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Figure 1. Left: A bunny shape represented by a grid-based signed distance field after being
deformed by an incompressible curl-noise vector field. Right: The implied surface of a grid
of randomly generated level set values in a cube domain. Our method efficiently evaluates
the volume of these implicitly represented shapes without building a mesh, achieving faster
performance over competing methods and generating volume results perfectly consistent with
the explicitly reconstructed Marching Cubes meshes.

Abstract

We present an efficient and accurate volume evaluation method for grid-based level sets
that computes the volume of the implicitly represented shape(s) in a manner consistent with
Marching Cubes surface reconstruction. We utilize rotational symmetry to combine redundant
Marching Cubes cases and avoid explicitly forming local triangulations using efficient volume
computation formulae for pyramids and truncated prisms wherever possible, thereby achiev-
ing a fast and compact implementation. We demonstrate that our method is more efficient
than previous approaches while generating results that converge with second-order accuracy
and are perfectly consistent with volumes calculated directly from explicit Marching Cubes
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meshes. We provide a full C++17 reference implementation to foster adoption of the proposed
method (https://github.com/tetsuya-takahashi/MC-style-vol-eval).

1. Introduction

The level set method has been extensively used to perform numerical analysis on
deforming, implicitly represented shapes (typically using a Cartesian grid) due to
its various benefits, e.g., efficiency due to the regular grid structure and trivial han-
dling of topological changes [Osher and Fedkiw 2004]. Another advantage is that
marching-based surface reconstruction of level set data (e.g., using Marching Cubes
(MC) [Lorensen and Cline 1987], Marching Tetrahedra (MT) [Doi and Koide 1991],
or Marching Squares (MS) [Maple 2003]) is guaranteed to yield manifold, watertight
meshes, except at the outer domain boundary. These features of the level set method
have been critical in many applications, e.g., image processing, fluid simulation, and
topology optimization.

In many such applications, the volume of a given shape is an important geometric
quantity. However, the shape represented by the level set is modified at every step
of the level set method, thus changing the volume. It is therefore essential to have
a method that can accurately and efficiently evaluate level set volumes. An early
approach [Kim et al. 2007; Bridson 2016] approximated the level set volume using
8-point quadrature on a Heaviside function applied to the level set (essentially super-
sampling with a one-level finer interpolated grid), but this approach tends to be much
less accurate. Given the extensive use of MC to reconstruct surfaces, such as for
rendering or other downstream processes, it is also natural to ask that the computed
volumes be consistent with meshes reconstructed using standard MC. Although one
could directly compute such consistent volumes after fully reconstructing the MC
surface (e.g., using the usual triangle mesh volume calculation derived from the di-
vergence theorem), this approach is typically rather slow; many of the steps required
to build the triangle mesh are unnecessary if one desires only to compute volumes, as
is the case in various applications.

A challenge in rapidly evaluating MC-consistent volumes without a full recon-
struction is that, given each grid cell with eight level set corner values in 3D, we
have 256 (= 28) MC patterns, making it impractical to manually implement volume
computations for each case. To avoid this issue, Min and Gibou [2007] and Bridson
(within Batty’s viscous fluid code [2013]) decomposed a cubic cell into multiple tetra-
hedra (each of which has only 16 = 24 possible patterns) and individually evaluated
their partial interior volumes with MT-style surfaces, summing up these volumes to
get the total volume within the cubic cell. While this approach reduces implemen-
tation complexity, the decomposition into tetrahedra introduces directional bias and
artificial bumps in the implied surface [Hansen and Johnson 2004], which can nega-
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tively affect the surface quality for applications, especially if voxel-wise volume plays
a key role (e.g., [Bridson 2016]). In addition, the resulting volumes are inconsistent
with meshes reconstructed based on MC. (For surface meshing, MC is often advan-
tageous because it generates fewer triangles than MT, thus offering lower memory
usage and greater rendering efficiency.)

Wang [2013] instead presented a method for computing consistent volumes based
on MC without tetrahedral decomposition. This approach utilizes the rotational sym-
metry of each cubic grid cell to reduce the number of distinct MC cases and virtually
reconstructs the closed triangle mesh for a given MC case before computing the corre-
sponding volume using the divergence theorem. (By “virtually” we mean that, though
no persistent mesh is built, sufficient vertex and triangle information is determined to
enable the volume calculation.) Importantly, because volume calculation requires a
closed volume, triangles must be formed not only for a cell’s interior surface (as in
MC), but also for any full or partial exterior faces of the cube deemed to be inside the
material; thus, upward of a dozen triangles are often needed just for a single cell. We
found that although this approach avoids fully reconstructing the surface, the virtual
reconstruction of local MC triangulations is nevertheless costly. In addition, Wang
[2013] neglected certain triangulation patterns that are needed to ensure proper con-
sistency with MC tables (e.g., [Bourke 1994]).

In this paper, we present a more efficient, numerically verified, MC-style volume
evaluation method. Our method utilizes rotational symmetries to reduce the num-
ber of distinct MC cases (much like Wang [2013]), but we employ a faster hybrid
approach to volume computation that significantly reduces the required arithmetic
operations: in many common cases where the implied polyhedron in a cell can be de-
composed into pyramids and truncated prisms, we directly compute their volumes
with appropriate formulas, without any boundary triangulation. In the remaining
cases, similar to Wang [2013], we use the divergence theorem to compute per-cell
volumes from virtually reconstructed meshes based on the MC table [Bourke 1994].
This hybrid approach minimizes unnecessary triangle reconstructions for efficiency
while generating consistent results. We further distinguish our work from that of
prior authors on this subject [Min and Gibou 2007; Wang 2013] by providing the full
source code (in C++17) as a convenient reference for future implementers (https:
//github.com/tetsuya-takahashi/MC-style-vol-eval). For com-
pleteness, the provided code includes not only our 3D MC-style volume evaluation
method, but also the corresponding 3D MC-style surface area evaluation method,
along with analogous 2D MS-style area and perimeter evaluation methods (see Ap-
pendix A).
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Figure 2. Overview of our MC-style volume evaluation. Our method takes eight level set
values for a cube and identifies its MC case. We apply rotations to the cube to match one of
the predetermined 23 MC cases, and then compute the volume either from the level set values
directly (exploiting shared arithmetic patterns if applicable) or from triangle areas using the
divergence theorem.

2. Marching-Cubes-Style Evaluation

In this section, we describe our MC-style evaluation method for level set values φ
defined on a uniform Cartesian grid. Following the traditional definition, we treat
regions with φ < 0 as inside, φ = 0 as interface, and φ > 0 as outside [Osher and
Fedkiw 2004]. Technically, our algorithm does not rely on the grid data φ satisfy-
ing the eikonal equation ‖∇φ‖ = 1, i.e., φ is not required to be a signed distance;
therefore our method can be used to approximate the volume of the zero isocontour
of any grid-sampled implicit surface. We process the entire space cell by cell in the
MC fashion and explain how to process each cube.

2.1. Volume Evaluation

Figure 2 illustrates an overview of our volume evaluation algorithm. Our method
takes eight level set values for each cube as input. Then, we identify the cube’s MC
case from the 256 possible cases based on the eight level set values. This operation
can be performed using the publicly available MC templates [Bourke 1994].

As it is impractical to manually implement volume computations for each of the
256 cases, we utilize rotational symmetries to reduce the number of unique MC cases.
Applying the 24 possible rotation patterns for a cube [Baker 2021] allows us to re-
duce the unique MC cases from 256 to 23 [Newman and Yi 2006] (see Figure 3 for a
visualization of all the cases, numbered Case00 through Case22). Here, we note that
although we have only 23 MC cases, triangulation patterns are not necessarily unique
for each case, depending on the used MC table and cube rotations. Specifically, the
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Figure 3. The 23 MC cases, with two distinct triangulation patterns for Case09 illustrated as
Case09-A and Case09-B. Red disks denote inside.

widely used MC table by Bourke [1994], which we follow, needs at least two tri-
angulation patterns for Case09 (identified as Case09-A and Case09-B in Figure 3),
whereas the other cases can be uniquely triangulated with a single MC template.

The approach of Wang [2013] computed volumes for the 23 cases (albeit without
distinguishing Case09-A/B) by virtually reconstructing a closed volume of triangles
and applying the divergence theorem. Our key observation is that, for around two-
thirds of the 23 cases, it is possible to more efficiently compute volumes directly from
the level set values themselves without reconstructing triangles at all. Those cases
are the ones for which the MC algorithm would generate fewer than four connected
triangles. Our approach is to decompose the implied polyhedron within a cube into
pyramids and truncated prisms and compute their volumes with known formulas. Al-
though we explored the application of this approach to the remaining cases (i.e., those
that yield four or more connected MC triangles), the number of decomposed shapes
with newly generated boundaries becomes too large, making the direct volume com-
putation inefficient. As such, we adopt our fast decomposition strategy where it is
beneficial, and otherwise fall back to the divergence theorem–based strategy of Wang
[2013] (with a few additional minor speed and consistency enhancements). Let us
now consider the various cases in detail.

Case00 and Case22 are special cases that do not require any MC triangulation; we
simply return 0 and 1 as their volumes, respectively.
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Figure 4. Definition of original vertices at the cube corners with the prefix v and newly
generated vertices on the edges with the prefix e.

In the following cases, we decompose the implied polyhedron into one or more
pyramids and truncated prisms whose volumes can be directly computed from level
set values via the well-known volume formulas for pyramids

V =
1

3
Ah, (1)

where V denotes the volume, A the area of the base polygon, and h the height of the
pyramid, and truncated prisms

V =
1

3
A(h1 + h2 + h3), (2)

where h1, h2, h3 denote the three heights of the truncated prism. These A, h, h1,
h2, and h3 can be directly determined from level set values. In addition, as certain
decomposed shapes can appear in multiple cases, we reuse their volume computations
for conciseness. We define these shared computation patterns as P1, P2, and P21
because they correspond to Case01, Case02, and Case21, respectively. (Although
P1 and P21 are complementary, we found it slightly simplified the implementation
to treat them distinctly.) P1, P2, and P21 take level set cube corner (vertex) values
as inputs (e.g., P1(c0, c1, c3, c4) describes P1 taking the level set values at vertices
0, 1, 3, and 4). To reduce the computational cost for Case17, Case18, Case20, and
Case21, we first compute the volume of the cube outside of the implicit surfaces and
then determine the interior volume from the complement; we indicate this with the
superscript ∗. We list the vertices of the decomposed shapes (R for pyramid and S
for truncated prism), using the notation v for cube vertices and e for newly generated
edge vertices (see Figure 4):

• Case01: P1(c0, c1, c3, c4)

• Case02: P2(c3, c0, c4, c2, c1, c5)
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• Case03: P1(c0, c1, c3, c4), P1(c5, c1, c6, c4)

• Case04: P1(c0, c1, c3, c4), P1(c6, c7, c5, c2)

• Case05: R(v1, v2, v3, e3, e0, e9), R(v3, v2, e10, e11, e9), R(v3, e3, e9, e11)

• Case06: P2(c3, c0, c4, c2, c1, c5), P1(c6, c7, c5, c2)

• Case07: P1(c4, c0, c5, c7), P1(c1, c0, c2, c5), P1(c6, c7, c5, c2)

• Case08: S(v0, v1, v2, e8, e9, e10), S(v0, v2, v3, e8, e10, e11)

• Case10: P2(c4, c7, c6, c0, c3, c2), P2(c2, c1, c0, c6, c5, c4)

• Case12: R(v1, v2, v3, e3, e0, e11), R(v1, v2, e10, e9, e11), R(v1, e0, e9, e11),
P1(c4, c0, c5, c7)

• Case13: P1(c4, c0, c5, c7), P1(c1, c0, c2, c5), P1(c6, c7, c5, c2), P1(c3, c0,
c2, c7)

• Case17∗: R(v1, v2, v3, e3, e0, e9), R(v3, v2, e10, e11, e9), R(v3, e3, e9, e11)

• Case18∗: P21(c0, c1, c3, c4), P21(c6, c5, c2, c7)

• Case20∗: R(v0, v1, e1, e3, e8), R(v1, e1, e9, e8)

• Case21∗: P21(c0, c1, c3, c4)

To illustrate one nontrivial example, Figure 5 shows the decomposition into three
pyramids for Case05.

For the remaining cases, we largely follow the work of Wang [2013], which com-
putes volumes based on the divergence theorem applied to a surface triangulation.
However, we improve the performance in two ways. First, to compute areas of axis-
aligned faces lying on the cube’s exterior, we directly compute areas of these poly-
gons without triangulation. Second, because polygons located entirely on x = 0,
y = 0, or z = 0 do not contribute to the volume, we simply omit these compu-
tations. In addition, to achieve perfectly consistent results with respect to March-
ing Cubes meshes, we address the two distinct triangulation patterns for Case09 as
Case09-A and Case09-B (which Wang did not consider). In the following, we list
the vertices of polygons that contribute to the volume computation, using T for tri-
angle and Z for trapezoid (in addition to the computation pattern P1). Additionally,
for pentagonal axis-aligned faces, we compute their areas as the complement of the
corresponding triangle area outside the implicit surface, denoting such triangles with
the superscript ∗∗.

• Case09-A: T(e10, e7, e6), T(e1, e7, e10), T(e1, e8, e7), T(e1, e0, e8), T(v2, e1,
e10), T(v6, e6, e10)∗∗, T(v7, e6, e7)
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Figure 5. Example of polyhedron decomposition: the interior volume of Case05 can be
determined from three pyramids.

• Case09-B: T(e10, e1, e0), T(e6, e10, e0), T(e6, e0, e8), T(e6, e8, e7), T(v2, e1,
e10), T(v6, e6, e10)∗∗, T(v7, e6, e7)

• Case11: T(e0, e8, e11), T(e0, e11, e5), T(e0, e5, e1), T(e5, e11, e6), Z(e1, v2,
v6, e5), T(e6, v7, e11)∗∗, T(e5, v6, e6)

• Case14: T(e0, e3, e7), T(e0, e7, e10), T(e0, e10, e9), T(e6, e10, e7), Z(v1, v2,
e10, e9), T(e10, v6, e6)∗∗, T(v7, e7, e6)

• Case15: T(e1, e6, e10), T(e1, e7, e6), T(e1, e0, e7), T(e8, e7, e0), T(e1, v2,
e10), T(e10, v6, e6)∗∗, T(v7, e7, e6), P1(c5, c4, c1, c6)

• Case16: T(e1, e3, e6), T(e1, e6, e10), T(e3, e8, e6), T(e5, e6, e9), T(e8, e9, e6),
T(e1, v2, e10), T(e9, e5, v5), T(e10, v6, e6)∗∗, T(e5, v6, e6)∗∗

• Case19*: T(e8, e4, e5), T(e8, e5, e3), T(e9, e0, e5), T(e0, e3, e5), T(v5, e9,
e5)∗∗, Z(v2, v6, v7, v3), T(v5, e5, e4)∗∗

2.2. Surface Area Evaluation

Our MC-style volume evaluation algorithm can be naturally adapted to surface area
evaluation. Specifically, after we reduce the number of cases from 256 to 23 using
rotational symmetries, we determine the necessary surface triangles and evaluate their
areas. In this case, the difference from the work of Wang [2013] is simply that our
approach uses Bourke’s popular MC table [Bourke 1994], especially taking into ac-
count the two distinct triangulation patterns for Case09, to generate results perfectly
consistent with the corresponding MC mesh reconstructions.
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N v̂ εv µv â εa µa

323 0.112376 6.37372× 10−3 N/A 1.12716 3.37205× 10−3 N/A
643 0.112914 1.61699× 10−3 3.94 1.13001 8.53825× 10−4 3.95
1283 0.113052 4.03310× 10−4 4.01 1.13073 2.12861× 10−4 4.01
2563 0.113086 1.00607× 10−4 4.01 1.13091 5.31158× 10−5 4.01
5123 0.113094 2.51891× 10−5 3.99 1.13096 1.32906× 10−5 4.00

Table 1. Results of our MC-style evaluation with a sphere with radius r = 0.3 m, volume
v = 4

3πr
3 = 0.113097 m3, and surface area a = 4πr2 = 1.13097 m2, where N denotes the

grid resolution, v̂ the computed volume in m3, â the computed surface area in m2, εv and εa
relative errors for volume and area, respectively, and µv and µa the error ratios for volume
and area, respectively.

3. Results and Discussions

We implemented our method in C++17. All of our experiments are executed using a
single thread on a machine with an Intel Core i7-9700 CPU and 16 GB RAM.

Sphere To evaluate the correctness of our method, we first experimented with a
sphere having radius r, with ground truth volume v and surface area a determined an-
alytically by v = 4

3πr
3 and a = 4πr2, respectively. Table 1 shows that the computed

volume and area converge toward the analytical solutions at the expected second-order
rate with increasing grid resolution.

Bunny To evaluate the method in more general scenarios, we first tested with a
bunny shape that has been advected for 30 frames under an incompressible velocity
field generated by curl-noise [Bridson et al. 2007], with a grid resolution of 2563

(see Figure 1 (left)). As the analytical solution is not available, we consider the
ground truth to be the volume computed directly from the watertight, explicitly MC-
reconstructed triangle mesh with the templates of Bourke [1994]. We implemented
and compared the following four schemes:

• Supersampling, which sums up eight subvoxels’ volumes per cell, determining
their insideness based on the interpolated level set value at the subvoxel center
(e.g., [Kim et al. 2007; Bridson 2016]);

• MT, which uses MT-style volume computation based on Bridson’s implemen-
tation within Batty’s viscous liquid simulator code [Batty 2013] (see volume
fractions.cpp), applied to six tetrahedra decomposed from a cube, with
an augmentation using MC-based early pruning (if all of the cube’s eight level
set values are negative or positive);
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• MC, which uses MC-style volume computation based on the divergence the-
orem approach [Wang 2013] using Bourke’s popular MC template [Bourke
1994], except without proper handling of Case09-A/B;

• MC (ours).

Table 2 compares the results at the last frame. Our method is much more accurate
than other methods and generated the same result as the ground truth up to machine
precision; we achieve this because we designed our method to be consistent with the
MC Table of Bourke [1994], taking into account the multiple triangulation patterns
(Case09-A and -B), which contrasts with MC [Wang 2013]. Supersampling [Kim
et al. 2007] was slower than the others because it always needs to evaluate eight level
set values at the subvoxel centers. MT [Batty 2013] was slightly faster than both MC
[Wang 2013] and our method in this scene because computations for individual tetra-
hedra within each cube can be pruned more frequently for simpler implicit surfaces.
Our method is about 8% faster than Wang’s, which is the next most accurate alter-
native. Though this net speedup is modest, note that only surface cells can benefit
from our improved numerics: for shapes that have low(er) surface-to-volume ratios,
the majority of cells fall into Case00 or Case22, i.e., trivially have volume 0 or 1.
Depending on the application, one may be able to replace the dense grid with a nar-
row band data structure to near-instantly cull out most such “deep” cells, and thus the
relative computational benefit of our scheme would correspondingly increase.

Random For a much more challenging scenario with a high surface-to-volume ra-
tio, we randomly generated level set values between −1 and +1 with a fixed value
(+1) at all the outermost cells to ensure watertight meshes, using a grid resolution
of 2563 (see Figure 1 (right)). Table 2 compares the results for the four schemes.
In this experiment, our result was again significantly more accurate than the others,

Scene Scheme v̂ εv T

Bunny Supersampling [Kim et al. 2007] 0.193523 5.4300× 10−4 0.311
MT [Batty 2013] 0.193608 1.0281× 10−4 0.119
MC [Wang 2013] 0.193628 4.0356× 10−7 0.150

MC (ours) 0.193628 2.3509× 10−14 0.138
Random Supersampling [Kim et al. 2007] 0.490858 1.59518× 10−1 0.714

MT [Batty 2013] 0.491359 1.60702× 10−1 0.923
MC [Wang 2013] 0.423330 2.28025× 10−6 1.196

MC (ours) 0.423329 2.20692× 10−13 0.640

Table 2. Results of volume evaluation with a deformed bunny and randomly generated level
sets (Figure 1), where v̂ denotes the computed volume in m3, εv the relative error for volume,
and T the computation time in seconds.
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Figure 6. Inviscid (top) and viscous (bottom) liquids dropped onto a static dragon.

matching the ground truth up to machine precision. In addition, because of our direct
volume evaluation and optimized area computation techniques, our method is 1.87×
faster than MC [Wang 2013], which may be considered a rough upper bound on our
method’s performance benefit. Our surface area evaluation method can also be ap-
plied to this example, and we obtained a relative error of 3.47709×10−13, once again
matching the ground truth value up to machine precision. Though such an appar-
ently extreme stress test geometry will arise only infrequently in liquid animations,
qualitatively similar dense foam-like (micro-)structures are increasingly important in
additive manufacturing and topology optimization [Martı́nez et al. 2016; Zhu et al.
2017].

Spherical liquid on dragon To compare the performance of the four schemes in
a practical animation scenario, we separately simulated inviscid and viscous liquid
spheres dropped onto a static dragon using a grid resolution of 963 over 200 frames
(see Figure 6) and evaluated the liquid volume at each step. Figure 7 compares the re-
sults for the computation time (left) and relative overhead with respect to our method
(right), and Table 3 summarizes their averaged results. In these examples, the vast
majority of cells are perfectly inside or outside and so undergo the same pruning
treatment under all methods, except Supersampling [Kim et al. 2007]; thus our new
hybrid scheme achieves only slightly better performance on most frames. However,
when the relative liquid surface area increases, e.g., due to dramatic splashing of the
inviscid liquid (for several frames starting around frame 40), our enhancements are
more frequently exercised, thus exhibiting a more distinct performance benefit.

4. Conclusions

We have presented our efficient MC-style volume evaluation method, which possesses
the following key features:
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Figure 7. Profiles of the volume computation time and relative overhead with respect to our
method for Figure 6 with inviscid liquids (top) and viscous liquids (bottom).

Scheme Ti ri Tv rv

Supersampling [Kim et al. 2007] 0.09595 0.078938 0.050905 0.080098
MT [Batty 2013] 0.08989 0.010795 0.047365 0.004986
MC [Wang 2013] 0.09050 0.017654 0.047875 0.015807

MC (ours) 0.08893 N/A 0.04713 N/A

Table 3. Performance results on volume evaluation for Figure 6, where Ti and Tv denote av-
eraged per-frame computation times for inviscid and viscous liquids, respectively, in seconds
and ri and rv denote the relative overhead with respect to our method for inviscid and viscous
liquids, respectively.

• Our method is based on MC to avoid several MT issues (e.g., artificial bumps
and directional bias), in contrast to some previous work [Min and Gibou 2007;
Batty 2013], while achieving a compact implementation by exploiting rota-
tional symmetries and reusing shared computational patterns.

• Our method correctly computes the volume in a manner precisely consistent
with a widely used set of MC templates [Bourke 1994], unlike prior work
[Wang 2013; Min and Gibou 2007; Kim et al. 2007; Batty 2013], and demon-
strably converges at a second-order rate;

• Our method directly computes the volume from level set values in approxi-
mately two-thirds of the MC cases for efficiency while relying on the divergence-
theorem for the remaining cases, achieving faster performance over the work
of Wang [2013].
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Although we focused on consistency with respect to one specific and commonly used
set of MC templates [Bourke 1994], our overall strategy should be naturally extensible
to other tables and variants (e.g., Marching Cubes 33 [Chernyaev 1995]).

Our C++17 implementation of MC-style volume and surface area evaluation and
MS-style area and perimeter evaluation is available online at https://github.
com/tetsuya-takahashi/MC-style-vol-eval. Just as the many existing
freely available codes/tables for Marching Cubes serve as convenient workhorse rou-
tines for surface reconstruction, we hope that our tool can play a similar role for level
set volume, area, and length evaluations in both two and three dimensions.

A. Marching-Squares-Style Evaluation

Our framework can also be adapted to 2D MS-style evaluations of area and perime-
ter for implicit lines, which is useful for 2D problems as well as slices of 3D prob-
lems (e.g., for determining partial face areas for cut-cell finite volume fluid codes).
However, unlike MC, MS takes four level set values and has only 16 (= 24) cases.
Given the comparatively small number of MS cases, we directly compute the area and
perimeter of the implicit lines without utilizing rotational symmetries except for the
well-known ambiguous cases, whose implementation is slightly more involved. We
disambiguate these cases by checking whether the level set value at the cell center
(i.e., the average of the four corner values) is less than zero.

Circle Analogous to our 3D sphere test, we evaluated the correctness of our 2D MS-
style area and perimeter evaluation with a circle (radius r = 0.3 m), whose area a
and perimeter p can be analytically computed by a = πr2 and p = 2πr, respectively.
Table 4 shows that the computed areas and perimeters converge toward the analytical
solution at the expected second-order rate with increasing grid resolution.

N â εa µa p̂ εp µp

322 0.282138 2.14238× 10−3 N/A 1.88370 6.65718× 10−4 N/A
642 0.282579 5.81890× 10−4 3.68 1.88464 1.65452× 10−4 4.02
1282 0.282704 1.40595× 10−4 4.14 1.88488 4.14497× 10−5 3.99
2562 0.282734 3.44212× 10−5 4.08 1.88494 1.03709× 10−5 4.00
5122 0.282741 8.80409× 10−6 3.91 1.88495 2.59050× 10−6 4.00

Table 4. Results of MS-style area and perimeter evaluations with a circle with radius r =

0.3 m, area a = πr2 = 0.282743 m2, and perimeter p = 2πr = 1.88496 m, whereN denotes
the grid resolution, â the computed area in m2, p̂ the computed perimeter in m, εa and εp the
relative errors for area and perimeter, respectively, and µa and µp the error ratios for area and
perimeter, respectively.
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Random Lastly, we perform the 2D equivalent of our 3D random stress test, again
using randomly generated level set values (between −1 and +1) with a fixed posi-
tive value (+1) on the outermost cells to ensure watertightness. In this experiment,
the relative errors of our method for area and perimeter are 2.68864 × 10−15 and
1.91267× 10−14, respectively.

Index of Supplemental Materials

The single header-only C++17 source code of our method (which relies on the header-
only library Eigen (3.4.0) [Guennebaud et al. 2010] for simple 3D vector operations,
such as dot and cross products) for our MC-style volume and surface area evaluation
and MS-style area and perimeter evaluation is provided, along with a main.cpp

file to demonstrate its usage (https://github.com/tetsuya-takahashi/
MC-style-vol-eval). This code has been successfully built and run on Ubuntu
20.04.1 LTS with g++ 9.3.0 and Windows 10 with Visual Studio 2019.
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