
Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Kinematic Timing Curves:
Cartoon Physics with Ease

Arnie Cachelin
Apple

Figure 1. Animation timing curve controlled by three parameters, anticipation, midpoint, and
bounces, shown here as a smooth inertial curve and a cartoon physics curve with anticipation
and overshoot. The dots at the top are snapshots of the motion at equal time steps, so the
spacing is proportional to the speed.

Abstract

We analyze animators’ “cartoon physics” and apply appropriate constraints and boundary
conditions to Newton’s second law, to derive a simple model with intuitive parameters that
reproduces the effects of inertia, anticipation, and overshoot commonly found in both tradi-
tional animation and modern interactive graphics. Our model takes the form of a normalized
timing curve that is computationally efficient and should be easy to add to systems for produc-
ing motion graphics, mechanical visualization, and user interface animations. In its simplest
form, the model reproduces a standard smooth step curve, but with an alternate formulation
derived from basic kinematics.

22

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

1. Introduction

Traditionally, an animator making an object move from point A to point B would not
make the object instantly spring to motion with a constant speed, then stop abruptly.
That wouldn’t look natural. Rather, they would ease the object into and out of its
motion, so it would speed up gradually from point A, then slow to a smooth stop
at point B. That looks natural because objects have inertia; they have to gradually
accelerate to get moving and they can’t stop instantly, but need some braking distance.
So animators make things accelerate and decelerate, to represent the physical effect
of inertia [Lasseter 1987].

For convenience, many computer animation systems have encapsulated this be-
havior into generic ease-in/out timing curves, which can be applied automatically to
motions. By timing curve (or, often, ease curve) we mean functions x(t) defined for
0 ≤ t ≤ 1 with values also between 0 and 1 (mostly), where the horizontal axis
represents the fraction of the entire animation duration, and the vertical axis shows
the fraction of the progress from state A to state B. This is represented in Figure 1.
Because the curve is normalized, it can be scaled to accommodate motions of any du-
ration and preserve the character of the motion independently of the exact end points.
By defining them in a normalized space, these 1D curves can be applied to timing on
arbitrary (3D) transformations, or any other property animation with fixed start and
end times.

Though ease-in/out effects are standard in the interpolated keyframe animation
that artists would use to do actual cartoons, the timing curve is better suited to simple
animated state transitions. As a result, timing curves are widely used to animate
interactive visual elements of modern user interfaces (UIs), where studies show better
user experience with elements that are animated to behave as if they were physical
objects [Thomas and Calder 2001]. In fact, the inertia-simulating ease-in/out curve is
a standard feature in most UI libraries, and has been for years. Some UI toolkits even
include anticipation and overshoot effects, basic elements of cartoon animation.

Because timing curves are both standard and general, it is useful to express anima-
tion tropes beyond inertia using a timing curve. One of these effects is anticipation,
where the object pulls back a bit before going forward. Another familiar effect is
overshoot with oscillation, where the object does not manage to stop at point B, but
keeps going then snaps back, possibly oscillating back and forth about point B a few
times, as if it were caught by an elastic net, or spring. This is often referred to as
follow through. These effects happen in nature because of inertia and elastic restoring
forces; animators exaggerate them to bring their characters to life, and designers of
interactive graphics apply them to make their pixels feel substantial.

By solving the basic physics of motion for inertia and restoring forces and ap-
plying normalizing boundary conditions, we have created a simple model with man-
ageable parameters that can express these behaviors. This model extends the stan-

23

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Figure 2. A variety of expressive timing curves can be derived from the three parameters
anticipation, midpoint, and bounces.

dard no-parameter timing curve with three easy-to-visualize parameters: anticipation,
midpoint, and bounces. These parameters can give rise to a wide variety of expres-
sive behaviors, as seen in the timing curves in Figures 1 and 2. Because the model is
derived from Newtonian physics, the various behaviors produced will be physically
plausible, and thus realistic. We propose a new, physically based timing curve that
reproduces these animation effects. Specifically our contributions are the following:

• A physically based smooth ease curve that is easy to compute and can serve as
ground truth for evaluating other curves.

• A closed-form, generalized solution for the animation effects of inertia, an-
ticipation, and overshoot: a class of motion curves that can be challenging
to reproduce by hand, but simple enough that a physics simulation would be
overkill.

• A simple expression that reproduces these effects and smoothly blends between
them while maintaining physical realism. Controlled by three intuitive parame-
ters, it allows users to define physically correct procedural motions while main-
taining a high degree of control.

2. Related Work

Smooth motion interpolation with timing curves is intimately related to the piece-
wise interpolation of control points that form splines. Hermite-basis polynomials

24

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

have been used effectively to fit a cubic spline to interpolate a set of input points
[Plass and Stone 1983; Kochanek and Bartels 1984]. Kochanek used them to define a
multi-segment interpolating spline specifically for animation, with artist-friendly pa-
rameters that carefully limited speed discontinuities in service of physically realistic
animation.

Wiggly Splines [Kass and Anderson 2008] introduced a multi-segment spline
curve that can transition from a classic smooth curve to an oscillator with controlled
frequency. It is based on space-time constraints [Witkin and Kass 1988], a least-
action formulation for physics-based animation with multiple constraints. It is very
similar to this work in spirit, in the sense of applying physics to get analytic solutions
to replace, reduce, or art-direct simulation-based animations. These multi-segment
interpolation schemes are far more elaborate and complex than the following very fo-
cussed contribution, which abstracts two specific analytic solutions into a very simple
but general timing curve.

The Cartoon Animation Filter [Wang et al. 2006] proposed a filter-based process
for automatically applying anticipation and overshoot to motions. Analogous to the
unsharp filter in image processing, the Cartoon Animation Filter exaggerates the mo-
tion by subtracting a smoothed version of itself. With a single parameter to control
the strength of the effect and automatic processing of potentially large numbers of
keyframes, the filter is well adapted to bulk processing, if overkill for the simple ani-
mations where a timing curve could suffice.

Simple timing-curve–based animation is ubiquitous in graphical user interfaces,
controlling animations from widget motion to element transparency in an effort to
make graphical objects behave like physical objects. For years, UI toolkits [Hud-
son and Stasko 1993; Chang and Ungar 1993] have supported anticipation, ease-
in/out, and follow through, sometimes explicitly invoking cartoon animation. A gen-
eration later, user studies demonstrated benefits of cartoon animation in user inter-
faces [Thomas and Calder 2001]. At present, UI animations generally at least use
a smoothed ease-in/out timing curve for motion, and many APIs offer a variety of
other effects as well. The Android UI API, for example, includes nine interpola-
tor subclasses at this writing, which offer a number of combinations of anticipation,
overshoot, and inertia (Figure 3a). The cross-platform toolkit Qt includes 30 preset
timing curves, offering canned combinations of animation effects, both plausible and
otherwise, as shown in Figure 3b.

Apple’s UIKit Dynamics [Apple 2022c] provides constant acceleration anima-
tion, UIPushBehavior, as well as a damped oscillator to snap an element to a po-
sition, UISnapBehavior. It also offers a number of physics-based parametric ani-
mations, but the developer has to compose them together. This is a complex, flex-
ible parametric system that can also be constrained to produce only physical re-
sults, though not without doing some physics. An alternative API for moving visual

25

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

(a) Android uses preset interpolators, some with an adjustable parameter.

(b) Cross-platform toolkit Qt offers 30 preset curves, also available on Easings.net [Sitnik
and Solovev 2022].

Figure 3. Preset timing curves are primarily fixed combinations of inertia, anticipation, over-
shoot, and oscillation. Our system reproduces most of these effects with a simple function
that smoothly blends between them while maintaining physical realism.

26

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

elements [Apple 2022a] exposes the initial velocity and the damping ratio, the damp-
ing relative to critical damping (with no oscillation). Though compact, the damping
ratio parameter entangles the duration and oscillations, and is not easily visualized.
The lower-level CoreAnimation framework provides a damped oscillator model for
element animation. The CASpringAnimation API [Apple 2022b] exposes the mass,
spring stiffness, damping, and initial velocity, and provides read-only access to a com-
puted settling duration, which is dependent on all the physical parameters. In both
cases, the initial velocity parameter allows developers to append the damped oscilla-
tion motion to terminate a previous motion, and thus construct a motion with inertia
and overshoot. Although developers can tune this system for real-world objects, they
have to use trial and error or an additional mathematical model to control the over-
shoot duration and bounces.

Android [Google Developers 2022a; Google Developers 2022b; Cogito Learning
2013] has taken a different approach to the problem of physical animation for UI ele-
ments by offering a set of fixed combinations in the form of Interpolator subclasses.
They have the classic ease-in/out curve (AccelerateDecelerateInterpolator), with
no parameters, as well as separate Accelerate and Decelerate only classes with a sin-
gle parameter. Though the two separate functions are parabolic, the combined ease
curve is a cosine (y = (1 − cos(πt))/2). There are also separate Anticipate and
Overshoot interpolator classes, as well as the combined Anticipate + Overshoot ver-
sion. These each have a tension parameter that modulates the effect. The Anticipate
+ Overshoot interpolator has an additional but redundant parameter, extraTension,
which is the amount by which to multiply the tension. The AnticipateOvershoot

Interpolator is the closest to our curve in intention certainly. It is based on a sym-
metric, two-section cubic curve:

y =

{
0.5
(
(C + 1)(2t)3 – C(2t)2

)
for t < 0.5,

0.5
(
(C + 1)(2t− 2)3 + C(2t− 2)2

)
+ 1 for t ≥ 0.5,

(1)

where C = tension× extraTension.
This interpolator is locked to a single bounce, with anticipation and overshoot

amounts always symmetric. Interestingly, with a zero parameter value, this interpola-
tor returns a cubic smooth ease curve that is different than the Accelerate + Decelerate
ease curve:

y =

{
4t3 for t < 0.5,

4t3 − 12t2 + 12t− 3 for t ≥ 0.5.
(2)

The BounceInterpolator produces three nicely damped parabolic bounces against
1.0, and the CycleInterpolator generates a sine wave with variable frequency, but
there is no damped oscillator.

Qt [Qt 2009] takes the application of preset timing curves even further, offer-
ing 30 presets with few parameters. Their QEasingCurve class provides in, out, and

27

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

in+out combinations of both bounces and damped oscillators with overshoot, as well
as a variety of ease in, out, and in+out curves using polynomials of second through
fifth order, exponentials, and a cosine. The anticipate and overshoot and combo
(InBack, OutBack, and InOutBack) are similar to those in Android, but the damped
oscillators offer amplitude and frequency controls. In addition, the Qt API supports
easing curves defined by custom cubic Bézier segments or by segments of Kochanek’s
TCB splines, the former supporting Qt’s ability to reproduce the CSS/CoreAnimation
ease curve standard.

These systems all offer ways to add anticipation, inertia, and overshoot to the
motion visual element, either by building your own from components or by selecting
from a handful of fixed curves with varying degrees of physical plausibility. They
follow two basic paths: one requires developers to piece together physical solutions
using their old physics textbooks or Wikipedia, and the other offers a wide variety of
fixed curve shapes that are predominantly nonphysical. A large number of choices
cannot completely compensate for the difficulty of producing a physically correct
motion. None of these models attempt to guarantee physically correct motion nor
include all the elements in a single continuous model with parameters that are easy
to visualize, and thus explain and understand. Our model does not include a bounce,
though the procedure for replacing the deceleration section with a bounce would be
straightforward. One good argument for the preset curves system is the simplicity of
choosing from a list of pretty good choices, rather than fiddling with sliders. Having
a simple base model doesn’t preclude the use of preset curves; it just makes them
easier.

The default form of our timing curve looks like the standard smooth interpolation
curve that has made its way into animation systems including CSS [MDN 2011], Ap-
ple CoreAnimation [Apple 2006], and Android [Jackson 2013]. It is also found in
graphics languages from RenderMan [Upstill 1989] to GLSL [Rost 2005], to Metal
[Apple Developer 2014], which all refer to it as SmoothStep(). In these languages it
is primarily used for shading surfaces, where smooth transitions are used to minimize
aliasing artifacts. Though SmoothStep() is a form of Hermite-basis interpolation,
Perlin, whose bias and gain functions are similar to SmoothStep() [Perlin and Hof-
fert 1989], has offered an alternate polynomial smoothing curve [Perlin 2002] whose
speed and acceleration both go to zero at the end points. Both our curve and the
Hermite curve only have zero speed at the ends.

3. Derivation

Typically, ballistic trajectories are calculated by splitting the trajectory in half, calcu-
lating how long the initial velocity can carry an object up, and doubling that to find
the time and thus distance of flight. We’ll do the same thing, though not in the same

28

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Figure 4. Adjusting the nominal midpoint, tmid, controls the curve shape, emphasizing either
ease-in or ease-out to suit the requirements of the animation.

order. In this case the first half will accelerate, and the second will decelerate, both
at a constant rate. The timing curve thus has two phases, an ease out that accelerates
out from the start point, and an ease in that decelerates into the end point. For clar-
ity, we will use the subscripts A and D to denote these acceleration and deceleration
phases, respectively. The standard timing curve switches from acceleration to decel-
eration right in the middle. Adjusting the dividing point between these two phases
gives great control over the shape of the curve, so we will use this dividing point,
tmid, as an input to our model (Figure 4). The acceleration section covers the motion
from time t = 0 to t = tmid. The deceleration section contains any overshoot and
settling-in oscillations, and it goes from tmid to t = 1.0.

In summary, at t = 0 we apply a constant acceleration; at tmid, we put on the
brakes. If we are making a smooth stop, we brake with a constant deceleration. In
the overshoot case we brake with linear restoring force, like a spring, which results
in a damped harmonic oscillator. To join the acceleration and deceleration phases
smoothly, we assure that the boundary between these sections of the curve are contin-
uous and have matching speed. In the overshoot case, we tune the frequency so the
value crosses 1.0 when the time reaches 1.0.

3.1. Acceleration

The acceleration-phase motion, xA(t), follows the simple kinematics of constant ac-
celeration. The equation of motion expresses position as a function of time, governed

29

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Figure 5. Variations on the anticipation time of the two-parameter timing curve, with the
midpoint parameter locked at 0.5.

by the initial velocity V0 and the acceleration a:

xA(t) = V0t+
1

2
at2. (3)

We can see the anticipation effect in Figure 5, where the motion reverses briefly
and dips below zero. This is only possible when the initial velocity is negative, which
in turn requires that the acceleration is positive. The shape of the curve is thus de-
termined by the balance of the negative initial velocity and the acceleration against
it. We can take advantage of this observation to replace the initial velocity parameter,
V0, with a directly visible, easy-to-understand parameter, the anticipation time, ta,
defined as the point at which the motion comes back above zero. If ta is 0, obviously
there is no anticipation effect:

V0 +
ata
2

= 0 =⇒ V0 =
−ata
2

.

We can now recast our primary equations to use ta:

xA(t) =
a

2
(t− ta)t. (4)

The velocity at time t can thus be written as

vA(t) ≡
d

dt
xA(t) = a

(
t− ta

2

)
. (5)

30

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

To normalize the timing curve values, we just divide by xmax, the farthest the acceler-
ation phase will reach:

xmax ≡ xA(tmax) =
a

2
(tmax − ta) tmax.

The normalized acceleration-phase position,XA(t) ≡ xA(t)/(xA(tmax)), is greatly
simplified, as a drops out. This leaves a normalized timing curve with anticipation,
specified by just two parameters, ta and tmid:

XA(t) =
t (t− ta)

tmax (tmax − ta)
, (6)

with corresponding velocity

VA(t) ≡
d

dt
XA(t) =

2t− ta
tmax (tmax − ta)

. (7)

As expected, normalizing the motion removes the last scale-dependent term. Equa-
tions (6) and (7) are normalized equations of unitless motion for acceleration with
anticipation. They give us the position and speed of the acceleration phase with pa-
rameter tmax representing the point at which the acceleration crosses the x = 1 line.
Any deceleration phase motion that we want to append must match both of these
values at the boundary where they join to preserve C1 continuity.

3.2. Deceleration

3.2.1. Smooth Stop

A smooth stop reaches zero velocity gradually. The deceleration stage, starting by
definition at the midpoint, tmid, must now dissipate speed so that it goes to 0 as t
reaches 1.0. We achieve this by applying a constant deceleration, d, over the braking
period sufficient to just overcome the velocity at the end of the acceleration:

vA(tmid) + d(1− tmid) = 0 =⇒ d =
−vA(tmid)

1− tmid
.

At time t = tmid, the position is xmid ≡ xA(tmid) with speed vmid ≡ vA(tmid), so d
becomes

d =
−vmid

1− tmid
,

and the full equation of motion for tmid ≤ t ≤ 1, the deceleration phase denoted by
subscript D, becomes

xD(t) = xmid + (t− tmid)vmid −
(t− tmid)

2vmid

2(1− tmid)

or

xD(t) = xmid + (t− tmid)

(
1− t− tmid

2(1− tmid)

)
vmid. (8)

31

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Using the definitions of xmid and vmid,

xmid =
a

2
tmid(tmid − ta),

vmid =
a

2
(2tmid − ta),

we can rewrite xD(t) using only a, ta, and tmid:

xD(t) =
a

2

(
tmid(tmid − ta) + (t− tmid)(2tmid − ta)

(
1− t− tmid

2(1− tmid)

))
.

Because the position and speed of both curves match at tmid, when we normalize
xD we have to divide both parts of the smooth stop motion by xD(1):

XS(t) =
1

xD(1)

{
xA(t), t ≤ tmid,

xD(t), tmid < t ≤ 1,

where XS(t) is the normalized smooth stop curve.
Replacing xmid and vmid and evaluating at t = 1 gives us xD(1), the constant we

need to normalize the curve value:

xD(1) =
a

2

(
ta
2
+
tmidta
2
− tmid

)
.

When we work this all out, a and thus tmax cancel out of the normalized timing
curve, as expected:

XDS(t) ≡
xD(t)

xD(1)
=
t2(ta − 2tmid)− 2t(ta − 2tmid) + (ta − 2)t2mid

(tmid − 1)(tatmid + ta − 2tmid)
. (9)

Combining this with the equation for the acceleration phase motion XAS yields

XAS(t) ≡
xA(t)

xD(1)
=

2t(ta − t)
tatmid + ta − 2tmid

. (10)

We can express the smooth stop motion using only anticipation and midpoint
values (Figure 6):

XS(t) =

{
XAS(t), t ≤ tmid,

XDS(t), tmid < t ≤ 1.
(11)

3.2.2. Overshoot

We can model the cartoon physics overshoot effect as a linear restoring force like
a spring, where the force is proportional to the offset distance. To reproduce the
effect, the constant deceleration is replaced by a deceleration that increases with dis-
tance. The resulting motion is described by a simple sine wave with amplitude A and
frequency f cycles per second. To match the position boundary condition, the sine

32

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Figure 6. Matched pairs of acceleration and deceleration curves: the dotted sections are
the unused continuations of the two curves. Each pair matches position and tangent at tmid,
assuring C1 continuity.

should pass through zero at t = tmid. We assure this by shifting the sine so it is 0
at tmid:

x(t) = xmax +A sin (2πf(t− tmid)) .

The speed at the end of the acceleration phase must also be matched to the speed
of the next section to keep things moving smoothly. The speed at tmid is vmid. Because
the overshoot oscillator is a sine function, its derivative is a cosine. We set the sine
to be 0 at tmid, which means that the cosine is 1 and the speed, vD(tmid), is at its
maximum, as it should be:

vD(t) ≡
d

dt
xD(t) = 2πfA cos(2πf (t− tmid)) .

To match the speed at the curve start where t = tmid, we set it equal to 2πfA:

vD(tmid) = vmid = 2πfA cos(2πf ∗ 0) = 2πfA,

then we use this to compute an appropriate amplitude:

A =
vmid

2πf
,

xD(t) = xmax +
vmid

2πf
sin(2πf (t− tmid)) .

Though the frequency is an obvious, visible parameter for an oscillator, its effects
are entangled with the duration of the deceleration phase, and if we want the motion

33

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

to stop at 1.0 at the end, we will need to tune the frequency carefully. We propose
instead a more animator-friendly parameter that is orthogonal to the timing and easy
to visualize, namely, the number of overshoot bounces. Rather than tuning the fre-
quency, the animator specifies the number of bounces, and we compute the frequency
so that the correct number of cycles fits exactly into the span from tmid to 1.0. We
define bounces as the number of times the value crosses the 1.0 line. No crossings
corresponds to a smooth stop without any overshoot, one crossing means that the
value overshoots and snaps back once, and so on.

As there are two bounces per cycle of the oscillator and the period of oscillation
is T = 1/f , the time to make B bounces is B · T/2. To fit that into the deceleration
span that is 1.0–tmid, we set them to be equal, then solve for the frequency, f :

B
T

2
= 1− tmid =

B

2f
=⇒ f =

B

2 (1− tmid)
. (12)

Of course, the oscillations should be damped in order to die down over time. The
standard damped harmonic oscillator is modulated by an exponential decay like e−γt,
corresponding to a fractional loss of energy per cycle. The visible effect of damping
is the reduction of the overshoot amplitude per bounce. We express this as the ratio
of peaks in the sine at successive bounces:

e−γ(t+T/2)

e−γt
= e−γT/2. (13)

We make the assumption that the damping results in a constant fractional reduc-
tion per bounce in order to replace γ with a more readily visualizable parameter. By
assuring that γ is inversely proportional to the bounce period T/2, we can expose the
per-cycle decay exponent, k,

γ ≡ 2k

T
= 2kf =

kB

(1− tmid)
, (14)

so that the ratio of amplitudes, e−γT/2, simply becomes e−k.
Adjusting the decay exponent tunes the overshoot amplitude falloff, but because

the curve hits 1.0 at the end by design of the sine function even without damping, we
can tune the damping to taste (Figure 7). Indeed, we can set the decay exponent as a
constant of the model, rather than a free parameter, as the value of limited adjustability
is outweighed by the cognitive burden of another number to adjust. We will carry k
around for a while, for completeness, but feel free to replace it with 1/4, which gives
a snappy 22% loss per bounce.

The overshoot deceleration motion with damped oscillator is thus

xDO(t) = xmax +
a

2

(
(1− tmid)(2tmid − ta)

πB
sin

(
πB

t− tmid

1− tmid

)
e
−kB t−tmid

1−tmid

)
,

34

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Figure 7. Different values for the decay exponent cause different attenuation of later bounces.
In particular, values above 0.5 lead to very flat final bounces

where
xmax = xAO(tmid) =

a

2
(tmid − ta)tmid

As before, we have to normalize both halves of the motion by dividing xmax,
removing a, and expressing the curve in three parameters:

XDO(t) ≡
xDO(t)

xmax
. (15)

So, the expression for the overshoot motion’s deceleration phase, XDO(t), becomes

XDO(t) =

(
1 +

(1− tmid)(2tmid − ta)
πB(tmid − ta)tmid

sin(πB
t− tmid

1− tmid
)e

−kB t−tmid
1−tmid

)
(16)

or

XDO(t) =

(
1 +

(1− tmid)(2tmid − ta)
πB(tmid − ta)tmid

sin(πBtd)e
−kBtd

)
, (17)

where td ≡ (t− tmid)/(1− tmid) is a relative deceleration-phase time.
Recall Equation (4):

xA(t) =
a

2
(t− ta)t.

Thus, in the overshoot case,

XAO(t) ≡
xA(t)

xmax
=

(t− ta)t
(tmid − ta)tmid

,

which matches the normalized acceleration curve, as expected (Figure 8).

35

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Figure 8. Overshoot deceleration curves, vertically offset for clarity.

Taken all together, we have an expressive timing function model derived from
physical principles with three independent parameters: the anticipation time, the mid-
point time, and the bounces.

The bounces parameter determines which of the two solutions to use:

X(t) =

{
XS(t), B = 0,

XO(t), B > 0,

where both the smooth and overshoot cases are also split into two halves:

XS(t) =


2t(ta − t)

tatmid + ta − 2tmid
, t ≤ tmid,

t2(ta − 2tmid)− 2t(ta − 2tmid) + (ta − 2)t2mid
(tmid − 1)(tatmid + ta − 2tmid)

, tmid < t ≤ 1,

(18)

XO(t) =


t (t− ta)

tmid (tmid − ta)
, t ≤ tmid,

1 +
(1− tmid)(2tmid − ta)
πB(tmid − ta)tmid

sin

(
πB

(t− tmid)

1− tmid

)
e
−B

4

(t−tmid)
(1−tmid) , t > tmid.

(19)

4. Conclusion

4.1. Comparison of Smooth Step Curves

A timing curve smoothly interpolating between an input between 0 and 1 and an out-
put in that range is such a useful thing that it has been included in graphics languages

36

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

from RenderMan to GLSL. The curve is a staple of procedural animation, where it
is generally preferred to linear animation for simple parameter transitions as well as
motions. This is apparent not just in motion graphics or animation systems, but even
in the interface animations in modern graphical user interfaces. The Hermite func-
tion behind the standard smooth step curve also forms the basis for much keyframe
interpolation as well.

The default behavior of our timing curve with no added effects (i.e., no anticipa-
tion or bounces, midpoint at 50%) reproduces the standard ease-in/out smooth curve.
This was not a design goal of our curves, nor is the precise polynomial form of the
curve obvious. Rather we can now see specifically how the standard smooth step
motion arises from the physics of inertia.

Our smooth stop curves simplify significantly when we use default values; for
example, with zero anticipation, the adjustable-midpoint smooth curve from Figure 4
looks like this:

X(t) =


t2

tmid
, t ≤ tmid,

t2 − 2t+ tmid

tmid − 1
, t > tmid.

And with the mid point at 0.5, the smooth curve becomes

X(t) =

{
2t2, t ≤ 0.5,

−2t2 + 4t− 1, t > 0.5.

For comparison, the Hermite-basis polynomial smoothing immortalized in the
GLSL SmoothStep() function, among many others, is

x(t) = 3t2 − 2t3.

SmootherStep is a variation on this function due to Perlin. It boasts zero first and
second derivatives at both ends, which is particularly useful for texturing. It has the
form

x(t) = 6t5 − 15t4 + 10t3.

CSS and CoreAnimation both use a cubic Bézier curve with end points at (0, 0)
and (1, 1) and standard tangent positions of (0.42, 0) and (0.58, 1). Sine function seg-
ments like those used in Android are also popular [Parent 2012; Google Developers
2022a].

By comparison our function performs well, falling between Hermite and Perlin
(Figure 9), while also providing a rich set of extended behaviors with only a few
additional parameters. It is interesting that our relatively elaborate model should also
reproduce this most basic smooth timing curve.

37

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Figure 9. Our curve is very similar to standard smooth transition functions, falling between
SmoothStep and Perlin’s SmootherStep. The closest standard curve is the CSS cubic Bézier,
which was presumably adjusted by eye for realism.

4.2. Results and Directions

Source code implementing the algorithm is listed in the appendix. As with the other
implementations, the computations are simple polynomials, and sometimes a sine and
an exponential. These are all relatively fast to compute on modern hardware, and fast
approximations to the transcendental functions should work well enough for most
purposes. One optimization that suggests itself is a truncated series expansion of the
product of the sine and exponential for the damped oscillator, essentially treating it as
a complex exponential.

The bounce animation in Qt and Android, like the damped oscillator, is a fixed
replication of a physical result. It should be possible to make a third deceleration-
phase option using the physics of bounces, following much the same procedure as
we used for the damped oscillator. In this case, each bounce is a pair of constant
accelerations resulting in a quadratic form, much like the ease-in/out curve.

We have have applied simple kinematics to the problem of replicating traditional
“cartoon physics” used by animators to make motions expressive yet natural. By de-
veloping physical models of two stages of an animated motion, imposing continuity
constraints at boundaries, then normalizing the motion to remove dependence on scale
or specific timing, we derived a very general model for expressive parametric anima-
tion. As a bonus we gain insight into the classic smooth step curve, which might be
said to approximate the result of constant acceleration and deceleration.

38

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Acknowledgements

Greg Duquesne and Adam O’Hern were partners in the discussion of interactive
graphics animations and physics that led to this work. Alex Coburn, Nafees Bin Zafar,
and Deepak Tolani provided invaluable guidance in shaping the final draft. Without
the support and encouragement of Novaira Masood and Apple, this work would not
exist.

A. Appendix: Source Code

// Smooth timing curve value

float Xs(float t, float ta, float tmid) {

float tam = ta - tmid - tmid; // ta - 2tmid

float xa = (2.0*t*(ta - t) / (ta*tmid + tam));

float xd = ((t - 2.0)*t*tam + (ta - 2.0)*tmid*tmid);

xd /= ((tmid-1.0)*(ta*tmid + tam));

return t<tmid ? xa : xd;

}

// Overshoot timing curve value

float Xo(float t, float ta, float tmid, float B) {

// Terms independent of t: can be precomputed

float tma = tmid - ta;

float td = 1.0 - tmid;

// Time-dependent part

if(t<tmid) {

float xa = t*(t - ta) / (tmid*tma);

return xa;

}

// amp can be precomputed

float amp = td*(tmid + tma)/(tmid*tma*B*M_PI);

float xd = amp * sin(B*M_PI*(t - tmid)/td);

xd *= exp(-(t - tmid)*(B/(4.0*td)));

xd += 1.0;

return xd;

}

// Timing curve with anticipation, ta, midpoint, tmid, and bounces, B

float KinematicTiming(float t, float ta, float tmid, int B) {

return B>=1 ? Xo(t,ta,tmid,(float)B) : Xs(t,ta,tmid);

}

Listing 1. C source code implementing the Kinematic Timing Curve.

39

http://jcgt.org


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

Index of Supplemental Materials

• KinematicTimingSamples.gif: Animated GIF examples.

• KinematicTimingCurve.c: Sample code

References

APPLE DEVELOPER. 2014. Metal Shading Language Specification. Ap-
ple, Inc., Cupertino, CA. URL: https://developer.apple.com/metal/

Metal-Shading-Language-Specification.pdf. 28

APPLE, 2006. kCAMediaTimingFunctionEaseInEaseOut. Apple Developer Documentation.
URL: https://developer.apple.com/documentation/quartzcore/

kcamediatimingfunctioneaseineaseout?language=objc. 28

APPLE, 2022. animateWithDuration:delay:usingSpringWithDamping:initialSpringVelocity
:options:animations:completion:. Apple Developer Documentation. URL:
https://developer.apple.com/documentation/uikit/uiview/

1622594-animatewithduration/. 27

APPLE, 2022. CASpringAnimation. Apple Developer Documentation. URL:
https://developer.apple.com/documentation/quartzcore/

caspringanimation?language=objc. 27

APPLE, 2022. UISnapBehavior. Apple Developer Documentation. URL: https:

//developer.apple.com/documentation/uikit/uisnapbehavior?

language=objc. 25

CHANG, B.-W., AND UNGAR, D. 1993. Animation: From cartoons to the user inter-
face. In Proceedings of the 6th Annual ACM Symposium on User Interface Software and
Technology, Association for Computing Machinery, New York, UIST ’93, 45–55. URL:
https://doi.org/10.1145/168642.168647. 25

COGITO LEARNING, 2013. Android animations tutorial 5: More on interpolators. Cog-
ito Learning, October 24. URL: http://cogitolearning.co.uk/2013/10/
Android-animations-tutorial-5-more-on-interpolators/. 27

GOOGLE DEVELOPERS, 2022. AccelerateDecelerateInterpolator. Android Developers Docu-
mentation. URL: https://developer.android.com/reference/android/
view/animation/AccelerateDecelerateInterpolator. 27, 37

GOOGLE DEVELOPERS, 2022. AnticipateOvershootInterpolator. Android Developers Docu-
mentation. URL: https://developer.android.com/reference/android/
view/animation/AnticipateOvershootInterpolator. 27

HUDSON, S. E., AND STASKO, J. T. 1993. Animation support in a user interface toolkit:
Flexible, robust, and reusable abstractions. In Proceedings of the 6th Annual ACM Sympo-
sium on User Interface Software and Technology, Association for Computing Machinery,
New York, UIST ’93, 11. URL: https://dl.acm.org/doi/10.1145/168642.
168648. 25

40

http://jcgt.org
http://jcgt.org/published/0011/03/02/KinematicTimingSamples.gif
http://jcgt.org/published/0011/03/02/KinematicTimingCurve.c
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/documentation/quartzcore/kcamediatimingfunctioneaseineaseout?language=objc
https://developer.apple.com/documentation/quartzcore/kcamediatimingfunctioneaseineaseout?language=objc
https://developer.apple.com/documentation/uikit/uiview/1622594-animatewithduration/
https://developer.apple.com/documentation/uikit/uiview/1622594-animatewithduration/
https://developer.apple.com/documentation/quartzcore/caspringanimation?language=objc
https://developer.apple.com/documentation/quartzcore/caspringanimation?language=objc
https://developer.apple.com/documentation/uikit/uisnapbehavior?language=objc
https://developer.apple.com/documentation/uikit/uisnapbehavior?language=objc
https://developer.apple.com/documentation/uikit/uisnapbehavior?language=objc
https://doi.org/10.1145/168642.168647
http://cogitolearning.co.uk/2013/10/Android-animations-tutorial-5-more-on-interpolators/
http://cogitolearning.co.uk/2013/10/Android-animations-tutorial-5-more-on-interpolators/
https://developer.android.com/reference/android/view/animation/AccelerateDecelerateInterpolator
https://developer.android.com/reference/android/view/animation/AccelerateDecelerateInterpolator
https://developer.android.com/reference/android/view/animation/AnticipateOvershootInterpolator
https://developer.android.com/reference/android/view/animation/AnticipateOvershootInterpolator
https://dl.acm.org/doi/10.1145/168642.168648
https://dl.acm.org/doi/10.1145/168642.168648


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

JACKSON, W. 2013. Pro Android Graphics. Apress, New York. URL:
https://www.oreilly.com/library/view/pro-android-graphics/

9781430257851/. 28

KASS, M., AND ANDERSON, J. 2008. Animating oscillatory motion with overlap: Wig-
gly Splines. In ACM SIGGRAPH 2008 Papers, Association for Computing Machinery,
New York, 28:1–28:8. URL: https://dl.acm.org/doi/10.1145/1399504.
1360627. 25

KOCHANEK, D. H. U., AND BARTELS, R. H. 1984. Interpolating splines with local tension,
continuity, and bias control. In Proceedings of the 11th Annual Conference on Computer
Graphics and Interactive Techniques, Association for Computing Machinery, New York,
SIGGRAPH ’84, 33–41. URL: https://dl.acm.org/doi/10.1145/800031.
808575. 25

LASSETER, J. 1987. Principles of traditional animation applied to 3D computer animation.
ACM SIGGRAPH Computer Graphics 21, 4 (Aug.), 35–44. URL: https://doi.org/
10.1145/37402.37407. 23

MDN, 2011. transition-timing-function. MDN Web Docs. URL: https://developer.
mozilla.org/en-US/docs/Web/CSS/transition-timing-function. 28

PARENT, R. 2012. Computer Animation: Algorithms and Techniques, 3 ed. The Morgan
Kaufmann Series in Computer Graphics. Elsevier Science, Amsterdam. URL: https:
//books.google.com/books?id=ZNZ3XIGeMkgC. 37

PERLIN, K., AND HOFFERT, E. M. 1989. Hypertexture. ACM SIGGRAPH Computer Graph-
ics 23, 3 (July), 253–262. URL: https://doi.org/10.1145/74334.74359. 28

PERLIN, K. 2002. Improving noise. ACM Transactions on Graphics 21, 3 (July), 681–682.
URL: https://doi.org/10.1145/566654.566636. 28

PLASS, M., AND STONE, M. 1983. Curve-fitting with piecewise parametric cubics. In
Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Tech-
niques, Association for Computing Machinery, New York, SIGGRAPH ’83, 229–239.
URL: https://doi.org/10.1145/800059.801153. 25

QT, 2009. QEasingCurve class. Qt Documenation, Qt Core 5.15.6. URL: https://doc.
qt.io/qt-5/qeasingcurve.html. 27

ROST, R. J. 2005. OpenGL Shading Language, 2 ed. Addison-Wesley, Up-
per Saddle River, NJ. URL: https://www.oreilly.com/library/view/

opengl-shading-language/0321334892/. 28

SITNIK, A., AND SOLOVEV, I., 2022. Easing functions cheat sheet. URL: https://
easings.net/. 26

THOMAS, B. H., AND CALDER, P. 2001. Applying cartoon animation techniques to graphi-
cal user interfaces. ACM Transactions on Computer-Human Interaction 8, 3 (Sept.), 198–
222. URL: https://doi.org/10.1145/502907.502909. 23, 25

41

http://jcgt.org
https://www.oreilly.com/library/view/pro-android-graphics/9781430257851/
https://www.oreilly.com/library/view/pro-android-graphics/9781430257851/
https://dl.acm.org/doi/10.1145/1399504.1360627
https://dl.acm.org/doi/10.1145/1399504.1360627
https://dl.acm.org/doi/10.1145/800031.808575
https://dl.acm.org/doi/10.1145/800031.808575
https://doi.org/10.1145/37402.37407
https://doi.org/10.1145/37402.37407
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-function
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-function
https://books.google.com/books?id=ZNZ3XIGeMkgC
https://books.google.com/books?id=ZNZ3XIGeMkgC
https://doi.org/10.1145/74334.74359
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/800059.801153
https://doc.qt.io/qt-5/qeasingcurve.html
https://doc.qt.io/qt-5/qeasingcurve.html
https://www.oreilly.com/library/view/opengl-shading-language/0321334892/
https://www.oreilly.com/library/view/opengl-shading-language/0321334892/
https://easings.net/
https://easings.net/
https://doi.org/10.1145/502907.502909


Journal of Computer Graphics Techniques
Kinematic Timing Curves: Cartoon Physics with Ease

Vol. 11, No. 3, 2022
http://jcgt.org

UPSTILL, S. 1989. RenderMan Companion: A Programmer’s Guide to Real-
istic Computer Graphics. Addison-Wesley, Upper Saddle River, NJ. URL:
https://www.pearson.ch/HigherEducation/Addison-Wesley/EAN/

9780201508680/RenderMan-Companion-The. 28

WANG, J., DRUCKER, S. M., AGRAWALA, M., AND COHEN, M. F. 2006. The Cartoon
Animation Filter. ACM Transactions on Graphics 25, 3 (July), 1169–1173. URL: https:
//doi.org/10.1145/1141911.1142010. 25

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In Proceedings of the 15th
Annual Conference on Computer Graphics and Interactive Techniques, Association for
Computing Machinery, New York, SIGGRAPH ’88, 159–168. URL: https://doi.
org/10.1145/54852.378507. 25

Author Contact Information
Arnie Cachelin
Apple
1 Infinite Loop
Cupertino, CA
acachelin@apple.com

Arnie Cachelin, Kinematic Timing Curves: Cartoon Physics with Ease, Journal of Computer
Graphics Techniques (JCGT), vol. 11, no. 3, 22–42, 2022
http://jcgt.org/published/0011/03/02/

Received: 2021-11-10
Recommended: 2022-02-17 Corresponding Editor: Joe Geigel
Published: 2022-07-19 Editor-in-Chief: Marc Olano

c© 2022 Arnie Cachelin (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

42

http://jcgt.org
https://www.pearson.ch/HigherEducation/Addison-Wesley/EAN/9780201508680/RenderMan-Companion-The
https://www.pearson.ch/HigherEducation/Addison-Wesley/EAN/9780201508680/RenderMan-Companion-The
https://doi.org/10.1145/1141911.1142010
https://doi.org/10.1145/1141911.1142010
https://doi.org/10.1145/54852.378507
https://doi.org/10.1145/54852.378507
mailto:acachelin@apple.com
http://jcgt.org/published/0011/03/02/
http://creativecommons.org/licenses/by-nd/3.0/

