.

The problem with this method is that the search can fail when the step size moves

the query point entirely over a region of changed sign, as shown by the green ray in

Figure 6.

Figure 6. Intersecting a SDF by ray marching. The green ray passes through the shape but the

marcher never detects the intersections because the sampling points (dots) created by equal

steps of ∆t all happen to lie outside the shape. The marcher finds the intersection along the

red ray, because one of the sample points (the red circle) lands inside the object, initiating a

step of numerical root-finding to locate the intersection point (the black circle).
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Figure 7. (a) A 2D example of sphere tracing. At each step along the ray (a dot), we find a

guaranteed lower bound to the surface (the radius of circle around that dot). We can advance

at least that far along the ray for the next step. (b) Here the ray is nearly parallel to a surface,

so the step size will be nearly constant. The closer the ray is to the surface, the smaller the

step size.

This problem is solved by the superior, but potentially slower, method of sphere

tracing, a special case of the Newton-Raphson method [Hart 1996]. We characterize

the process by numbering the steps we take along the ray. At each step i, we are at

point Pi, and seek a ∆ti that tells us how far to move in the next step (the change in

t corresponds to a distance because the ray vector d has length 1). In ray marching,

∆ti is the same for every step i. In sphere tracing, we set ∆ti = |s(Pi)| − ǫ (where

ǫ is chosen to compensate for numerical floating-point issues). This means that we’re

guaranteed that the nearest point on the surface is not within a sphere of radius ∆ti

around Pi, so we can step forward along the ray by that distance and be sure we

haven’t missed the surface. Figure 7(a) shows the idea in two dimensions, using

circles rather than spheres to intersect a cross-section of a bumpy landscape.

In this algorithm we don’t need to perform the binary search associated with ray

marching. Instead, we step forward by each ∆ti until the SDF returns a magnitude

smaller than some pre-determined threshold. This method can also handle approxi-

mate SDFs, because they provide a lower bound of the distance to the surface.

As it is usually implemented, sphere tracing can deliver poor performance in some

situations. For example, in Figure 7(b) a ray is nearly tangent to a surface and diverg-

ing from it, but it still takes many steps. We can address this problem, and improve

the overall performance of sphere tracing, if we know the values of certain partial

derivatives [Hart 1996; Galin et al. 2020]. Unfortunately, these values can be difficult

to compute in the general case.

SDFs can be converted into other representations, which can then be rendered

using any convenient algorithm. For example, we can discretize the space in which

the SDF is embedded into a regular grid, and evaluate the SDF at each vertex (or

center) of each cell. By fitting a planar section to each voxel that contains part of the

surface, we can construct a surface mesh [Lorensen and Cline 1987]. We can also
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render the voxels directly as little cubes, drawing each voxel that contains some of the

surface.

Applying texture to the surface of SDFs is challenging, because by their nature

these level sets do not have a native UV surface parameterization. Such parameteri-

zations, however, can be constructed [de Groot et al. 1981; Schmidt et al. 2006].

The demoscene [Barrallo 2008] shows a parallel evolution of these techniques

[Burger et al. 2002; Quilez 2009] to the academic literature, which occasionally over-

laps with authors of academic literature also contributing to the demoscene under

aliases.

2.6. Deep Learning

SDFs have been found to be a good fit with deep-learning algorithms. Such systems

learn by optimizing their internal parameters using an algorithm called backpropaga-

tion, which requires each element in the process to be differentiable. Many of the

SDFs in our dataset are differentiable, and approximate derivatives can be computed

for the others from finite differences. Compared to meshes, such implicit functions

are easier for neural networks to learn, because their smooth functional representation

can be learned directly without restrictions on topology [Park et al. 2019; Mescheder

et al. 2019; Davies et al. 2020].

Learned implicit surfaces have been actively used for a variety of applications,

including digital humans [Saito et al. 2019], view synthesis [Mildenhall et al. 2020],

shape compression [Davies et al. 2020], level of detail [Takikawa et al. 2021], inverse

rendering [Zhang et al. 2021], and robotics perception [Zhu et al. 2021].

3. SDF Reference Dataset

3.1. Motivation

Progress in many fields depends on high-quality reference datasets. Algorithms can

be evaluated and compared based on their performance on these datasets, and their

strengths and weaknesses can be demonstrated. Standard databases also help during

the design and development stages of new research, helping us learn about our algo-

rithms as we develop them. Standard databases help industry practitioners compare

the performances of different systems to help them choose the techniques that are best

suited to their needs.

In computer graphics, 3D models such as the Utah teapot [Torrence 2006] and

Stanford bunny [Bun 1994], and complete scenes such as the Cornell box [Goral

et al. 1984], Moana Island [Pritchett and Tamstorf 2018], and many others [McGuire

2017], are frequently used in the literature. In machine learning, references like the

Iris [Fisher 1936] and MNIST [LeCun 1998] datasets propelled early work, and large

scale datasets such as ImageNet [Deng et al. 2009] and CIFAR-100 [Krizhevsky et al.
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2009] were instrumental in the development of modern deep learning. Reference

datasets have great value in the evaluation and development of algorithms.

Datasets of 3D meshes have recently become common for use in deep learning

for 3D shapes [Chang et al. 2015; Zhou and Jacobson 2016; Koch et al. 2019]. Un-

fortunately, these datasets share all the familiar problems associated with mesh data:

the surfaces can be non-manifold, non-watertight, and have inconsistently oriented

normals. These problems can require extensive data cleaning, which can be an im-

pediment to using the models in large-scale data processing applications such as deep

learning.

To avoid these problems, we provide a dataset of SDFs, which are inherently free

of the issues that plague mesh datasets. We note that it is possible to compute a

SDF from a mesh, but the problems we just considered can make that difficult and

computationally expensive. A native SDF also can represent continuous curves and

efficiently express large amounts of detail (such as fractals).

Despite all of their appealing qualities, SDFs can still be a challenging represen-

tation to work with in practice because, until now, they have lacked such a standard

set of reference functions. Projects that involve SDFs must begin with a sub-project

to collect suitable and well-formed SDFs. Simple functions, such as isolated quadrics

and polygons, are not hard to craft by hand, but complex functions meant to capture

organic or complex man-made objects can be difficult to create and confirm that they

are free of errors. This is not a trivial task, as there are no standard tools available for

artists to intuitively build SDFs. The need for reliable reference functions is usually

addressed by assembling an ad hoc set of SDFs or by converting alternate representa-

tions (e.g., surface meshes) into SDFs.

Unfortunately, trying to derive SDFs directly from existing surface meshes in-

troduces problems. For example, voxelization methods usually introduce quantiza-

tion errors into the shape they’re representing, creating models with inaccuracies in

some places, and reduced precision in others. The conversion process can also cre-

ate distorted and disconnected models, making them slower to evaluate and harder to

understand than a simpler, cleaner model created by hand for just that surface.

Worse, if a new algorithm demonstrates problems, one must spend time investi-

gating and confirming the quality of the SDF functions being used, checking for errors

such as coding bugs or numerical issues. This is time that would be better spent de-

veloping the new algorithm under study. A reliable reference database of SDFs solves

these problems.

The main contribution of this work is such a dataset. We present a set of 63

curated, validated, diverse SDFs of varying complexity, designed to provide a wide

range of shapes and features. Figure 8 shows the SDFs provided by our system. They

fall into the general categories of animal, natural, geometry, manufactured, vehicle,

and fractal. The list of shapes is also given in Table 1.
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Figure 8. A gallery of our SDF dataset using arbitrary colors.
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Name Category Type Animated? Render (ms) Author Copyright Notes

Bezier Geometry E 0.2 Quilez MIT

Boat Vehicle C 1.8 ‘dr2’ CC BY-NC-SA 3.0

Burger Misc C 5.1 ‘XorDev’ CC BY-NC-SA 3.0

Cables Manufactured C X 6.3 ‘yuntaRobo’ CC BY-NC-SA 3.0

Capsule Geometry E 0.3 Quilez MIT

Castle Manufactured C 13.1 ‘sukupaper’ CC BY-NC-SA 3.0 Low numerical precision on the main dome.

Chain Manufactured C 0.7 ‘eiffie’ CC BY-NC-SA 3.0

Cheese Misc C 0.5 Alfonso CC BY-NC-SA 3.0

Cone Geometry E 0.3 Quilez MIT

Cube Geometry E 0.2 Quilez MIT

Cybertruck Vehicle C 1.2 ‘BigWings’ CC BY-NC-SA 3.0

Cylinder Geometry E 0.5 Quilez MIT

Dalek Misc C 1.8 ‘Antonalog’ CC BY-NC-SA 3.0

Dinosaur Animal C 6.3 Quilez CC BY-NC-SA 3.0

Dodecahedron Geometry E 0.3 Hooper CC BY-NC-SA 3.0

Elephant Animal C 4.6 Quilez CC BY-NC-SA 3.0

Fish Animal C X 4.5 ‘BigWings’ CC BY-NC-SA 3.0 Very conservative.

Gear Manufactured C 0.7 Malin CC BY-NC-SA 3.0

GrandPiano Manufactured C 3.6 ‘jedi cy’ CC BY-NC-SA 3.0 Low numerical precision on keys and strings.

Girl Animal C 14.5 Quilez CC BY-NC-SA 3.0

Helix Geometry E 0.3 ‘XorDev’ CC BY-NC-SA 3.0

Hexprism Geometry E 0.2 Quilez MIT

HumanHead Animal C 10.9 Hooper CC BY-NC-SA 3.0

HumanSkull Animal C 1.4 ‘monsterkodi’ CC BY-NC-SA 3.0

Icosahedron Geometry E 0.2 Hooper CC BY-NC-SA 3.0

Jellyfish Animal E X 0.8 ‘BigWings’ CC BY-NC-SA 3.0

Jetfighter Vehicle C 12.5 Berkeby CC BY-NC-SA 3.0

Julia Fractal E 3.9 Quilez CC BY-NC-SA 3.0

Key Manufactured C 0.3 ‘Flopine’ CC BY-NC-SA 3.0

Knob Manufactured E 0.8 Takikawa MIT

Lamborghini Vehicle C 2.1 Berger CC BY-NC-SA 3.0

Mandelbulb Fractal E 10.7 McGuire BSD-2

MantaRay Animal C X 0.7 ‘dakrunch’ CC BY-NC-SA 3.0

Mech Manufactured C X 5.4 Edis CC BY-NC-SA 3.0

Menger Fractal E 1.3 Quilez MIT

Mobius Manufactured E 0.5 Warne CC BY-NC-SA 3.0

Mountain Nature C 2.0 McGuire MIT

Mushroom Nature C 1.4 Quilez CC BY-NC-SA 3.0

Octabound Geometry C 0.1 Quilez MIT

Octahedron Geometry E 0.2 Quilez MIT

Oldcar Vehicle C 5.7 Berger CC BY-NC-SA 3.0

PixarMike Animal C 1.0 Quilez CC BY-NC-SA 3.0

Pyramid Geometry E 0.2 Quilez MIT

Rock Natural E 2.4 Alekseev CC BY-NC-SA 3.0

Rooks Manufactured C 4.0 ‘eiffie’ CC BY-NC-SA 3.0

Roundbox Geometry E 0.3 Quilez MIT

Serpenski Fractal E 5.2 ‘al13n’ CC BY-NC-SA 3.0

Snail Animal E 2.3 Quilez CC BY-NC-SA 3.0

Snake Animal C X 3.2 ‘BigWings’ CC BY-NC-SA 3.0 Truncated conservative.

Sphere Geometry E 0.2 Quilez MIT

Spike Manufactured C 1.1 ‘Patapom’ CC BY-NC-SA 3.0

Tardigrade Animal C 2.4 ‘ZGuerrero’ CC BY-NC-SA 3.0

Teapot Manufactured E 0.8 ‘klk’ CC BY-NC-SA 3.0

Temple Manufactured C 9.4 Quilez CC BY-NC-SA 3.0

Tetrahedron Geometry E 0.1 McGuire MIT

TieFighter Vehicle E 1.3 ‘nimitz’ CC BY-NC-SA 3.0

Torus Geometry E 0.2 Quilez MIT

Tree Nature C X 7.4 ‘Maurogik’ CC BY-NC-SA 3.0

Triangle Geometry E 4.0 Quilez MIT

Trefoil Geometry C 0.8 ‘dr2’ CC BY-NC-SA 3.0

Triprismbound Geometry C 0.1 Quilez MIT

UprightPiano Manufactured C 0.7 Quilez CC BY-NC-SA 3.0 Low numerical precision on keys.

Vase Manufactured E 0.3 Bakane CC BY-NC-SA 3.0

Table 1. Table of SDFs from our dataset. Under Type, E means exact, and C means conserva-

tive. Render is the time to sphere trace that SDF at 1280×720 resolution on an NVIDIA RTX

Titan. We credit original authors by surname or shadertoy.com username. The GLSL

files contain detailed copyright and source information.
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Another contribution is a set of shaders, which we call samplers, that evaluate

large numbers of points generated from a pattern built into the sampler. This makes it

easy to generate vast amounts of training and validation data for deep-learning appli-

cations.

3.2. Design Principles

We designed our dataset with several key features in mind.

Efficiency. Because most algorithms evaluate SDFs at millions of input points, we

have designed our models with efficiency as a top priority. Since each point is com-

puted independently from the others, SDF evaluation is embarrassingly parallel and

can therefore take advantage of GPUs. Our SDFs are implemented as standalone

pieces of GLSL shader code designed to run on GPUs.

Extensibility. The only requirement for our SDF shaders is that the shader imple-

ments a function called sdf() that accepts an input of a 3D point, and optionally

a time, and returns a float describing the function’s signed distance for that point.

This design makes it easy to extend the dataset. To add a new SDF, write a GLSL

shader that implements the sdf() function as above, and then place it in the folder

tree of SDF shaders. Because different algorithms require different SDF sampling

schemes, our samplers are also extensible in the same fashion by implementing the

sdf sampler() function. Listing 1 shows an example of an example shader that

implements a spherical SDF. Note that to properly render this SDF, the SDF needs to

be conservative.

Usability. To provide a smooth user experience for different work loads, we provide

command-line tools to sample from the shader and create rendered images even on

headless setups, locally or on the cloud. This means that programmers can treat the

dataset as a standard API, and we also make available PyBind11 bindings to directly

stream points into a NumPy tensor.

// Adding a new SDF is really as simple as adding a single function.

float sdf(vec3 p)

{

return length(p)-0.5;

}

Listing 1. Adding a new SDF.
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3.3. Dataset Collection and Preprocessing

Many of our functions were derived from SDFs originally found “in the wild” from

various internet sources, where they often contained a variety of undesirable artifacts

and special cases. For example, many of our functions came from the ShaderToy

archives [Quilez and Jeremias 2017], where SDFs are often designed only for specific

camera angles, and the distance functions are not sufficiently conservative from other

angles.

We closely examined and often revised or rewrote each candidate SDF. We first

extracted the SDF from the context of the full program in which it was found (we

credit the source and author at the top of each such shader and also show that in-

formation within our visualization tool). We then removed any shading or material

computation from the source and wrapped the SDF with our single-function interface.

We transformed the domain of each SDF so that the level 0 isosurface fit within an

axis-aligned cube from −1 to 1 along each axis, centered at the origin. We rotated the

domain so that the SDFs all had similar orientation with their “fronts” facing along

the positive X-axis and “tops” facing along the positive Y-axis.

We then investigated the SDF throughout space using the explorer tool described

in the next section. In cases where the SDF was an approximation that was not con-

servative, we scaled the entire range until it was conservative. We then optimized

some of the more complicated SDFs by simplifying logic or removing selected parts

that were disproportionately expensive.

Even with all of this cleanup, some of the SDFs in the dataset reveal artifacts in

some situations. Table 1 identifies the issues for those functions that have issues. As

an example, Figure 9 shows a close-up of a piano’s keys. We can see two types of

errors. The first is that although the white keys are modeled separately, they actually

overlap and appear as a solid block. The second problem is evident in the smaller keys

Figure 9. Some problems in an SDF. Left: A grand piano. Right: A close-up of the keys.

The smaller keys (black on a real piano) appear jagged on one side due to the accumulation

of numerical errors.
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(colored black on an actual piano). Each black key is a copy of a single prototype.

Though it appears to be a six-sided block, it is actually composed of a large number

of simpler primitives. The prototype key shape was repeated with a variety of trig

functions to create all the smaller keys. The result is an accumulation of numerical

errors that cause a side of some keys to appear jagged and disfigured.

4. The Explorer

We built a visualization and analysis program for exploring the dataset and interac-

tively debugging new SDFs. We provide platform-independent source that we tested

on Windows, macOS, and Linux. The user interface for this program is shown in

Figure 10. Additional features are exposed through a command line batch-processing

interface.

Figure 10. The user interface for the explorer tool, here visualizing the Fish SDF using an

emerald matcap. Each of the on-screen elements can be configured, including copyright text

display and background image.

The next sections describe key components of this visualization program.

4.1. Shading

SDFs are purely mathematical functions with no surface decoration. Smooth, fea-

tureless shapes can be hard to interpret by eye. One way to improve their legibility

is to add surface detail with analytic shading. This requires finding a surface normal,

which we compute from the finite differences of six samples of the SDF. We can then

apply Gooch-style wrap shading [Gooch et al. 1998] by fading between warm and

cool colors based on the direction of the normal with respect to the viewer.

We additionally add view-dependent shading effects through material capture (or

matcap) shading [Sloan et al. 2001]. A matcap is like an environment map, but instead

of retrieving a reflection color based on a normal, the diffuse color is directly retrieved

from a texture. Matcap shading allows us to quickly switch between different types
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(a) (b) (c) (d) (e)

Figure 11. Five of the many shading options supported by the SDF Explorer tool, applied

to the OldCar model. (a–c) Three examples of data-driven matcap shading. Thousands of

matcap spheres are available online. (d) Surface normal (x, y, z)-values mapped to (r, g, b).

(e) Magnitude of the mean curvature visualized as a gradient from flat (black) to maximally

curved (red).

of surface materials, simulating even complex surface shaders. Matcap textures are

readily available from online repositories,1 although we do not distribute any with our

dataset because many have unknown copyright, licence, and provenance. We addi-

tionally compute ambient occlusion using a real-time approximation [Evans 2006].

We also support some special shading modes, such as colorized surface normals.

We can display the mean curvature over the surface, as this quantity is useful for

many geometry-processing algorithms such as surface fairing [Desbrun et al. 1999].

For SDFs, the mean curvature amounts to the second-order derivative, which we com-

pute using finite differences. We visualize the absolute value of the mean curvature by

colorizing the surface with a gradient. Figure 11 shows examples of matcap shading,

surface-normal shading, and mean-curvature shading.

4.2. Interactivity

Our explorer can deliver images of SDFs at interactive rates on most modern com-

puters, which is important for exploring the space and moving the camera and model

in real time. For example, at a resolution of 1280×720, we measured 15 frames per

second (fps) using a 2017 MacBook’s Intel(R) Iris(TM) Plus Graphics 64 GPU under

macOS, and over 150 fps for a 2019 Windows 10 desktop with an NVIDIA GeForce

2080 Ti GPU. It provides 200–400 fps on a NVIDIA GeForce RTX 3090 GPU at

1920×1080 resolution, depending on the complexity of the SDF. Table 1 show tim-

ings of these SDFs.

4.3. Visualization

3D fields such as SDFs can be challenging to understand, because their volumetric

nature is difficult to draw and comprehend. A common tool for addressing this is to

show cross-sections and projections of the field on an arbitrary plane that a person

can manipulate in real time. We provide this plane, commonly referred to as a cutting

plane, as an interactive object.

1https://github.com/nidorx/matcaps
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Figure 12. Rendering with a cutting plane. The black line corresponds to the zero level-set,

and the lighter lines show the isocurves at equally-spaced thresholds.

Our explorer highlights the level 0 set with a thick black line and provides two

color cues for the value of the SDF. A color gradient from yellow to blue runs from

zero to increasingly positive values. The interior (negative values) are colored with

solid orange. We also draw isocontours for different values of the SDF, spaced 1/64

units apart. Figure 12 shows an example of the cutting-plane visualization.

A significant feature of the cutting plane is that it lets us see the structure of the

SDF in space. Rendering an SDF usually means showing its zero set, so we don’t see

the underlying 3D field. Sometimes problems in the zero set are the result of larger

issues in the spatial field. Other times we may want to perform operations on the level

sets (like produce offset surfaces by selecting a non-zero set), only to find that the

shapes are unexpected or even degenerate.

For example, when rendering the snake object from Figure 8, we found that it

consumed far more time per frame than we expected. Visualizing the SDF using the

cutting plane in Figure 13, we can see why: the field is a truncated field, which never

exceeds a maximum value. We can see this issue on the cutting plane because after

the first few contours, the cutting plane is just a solid color, rather than displaying

more contours. Thus no matter how far a point is from the snake, the SDF will always

report that we’re no farther than that maximum.

Figure 13. Diagnosing a slow render time. The contour lines on the cutting plane show that

this snake was modeled with a truncated SDF, because after a certain distance the contours no

longer appear. This explains the slow rendering time for this model.
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Figure 14. Detecting SDF discontinuities. Middle: A car with its SDF on a cutting plane.

Left: A close-up from the center-top of the cutting plane, showing disconnected contour lines.

Right: A close-up from the right side of the cutting plane, showing contours lines touching

one another.

Some SDFs can be discontinuous, where the field jumps from one value to an-

other. Though the zero set can look fine, when we move outwards from that set (to

create an offset surface, for example, or use the SDF to control a simulation), we can

get unexpected results. These discontinuities can be revealed by our explorer in two

ways, both shown in Figure 14. In the center of Figure 14 we show a car and its SDF

on a cutting plane through the middle of the vehicle. At the left of Figure 14 we show

a close-up from the center-top of the cutting plane, where discontinuities are shown

by disconnected contours. The right image of Figure 14 shows a close-up from the

right side of the cutting plane, where discontinuities are revealed by contour lines that

touch.

The ability to examine cross sections interactively lets us discover discontinuities,

holes, and other imperfections. The SDF and the cutting plane can both be controlled

in real time using on-screen sliders.

4.4. Batch Sampling

SDFs are a particularly attractive shape representation for deep learning and are the

focus of active research.

We support this work with compute shaders for sampling the SDF at many points

following a pattern or distribution. The shaders can be invoked directly from GLSL, or

using our tool as a command-line utility invoked from a shell within any framework.

In each case, it performs GPU sampling at millions of points, returning large amounts

of data suitable for deep learning.

The command-line interface for batch sampling is shown in Listing 2.

sdf-explorer --sample <Pattern> <N> <SDF> <outfile>

Listing 2. Calling a sampler from the command line.
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We look at these arguments in order:

<Pattern> is the base name (i.e., no path or filename extension) of a GLSL file

in the sampler directory. This is extensible by users. The provided patterns are:

grid A regular, axis-aligned 3D lattice within a 2× 2× 2 cube about the origin.

When the argument <N> is not a perfect cube, this takes the first <N> points from

the rounded-up sequence of ⌈ 3
√
N⌉3 samples.

image A regular, axis-aligned 2D lattice within the 2 × 2 square in the z = 0

plane centered at the origin. When the argument <N> is not a perfect square, this

takes the first <N> points from the rounded-up sequence of ⌈
√
N⌉2 samples.

jitter Jittered points within the lattice from the grid pattern. These may fall up to

half a lattice cell width outside of the 2× 2× 2 sampling cube.

metropolis Importance sampled towards the zero level set using the Metropolis-

Hastings algorithm.

metropolis curvature Importance sampled towards areas of high absolute cur-

vature on the zero level set.

near Points displaced slightly along the gradient direction from the surface set.

The displacement magnitudes have a Gaussian distribution with mean 0 and stan-

dard deviation 0.005, and are clamped to the range [−0.3, 0.3].

rand Points selected uniformly at random within the 2 × 2 × 2 cube about the

origin.

surface Points on the surface discovered by tracing random rays.

Figure 15 shows point clouds sampled using several of these samplers.

(a) Surface (b) Near Surface (c) Curvature (d) Random

Figure 15. Visualizations of four different patterns from our samplers. Each point cloud

contains 1 million samples. The coloring comes from assigning the (x, y, z)-components of

the SDF’s surface normal at each point to red, green, and blue, respectively.
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Value Count Format

N 1 uint32

Position x, y, z N float32 × 3

s(x, y, z) N float32

Gradient ∇s(x, y, z) N float32 × 3

Table 2. Structure of an output file

<N> is a positive integer, specifying the number of samples to compute.

<SDF> is the SDF to sample. The parameter is the base name of a file in the

sdf directory hierarchy. This set is extensible. The provided files for our dataset are

shown in Figure 8.

<outfile> is the output file to write the result to, relative to the current directory.

This is a binary file using platform-native endian encoding, following the format in

Table 2.

The surface and near sampling strategies each make 100 attempts per sample to

find the surface using a random ray. In order to give a guaranteed running time, they

will then fail and return a result that is all NaN (floating point not-a-number) for the

position, SDF value, and gradient in the file.

Our samplers can be directly used from Python-based deep-learning training

pipelines through the provided PyBind11 bindings. Listing 3 shows the code snip-

pet used to load the byte array in C++ directly into a Python tensor.

Listing 4 additionally shows an example of a Python script that uses PyBind11

bindings to execute the sampler, read the binary, and then visualize the sampled point-

clouds using Open3D [Zhou et al. 2018].

4.5. Building and Running

Our code has been tested for Windows, macOS, and Linux. The source depends

on the G3D Innovation Engine [McGuire et al. 2017]. For efficiency, the program

uses sphere tracing for visualization. The program can be run interactively, or as a

command line utility for producing sampling datasets and images in batch scripts.

This can be useful during deep-learning training or other optimization processes.

We provide a precompiled 64-bit Windows executable of the explorer. To re-

build that or to build it on other platforms, install G3D (SVN revision 7096) from the

instructions at https://casual-effects.com/g3d. Then, run the provided

Visual Studio 2019 solution file on Windows or the compilation script icompile

--opt from G3D in the root directory of the explorer on Linux or macOS.

For each OS, the executable can be run directly from the command line to out-

put to a file (see Section 4.4 for the arguments). If the program is invoked without

any arguments, it opens a window and displays the interactive user interface. To
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// This C++ function is called from Python via PyBind11,

// and the inputs are tensors to populate.

bool deserialize(py::array_t<float> sTensor,

py::array_t<float> dTensor,

py::array_t<float> nTensor,

std::string filename) {

// Request buffers and pointers

py::buffer_info sBuf = sTensor.request();

py::buffer_info dBuf = dTensor.request();

py::buffer_info nBuf = nTensor.request();

auto *pPtr = (float *) pBuf.ptr;

auto *dPtr = (float *) dBuf.ptr;

auto *nPtr = (float *) nBuf.ptr;

auto idx = [&](int i, int j) -> size_t { return i*3 + j; };

// Open stream to read input

fs::path binaryPath(filename);

std::ifstream f(filename, std::ios::binary);

// First 4 bytes is the size, then read arrays

int n;

f.read((char*)&n, sizeof(int));

for (uint32_t i = 0; i < n; i++) {

// Read XYZ position

float sample[3];

f.read((char*)&sample[0], 3 * sizeof(float));

sPtr[idx(i, 0)] = sample[0];

sPtr[idx(i, 1)] = sample[1];

sPtr[idx(i, 2)] = sample[2];

}

for (uint32_t i = 0; i < n; i++) {

// Read signed distance

float dist;

f.read((char*)&dist, 1 * sizeof(float));

dPtr[i] = dist;

}

for (uint32_t i = 0; i < n; i++) {

// Read normals

float sample[3];

f.read((char*)&sample[0], 3 * sizeof(float));

nPtr[idx(i, 0)] = sample[0];

nPtr[idx(i, 1)] = sample[1];

nPtr[idx(i, 2)] = sample[2];

}

f.close();

return true;

}

Listing 3. Reading the Byte Array in C++ into a Python tensor.
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import os

import torch

import subprocess as sp

import sdf_deserializer

import open3d as o3d

# Paths

# Set these for your installation

viewer_path = "path/to/sdf-explorer/build"

sample_path = "path/to/samples"

pattern = "near"

N = 1000000

sdf = "Fish"

bin_path = os.path.join(sample_path, f"{pattern}/{sdf}.bin")

cmd = f"sdf-explorer --sample {pattern} {N} {sdf} {sample_path}"

# Sample points using the G3D SDF explorer,

# by executing the CLI program

proc = sp.check_output(cmd.split(), shell=False, cwd=viewer_path)

# Deserialize directly from bin->torch.Tensor

# Takes as input the position tensor, the distance tensor,

# the normal tensor, and the filepath of the binary format.

pos = torch.zeros((N, 3), dtype=torch.float32)

dist = torch.zeros((N, 1), dtype=torch.float32)

normal = torch.zeros((N, 3), dtype=torch.float32)

sdf_deserializer.deserialize(pos, dist, normal, bin_path)

# Remove invalid points, marked by a NaN value

valid_idx = pos.sum(1).isnan()

pos = pos[valid_idx]

normal = normal[valid_idx]

# Prepare point visualization in Open3D

normal = (normal + 1.0) / 2.0

vis = o3d.visualization.Visualizer()

vis.create_window(height=720, width=1280)

pcd = o3d.geometry.PointCloud()

pcd.points = o3d.utility.Vector3dVector(pos)

pcd.colors = o3d.utility.Vector3dVector(normal)

vis.add_geometry(pcd)

vis.run()

vis.destroy_window()

Listing 4. Python script to sample, load, and visualize our dataset.
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build the explorer for running on a Linux cluster that does not have a display, set

#define USE_EGL 1 at the top of App.cpp to create an EGL graphics context and

run with the --headless argument.

4.6. Additional Features

Our explorer offers a variety of helpful features for understanding SDF fields and

communicating that insight with others. Most of these features are inherited from the

underlying G3D Innovation Engine code on which we build.

We can reload all of our shaders, both for shapes and samplers, on demand (by

pressing F5), even while the explorer is running. This is convenient for debugging

your own SDFs or carrying out extended exploration of the dataset and shaders by

modifying them interactively. If your modifications create a shader syntax error, a

dialog will report the problem. You can correct the error and press “Reload” on that

dialog without restarting the program.

You can save screenshots (press F4) and animations (press F6) of your interac-

tive session. Screenshots will save to the directory from which the executable was

launched. By default screenshots are in JPG format and animations are in MP4 for-

mat at half resolution. To change these settings and optionally enable capturing the

user interface dialogs, press F11 to bring up the advanced developer controls and then

select the movie slate icon.

To change advanced camera settings, press F11 to bring up the advanced devel-

oper controls and select the camera icon. This allows control over the tone map-

ping, the camera’s field of view and clipping planes, post-process antialiasing, and

vignetting. You may also set the camera to an explicit numerical position and orien-

tation from this window.

To move the camera interactively, right click on the 3D part of the view and hold

down the right mouse button. Use the mouse to rotate, and use the arrow keys or the

W, A, S, and D keys to translate the camera in the style of a first-person video game.

The Z key will translate up and the C key will translate down. Hold Shift to move

more quickly and Alt to move more slowly. Game controllers are also supported.

All of the features above may be specified via the command-line interface or

through the programming API. Thus it is possible to program systems that generate a

wide variety of images and animations without direct human control.

We also provide various diagnostic information, such as shader profiling, and a

log.txt file that reports CPU and GPU use, as well as any program errors if it

should crash.
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5. Conclusion

We have presented two contributions in this paper. First, we have released a free and

open-source dataset of 63 curated, hand-edited, and validated signed distance fields

offering a wide variety of shapes and complexity. Our SDFs are encoded in standard

GLSL shaders, so they can be conveniently incorporated in existing code. The dataset

can be easily extended by writing new shaders that support a single function call.

Our second contribution is an explorer that supports two important tasks. First,

our explorer provides real-time interactive visualization of SDFs in 3D, along with a

cutting plane that reveals contour lines of the function in space. Both the shape and the

cutting plane may be moved and oriented interactively. The system can record images

or animations. We provide all of our options through a command-line interface and

an API, so users can generate images and animations programmatically.

Second, our explorer offers a convenient process for creating sample data appro-

priate for use in other tasks, especially training and testing deep-learning systems. A

second class of GLSL shaders define different sets of patterns of points in space. The

system evaluates the SDF at those points, and returns the results. This process may

also be invoked from the command line or via an API.

Our entire dataset is available under the specified open source and Creative Com-

mons 3.0 licenses and may be downloaded from our public git repository and GitHub-

hosted website. Our C++ and Python source code in the repository is available under

the MIT license.

We encourage others who develop new SDFs and general-purpose shading sam-

plers to submit a pull request in our public repository so we may consider their inclu-

sion in future versions of the dataset.

It is our hope that these reliable and diverse SDFs, along with our explorer which

offers visualization and evaluation, will help make it easier to work with SDFs, com-

pare the output of different algorithms, and encourage the creation of new and pow-

erful applications of this flexible form of shape representation.
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