
Journal of Computer Graphics Techniques Vol. 11, No. 3, 2022 http://jcgt.org

Ray Tracing of Signed Distance Function Grids

Herman Hansson Söderlund

NVIDIA

Alex Evans

NVIDIA

Tomas Akenine-Möller

NVIDIA

Figure 1. A path traced image of two orange signed distance function models mixed with

triangle geometry.

Abstract

We evaluate the performance of a wide set of combinations of traversal and voxel intersection

testing of signed distance function grids in a path tracing setting. In addition, we present an

optimized way to compute the intersection between a ray and the surface defined by trilinear

interpolation of signed distances at the eight corners of a voxel. We also provide a novel way

to compute continuous normals across voxels and an optimization for shadow rays. On an

NVIDIA RTX 3090, the fastest method uses the GPU’s ray tracing hardware to trace against

a bounding volume hierarchy, built around all non-empty voxels, and then applies either an

analytic cubic solver or a repeated linear interpolation for voxel intersection.

1. Introduction

Rendering signed distance functions (SDFs) is becoming more and more popular due

to their simplicity and expressiveness with a small amount of data. Impressive three-

dimensional scenes can be defined using only code, where SDFs are used with oper-

ators, such as union, intersection, smooth subtraction, and smooth union [Bloomen-

thal et al. 1997], and are often demonstrated on websites, such as ShaderToy. Entire

94 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

games, such as Dreams [Evans 2015] and Claybook [Aaltonen 2018], use SDFs ex-

tensively. In those cases, the SDF primitives and operators are sampled onto a three-

dimensional grid, where each corner of a grid cell holds a signed distance. We call

these SDF grids. The bounding box of such a grid can be rasterized and the con-

tent sphere traced [Hart 1995] to reveal its containing geometry. Sphere tracing has

a weakness in that it takes smaller and smaller steps the closer the iteration gets to

the actual surface. This reduces performance just before a ray hits a surface, when a

ray is close to a silhouette, and when secondary rays are to be shot from a hit point

on an SDF surface, when using path tracing, for example. One may use acceleration

techniques for sphere tracing [Keinert et al. 2014; Bálint and Valasek 2018], but those

often only pay off when the number of iterations is large. Segment tracing [Galin et al.

2020] can provide generous speedups, but this method has not yet been extended to

SDF grids.

We present a method to analytically ray trace the surface inside each voxel in

an SDF grid. The surface inside a voxel is a third-order polynomial as was derived

by Parker et al. [1998]. Our method uses substantially fewer operations than theirs.

In addition, Parker et al. did not provide continuous normals between voxels, which

gives poor visual quality when the viewer is close to the voxels. We present a remedy

to this.

Before we describe our work, we want to emphasize the surprising (at least to us)

expressive power of possible surfaces of the third-order polynomial inside a voxel.

When triangulating SDF grids, one may use the marching cubes algorithm [Lorensen

and Cline 1987], which states that 14 topological situations (excluding empty) can

occur in a voxel. However, when using trilinear interpolation of the signed distances

inside a voxel, the surface becomes a third-order polynomial, which has a much wider

set of topologies. Lopes and Brodlie [2003] showed that there are 31 different topolo-

gies. We show a few in Figure 2.

2. Analytic Voxel Intersection

Our data structure is a three-dimensional grid, consisting of nx × ny × nz locations,

where each location holds a signed distance. This data structure is called a signed

distance function (SDF) grid, or simply a grid. A voxel within such a grid is a box in

three-dimensional space with 2×2×2 signed distance values specified at its corners.

In this section, we formulate how to intersect a ray with the surface defined by

the zero level set of the signed distance function inside a voxel, as shown in Figure 3.

This part of our paper is similar to the work of Parker et al. [1998], but with constants

grouped for fewer computations and better use of fused-multiply-and-add (FMA) op-

erations. Given 2× 2× 2 distance values sijk with i, j, k ∈ {0, 1}, in a single voxel,

the standard equation for trilinear interpolation is

95

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

Figure 2. Each image shows the surface inside a single voxel, which has a signed distance

at each of the 2 × 2 × 2 corners of the voxel. In the upper left image, all signed distances

are positive, except for two opposing corners of the bottom quadrilateral. This case is part

of the marching cubes algorithm. However, the second image on the top row has the same

configuration, except the numbers are a bit different. In this case, a single surface is shown

inside the voxel. Marching cubes does not generate geometry correctly for this case. The rest

of the images show various cases that marching cubes does not handle correctly.

x

y

z

s
000

s
111

s
100

s
010

s
110

s
001

s
011

s
101

Figure 3. A voxel with signed distances sijk at the 2 × 2 × 2 corners. A possible surface is

shown in blue.

f(x, y, z) =

(1− z)
"

(1− y)
"

(1− x)s000 + xs100
�

+ y
"

(1− x)s010 + xs110
�

�

+ z
"

(1− y)
"

(1− x)s001 + xs101
�

+ y
"

(1− x)s011 + xs111
�

�

,

(1)

where x, y, z ∈ [0, 1]. This equation is evaluated at each step in algorithms based on

sphere tracing [Hart 1995].

96

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

The surface inside a voxel is defined by f(x, y, z) = 0 (Equation (1)), which can

be rewritten as

f(x, y, z) = z(k4 + k5x+ k6y + k7xy)− (k0 + k1x+ k2y + k3xy) = 0, (2)

which is a polynomial of degree three because the highest-order term is xyz. The

constants ki are functions of the sijk distances:

k0 = s000, k4 = k0 − s001,

k1 = s100 − s000, k5 = k1 − a,

k2 = s010 − s000, k6 = k2 − (s011 − s001),

k3 = s110 − s010 − k1, k7 = k3 −
"

s111 − s011 − a
�

,

a= s101 − s001.

(3)

A ray is defined by r(t) = o + td, where o = (ox, oy, oz) and similar for d. The

intersection between the surface and the ray is found by replacing x, y, and z with the

ray components, e.g., replacing x with rx(t) = ox+ tdx, in Equation (2). This results

in

(oz + tdz)
"

k4 + k5(ox + tdx) + k6(oy + tdy) + k7(ox + tdx)(oy + tdy)
�

−
"

k0 + k1(ox + tdx) + k2(oy + tdy) + k3(ox + tdx)(oy + tdy)
�

= 0,
(4)

This expression can be rewritten as

c3t
3 + c2t

2 + c1t+ c0 = 0, (5)

where

c0 = (k4oz − k0) + oxm3 + oym4 +m0m5,

c1 = dxm3 + dym4 +m2m5 + dz(k4 + k5ox + k6oy + k7m0),

c2 = m1m5 + dz
"

k5dx + k6dy + k7m2

�

,

c3 = k7m1dz,

(6)

and

m0 = oxoy, m3 = k5oz − k1,

m1 = dxdy, m4 = k6oz − k2,

m2 = oxdy + oydx, m5 = k7oz − k3.

(7)

The method presented by Parker et al. [1998] for computing the ci in Equation (5)

is rather brute-force, though mathematically elegant, in their presentation. Their

method uses about 161 operations, where fused-multiply-and-adds were counted as

97

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

one operation. By sharing repeated calculations (the ki and mi) where possible, our

method uses only 37 operations, again counting each FMA as one operation.

To intersect a ray with the surface inside a voxel, we first compute the intersection

between the ray and the box. This intersection point is used as the new origin of the

ray, unless the ray origin is inside the box. The origin of the ray is then transformed

to the canonical voxel space, which is [0, 1]3, as we have derived our surface function

in that space. The distance from this point to the exit point of the ray on the box is

denoted tfar.

Next, we compute the intersection distance, t, by using Equation (5) with the

constants in Equations (3), (6), and (7). Note that we are only interested in the first

real root inside the box, i.e., with t ∈ [0, tfar]. There are several viable approaches to

solving that third-order polynomial. First, one may use an analytic cubic polynomial

solver based on Vieta’s approach [Press et al. 2007], or any other analytic method for

solving cubic polynomials.

Second, one may use a numerical approach instead of an analytic solver for the

third-order polynomial. As a first step, we use the approach by Marmitt et al. [2004].

Let us denote our cubic polynomial by g(t) = c3t
3 + c2t

2 + c1t + c0. Marmitt et

al. differentiate this equation and solve for equality to zero, which gives us g′(t) =

3c3t
2 + 2c2t + c1 = 0. This can be solved analytically by splitting the interval

[0, tfar] into subintervals wherever g′(t) = 0. The subintervals are processed in order,

from t = 0 toward t = tfar. As soon as we find a subinterval [tstart, tend], where

g(tstart)g(tend) ≤ 0, i.e., g(tstart) and g(tend) have different signs, we know that

there will be a root of g(t) in [tstart, tend]. This is illustrated in Figure 4.

We also found that this type of computation can be used to optimize shadow ray

testing. For opaque geometry, shadow ray testing can be terminated as soon as a hit

is found in [0, tlight]. This means that we can exploit the previous step, i.e., if we find

that there is a root in [tstart, tend] and this interval fully overlaps with [0, tlight], then

we can report a hit without numeric iteration. This is evaluated in Section 4.

If we detect that there is a root in [tstart, tend], using the method in Figure 4, one

alternative is to use a numerical solver to find the root in that subinterval. Marmitt

et al. applied repeated linear interpolation to find the root. Another alternative is to

first refine the current t into t = (g(tend)tstart − g(tstart)tend)/(g(tend) − g(tstart)),

which provides a refined initial guess of the root. Next, we use the Newton–Raphson

method [Press et al. 2007] to find the root. This is shown in Listing 1. We evaluate

the analytic solution, the method of Martmitt et al., and the Newton–Raphson method

in Section 4.

If desired, one can add an additional test, which makes the voxel surface solid,

as shown in Figure 2, before using the cubic solver. When the ray origin is located

on a face of the voxel’s box, we evaluate Equation (2) once at the ray origin. If

f(ox, oy, oz) < 0, then the ray is deemed to have hit a side of the voxel, and we return

98

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

t

g(t)

t
far

t
far

t
far

Figure 4. Illustration of how the solutions to g′(t) = 0 help with numeric root finding. The

roots to g′(t) = 0 are marked with vertical dashed lines, which split the t-axis into three

intervals. Since the curve is above the t-axis in the first two intervals (yellow and green),

there cannot be any real roots there. For the last interval, the curve is above the t-axis at the

beginning of the interval and below at tfar. Using linear interpolation, we then compute the

t-value at the non-filled circle and use that as a starting point for Newton–Raphson iteration

(NR). The top right example shows how there are three roots in [0, tfar], but NR will start in

the first interval due to opposite signs of g(t) at the start and end of the first (yellow) interval.

The bottom right example shows that there are no roots, and so no iteration is needed.

for(int q=0; q < maxNumSteps && abs(t-tPrev) >= kNumericEpsilon; q++)

{

float gt = evalCubic(coefficients, t); // 3 FMAs

float gt_deriv = evalQuadratic(quadraticCoeffs, t); // 2 FMAs

tPrev = t;

t -= gt / gt_deriv; // Newton-Raphson step

}

// At this point, the approximation of the root is t.

Listing 1. Refining the root using Newton–Raphson iteration, where evalCubic() evalu-

ates the cubic polynomial g(t), while evalQuadratic() evaluates the derivative of g(t),

i.e., g′(t).

a hit there immediately. An advantage of adding this test is that rays which “sneak”

between the surfaces of two neighboring voxels due to floating-point imprecision are

likely to immediately hit such a box face, which avoids visible cracks.

3. Normals

For any continuous surface defined by a differentiable implicit function f , a vec-

tor n, which is normal to the surface, can be computed from the gradient of f , i.e.,

n = (∂f
∂x

, ∂f
∂y
, ∂f
∂z
). Common numerical methods for computing n include central

differencing [Frisken et al. 2000], forward and backward differencing, or the tetra-

99

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

hedral method, using only four function evaluations, by Falcão [2008]. All of these

numerical methods are based on some epsilon value to determine offset points.

We compute normals using the analytic derivative of f , as described in Sec-

tion 3.1. Because f is a cubic polynomial, the normal will be C2 continuous inside

each voxel. However, over an SDF grid, the normals will not be continuous, since two

neighboring voxels’ surfaces are only C0 continuous where they meet. To remedy

this, we present a method (Section 3.2) that interpolates normals from neighboring

voxels’ surfaces, which is similar in spirit to how normals are computed for PN tri-

angles [Vlachos et al. 2001]. To clarify, our approach computes continuous normals

that appear to be reasonable, but they do not correspond to the normals of the surface,

similar to the method by Vlachos et al.

3.1. Analytic Normal

Differentiation of Equation (1) with respect to x gives

∂f(x,y,z)
∂x

= (1− y) (1− z) (s100 − s000)

+ y (1− z) (s110 − s010)

+ (1− y) z (s101 − s001)

+ y z (s111 − s011).

(8)

This is a bilinear interpolation of distance differences in the x-direction, which we

can rewrite as

y0 = lerp(y, s100 − s000, s110 − s010),

y1 = lerp(y, s101 − s001, s111 − s011),
∂f(x,y,z)

∂x
= lerp(z, y0, y1),

(9)

where lerp(u, a, b) = a+ u(b− a) is linear interpolation on an FMA-friendly form.

Similary, we get

x0 = lerp(x, s010 − s000, s110 − s100),

x1 = lerp(x, s011 − s001, s111 − s101),
∂f(x,y,z)

∂y
= lerp(z, x0, x1),

(10)

and

x0 = lerp(x, s001 − s000, s101 − s100),

x1 = lerp(x, s011 − s010, s111 − s110),
∂f(x,y,z)

∂z
= lerp(y, x0, x1).

(11)

The analytic normal for the surface inside a voxel is then n = (∂f
∂x

, ∂f
∂y
, ∂f
∂z
), using

Equations (9)–(11).

100

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

voxel

dual voxel

hitpoint

Figure 5. Left: A 2 × 2 voxel grid and its corresponding dual voxel in the middle. Each

voxel has its own surface, and normals can be evaluated outside its voxel. For a hit point,

we compute the normals for each of the four voxels at the same hit point and then weight

these based on the position of the hit point inside the voxel. Right: To avoid cluttering the

illustration, we only show two voxels here. The illustration shows a green (respectively, red)

surface defined by the signed distance values at the corners of the left (respectively, right)

voxel. Normals, shown in red and green, can be computed at the hit point based on the implicit

function defined in both voxels. These normals are then weighted based on the position of the

hit point inside the dual voxel. In this simple illustration, only the x-component of the hit

point would be used for weighting. Because the hit point is closer to the right border of the

dual voxel than the left border, the red normal will get a larger weight than the green normal.

Our method uses about 30 operations for the normal (without normalization),

while the method of Parker et al. uses 54 operations.

3.2. Continuity Across Voxels

One could imagine that normals, which are computed and shared at voxel corners,

are trilinearly interpolated inside the voxel volume. Though this would give normal

continuity at the shared borders between voxels, the quality would suffer and such

a method would not be sufficient to compute reasonable normals for the voxels in

Figure 2, for example.

Instead, we take the following approach. We introduce the concept of a dual

voxel, which is just a voxel shifted in location by half the voxel dimensions. This is

shown in Figure 5. Any hit point will fall inside a single dual voxel, which in turn

overlaps 2 × 2 × 2 voxels. We evaluate the analytic normal nijk in each voxel at

the hit point and interpolate the results. Our interpolation scheme takes place inside

the dual voxel, weighted using the triplet (u, v, w) ∈ [0, 1]3, which represents the hit

point’s position within the dual voxel. Our formula for interpolation resembles that

of trilinear interpolation in that we use

n = (1− u) (1− v) (1− w)n000 + u (1− v) (1− w)n100

+ (1− u) v (1− w)n010 + u v (1− w)n110

+ (1− u) (1− v) w n001 + u (1− v) w n101

+ (1− u) v w n011 + u v w n111,

(12)

101

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

with the subscript indices indicating from which voxel a normal is computed. We

chose to write the expression in the clearest form in Equation (12), but in reality,

it is better to evaluate it using a form similar to that of Equation (1). Our method

differs from standard trilinear interpolation in that we do not compute normals at the

corners of the dual voxel, but instead compute the (normalized) analytic normals,

using Equations (9)–(11), evaluated at the hit point. This is illustrated to the right in

Figure 5. Note that this means that normals are computed outside the usual domain

of a voxel in seven out of the eight cases, and only inside for the voxel where the

hit point is located. As can be seen to the right in Figure 5, the green normal is not

computed on the green surface, but rather at the hit point on the red surface.

The resulting interpolated normals are smoothly varying across the whole field;

however, they do not correspond exactly to the original normals of the intersected

surface, which are discontinuous at voxel boundaries. In other words, we trade a

small deviation from the geometric normal to the surface for smoothness across voxel

boundaries.

4. Results

All tests were run on an Intel Core i9 10980XE clocked at 3.00 GHz with 128 GB

of DDR4 system memory clocked at 2.4 GHz. The graphics card was an NVIDIA

RTX 3090 with 24 GB of memory using driver version 471.68. Our implementation

was done inside an in-house path tracer running in Falcor [Kallweit et al. 2021].

We have used four test scenes called Cheese, Goblin, Heads, and Ladies, which

can be seen in Figure 6. All rendering was done with full path tracing using up

to three bounces and with a single square light source. Performance was evaluated

using different camera paths for our four scenes, with 900 frames per scene. After

30 seconds of warm-up rendering on the GPU, we ran the camera path five times and

computed the average frame time.

4.1. Algorithms

To provide a comprehensive study of the performance of path tracing of SDF grids,

we have divided the algorithm into a grid traversal part and a voxel intersection part.

4.1.1. Grid Traversal

The grid traversal methods we evaluate are

1. grid sphere tracing (GST),

2. sparse voxel set (SVS),

3. sparse brick set (SBS), and

4. sparse voxel octree (SVO).

102

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

C
h

e
e
s
e

G
o

b
li

n
H

e
a

d
s

L
a

d
ie

s

Figure 6. Three frames from each of our test scenes at different viewpoints from our camera

paths.

Grid sphere tracing GST is sphere tracing through a dense grid of SDF values. The

grid that GST uses stores all voxels for a given resolution, this includes those voxels

that do not contain the SDF surface. Values are formatted and clamped to [−1, 1]

such that a value of 1 encodes 2.5 interior voxel diagonals. This allows the SDF

values to be stored as 8-bit snorm integers. To accelerate traversal of empty regions

of space, a hierarchy of SDF grids is utilized. Lower-resolution levels of the hierarchy

encode larger SDF values. An algorithm adaptively selects a grid resolution to safely

maximize the step size taken by the sphere tracing traversal. The traversal is done

entirely in shader code. A similar technique is used in Claybook [Aaltonen 2018].

Sparse voxel set SVS creates an axis-aligned bounding box (AABB) for each voxel

that intersects part of the surface and builds a bounding volume hierarchy (BVH) for

use in DirectX Raytracing (DXR). Hence, BVH traversal is done using the GPU’s

RTX ray tracing hardware. When a voxel is reached, a custom intersection shader is

invoked and any of the following methods can be used. Instead of storing 2 × 2 × 2

signed distance values per voxel, SVS stores 4× 4× 4 signed distance values around

a voxel. This allows easy access of neighboring voxel values, which is necessary for

some of the normal evaluation methods that follow.

103

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

Sparse brick set SBS is similar to SVS, except that each AABB stores the data of

7×7×7 voxels (8×8×8 values), called bricks. When the custom intersection shader

is invoked, a 3D digital differential analyzer (DDA) is used to visit the relevant voxels

in order. SBS stores the distance values of each 83 brick as slices in a 2D texture and

provides a lookup buffer to access the bricks. This allows eight voxel corner values

to be fetched using only two HLSL gather operations. This traversal method is

most similar to that used by Dreams [Evans 2015] and OpenVDB [Museth 2013;

Museth 2021]; OpenVDB uses a forest of trees to store leaf bricks with data for

8× 8× 8 voxels. OpenVDB does not directly make use of GPU gather operations

and therefore does not need to duplicate the voxel data at brick borders.

Sparse voxel octree SVO is a sparse voxel octree [Crassin et al. 2009] with im-

plementation details following the work by Laine and Karras [2010]. All traversal

occurs in shader code for SVO. In general, we store SDF values as 8-bit snorm in-

tegers. SDF values are formatted such that a value of 1 encodes 0.5 interior voxel

diagonals. After formatting, the SDF values are clamped to [−1, 1], allowing them

to be stored as snorm integers. The size of a voxel varies at different levels of the

octree, which allows lower-resolution levels to encode larger distances at the expense

of precision.

4.1.2. Voxel Intersection

We evaluate the following methods:

1. grid sphere tracing (GST),

2. sphere tracing (ST),

3. analytic (A),

4. Marmitt et al. (M), and

5. Newton–Raphson (NR).

Grid sphere tracing GST for voxel intersection is only combined with GST for grid

traversal, meaning that the same algorithm is used until an intersection is found.

Sphere tracing ST performs classical sphere tracing only inside the voxel and can

be combined with other traversal methods. To prevent extremely long runs, GST and

ST stops after 512 and 128 iterations,1 respectively, or when there is a crossing from

outside to inside the surface.

1We use a larger value for GST because it uses sphere tracing for both traversal and voxel intersec-

tion, while ST only uses it for voxel intersection. Note that these numbers are mostly there to prevent

extremely long runs, but we seldom see this happening.

104

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

Cheese Goblin

GST ST A M NR GST ST A M NR

GST 15.4 22.6 14.6 15.7 15.7 GST 16.6 22.2 16.0 16.9 17.0

SVS – 16.6 9.7 9.9 10.4 SVS – 14.9 9.7 9.8 11.2

SBS – 30.3 17.8 19.1 18.6 SBS – 25.5 17.3 18.1 18.0

SVO – 28.4 16.7 17.3 17.3 SVO – 24.3 16.3 16.6 16.6

Heads Ladies

GST ST A M NR GST ST A M NR

GST 50.8 63.9 47.9 50.8 50.8 GST 79.7 93.2 82.9 86.3 86.3

SVS – 27.2 17.3 17.1 18.0 SVS – 23.6 16.1 16.2 17.3

SBS – 53.8 32.8 34.8 33.9 SBS – 44.6 30.9 32.3 31.3

SVO – 59.4 40.7 41.4 41.6 SVO – 66.1 54.8 54.8 55.3

Table 1. Main performance results, in milliseconds, for our four scenes called Cheese, Goblin,

Heads, and Ladies. The traversal method (GST/SVS/SBS/SVO) is identified by the row and

the voxel intersection method (GST/ST/A/M/NR)) by the column. The fastest two methods

per scene are marked with bold numbers.

Analytic We solve the cubic polynomial using an analytic cubic root solver, as men-

tioned in Section 2.

Marmitt et al. and Newton–Raphson M first uses the method proposed by Marmitt

et al. [2004] to split the polynomial as shown in Figure 4, and then uses repeated

linear interpolation for iteration. NR also uses the polynomial split, but then replaces

repeated linear interpolation with Newton–Raphson iteration. Both M and NR have

a maximum number of iterations that can be performed and also stops iteration if

the difference between two subsequent t-values is less than a chosen epsilon. We

empirically picked a maximum number of iterations of 50 and an epsilon value of

ϵ = 4.0 ·10−3, where a larger maximum number of iterations or smaller epsilon value

never visually improved the images we rendered.

With this, we denote a combination of a traversal algorithm and a voxel inter-

section test method by the concatenation of the abbreviations, i.e., SBS-NR is sparse

brick set with Newton–Raphson. We use classical instancing in the scenes (Heads

and Ladies) with replicated objects: e.g., for each instance, we inverse-transform the

ray and then traverse a shared object.

4.2. Performance

The main performance results using path tracing are shown in Table 1. It is clear that

the fastest traversal method is SVS, combined with either the analytic voxel intersec-

tion test (A) or the numerical method by Marmitt et al. (M). Among the rest of the

algorithms, it is less clear. For the simpler scenes (Cheese and Goblin), GST is the

next fastest, closely followed by SBS and SVO. For the more complex scenes (Heads

and Ladies), SBS is generally faster than SVO, and GST is the slowest. This is likely

105

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

Cheese Goblin Heads Ladies

GST 177.3 177.3 177.3 177.3

SVS 209.0 152.2 95.5 30.4

SBS 24.6 18.0 11.7 4.1

SVO 45.0 32.6 20.4 6.5

Table 2. Memory usage for different grid traversal algorithms, numbers are in megabytes.

The memory usage includes both internal data buffers that are used to intersect against the

SDF surface as well as the acceleration structure size.

due to more indirect rays hitting the SDF surface in complex scenes. SBS and SVO

are better at handling this random access as they store data more compactly. Further-

more, SBS creates tighter bounding boxes around the SDF surface, which allows for

better utilization of hardware-accelerated ray tracing. However, for simpler scenes

where most rays access similar data, GST seems to traverse the grid faster than SBS

and SVO.

For voxel intersection testing, the analytic test (A) is the fastest method, but with

M having similar numbers for SVS. It was surprising to us that M is often faster than

Newton–Raphson (NR), as NR has faster convergence rates. It may be due to NR

taking longer to converge in harder cases where the starting point is on the cubic

curve and the magnitude of the derivative is relatively small.

We speculated that SBS might be faster than SVS due to better use of locality

because a block of 7 × 7 × 7 voxels is read at a time, but we cannot see any such

evidence. This may change if the data is compressed with BC4 texture compression.

However, since values at the edges are replicated to avoid reading neighboring blocks,

the lossy nature of BC4 will cause edge values to be different, which can give rise to

cracks in the SDF surface. This may be reasonable when the camera is far away, but

less acceptable when the camera is closer. We leave a thorough evaluation of texture

compression for future work.

Memory usage for the different grid traversal algorithms can be seen in Table 2.

The memory usage of GST is constant as it does not depend on the sparsity of surface

voxels. SVS needs to store a large amount of data per voxel, but only stores voxels

that intersect the SDF surface. Therefore, SVS uses more memory than GST for the

Cheese SDF as it causes more voxels to intersect the surface than the other SDFs do.

If we reduced the storage per voxel from 4 × 4 × 4 SDF values to 2 × 2 × 2 SDF

values, the numbers for SVS would approximately be reduced by 50%. That would,

however, make our new normal interpolation method substantially slower. SBS and

SVO use the least amount of memory across all scenes due to both of them being

good at exploiting sparsity, while also storing less data per voxel compared to SVS.

In a memory-constraint scenario, SBS is likely the winning method because it uses

the least memory and is faster than SVO.

106

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

Cheese Goblin Heads Ladies

Falcão normals [2008] GST-A +1.1% +1.6% +0.7% +0.3%

Analytic normals (Section 3.1)

GST-A +0.0% +0.2% +0.2% +0.1%

SVS-A –0.1% +0.3% –2.1% –0.1%

SBS-A +0.3% –0.2% –0.1% –0.2%

Our method (Section 3.2)

GST-A +4.2% +3.7% +1.9% +1.1%

SVS-A +3.9% +7.3% +1.0% +4.5%

SBS-A +4.3% +5.8% +3.7% +3.5%

Table 3. Performance of different normal methods measured as a percent change in the overall

frame time, where negative numbers indicate a reduction in total frame time to the baseline,

while positive numbers indicate an increase. The baseline is the discontinuous version of the

method by Falcão.

4.3. Normals

Our comparison method for the normal computations is a difference-based method

that uses four evaluations of the signed distance function [Falcão 2008] and is the least

expensive method that we have found. It is possible to create normals that achieve C0

continuity of the normal field over voxel edges by sampling neighboring voxels with

this method combined with GST. We call this method Falcão normals. However,

using other traversal methods, it is not always possible to sample neighboring voxels

as they may not exist. Therefore, a version of the method by Falcão [2008] that

is not C0 across voxel edges is used for those traversal methods. This method is

denoted baseline. It extends the surface of the current voxel outside its box to allow

the signed distance to be sampled for neighbors that might not exist. We compare

to analytic normals (Section 3.1), which are also not C0 across voxels, and to our

proposed method (Section 3.2), which delivers continuous normals. For the baseline

and Falcão methods, we empirically picked an epsilon of 20% of the voxel size as it

resulted in the best visual appearance. The other methods do not require any tweaking

of epsilon values. To summarize, the four normal computation methods we evaluate

are the following:

1. baseline,

2. Falcão normals [2008],

3. analytic normals (Section 3.1), and

4. our method (Section 3.2).

To reduce the sheer amount of data, we present statistics only for GST-A, SVS-A,

and SBS-A using analytic normals and our proposed method. We also present statis-

tics on the performance of Falcão normals using GST-A. The results are presented

in Table 3, where the numbers are compared against the baseline method. Falcão

107

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

Falcão normals [2008] Analytic normals (Section 3.1) Our method (Section 3.2)

F
u

ll
fr

a
m

e
Z

o
o

m
F

u
ll

fr
a

m
e

Z
o

o
m

Figure 7. Image quality comparison of the three different normal methods that we evaluate.

normals perform consistently slightly worse than the baseline. This is due to it be-

ing more costly to sample additional distance values from neighboring voxels than to

use the distance values of only one voxel. Analytic normals (Section 3.1) perform

similar to the baseline, which is expected as both only use the distance values of a

single voxel. Our method, on the other hand, uses 1.1–4.2% more time per frame on

average for GST-A compared to the baseline and 1.0–7.3% more time per frame on

average for SVS-A. Without storing the 4× 4× 4 SDF values per voxel, the runtime

was substantially larger. Finally, our method used 3.5–5.8% more time per frame on

average for SBS-A compared to the baseline.

Even though our method used more time to compute the normals, there is also

a significant difference in image quality, as seen in Figure 7. From a distance, it is

108

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

difficult to see any large differences between the three methods. In closeups, Falcão

normals are somewhat smoother than the method of Section 3.1, which is to be ex-

pected since Falcão normals sometimes access neighboring voxel data. Our method

provides superior results for closeups as can be seen to the lower right. An alternative

would be to use the method of Section 3.1 far away from the object and switch to our

method for closeups. This could be decided by tracing ray cones [Akenine-Möller

et al. 2019] and selecting a method based on the ray cone radius at the hit point. This

is also left for future work.

4.4. Shadow Ray Optimization

The shadow ray optimization mentioned in Section 2 is most suitable to enable when

a numerical method, which splits the polynomial (Figure 4), is used. We evaluate this

optimization only for the Newton–Raphson method, but the results should apply to

any method that uses polynomial splitting.

We found that for GST-NR, the shadow ray optimization uses 4–6% less time

across our four test scenes on average. The reduction was 6–14% for SVS-NR, 1–

2% for SBS-NR, and 0.6–1.3% for SVO-NR. We conclude that it is a worthwhile

optimization to do for all methods.

5. Conclusion and Future Work

We have implemented a set of traversal methods and voxel intersection techniques for

path tracing on the GPU. This includes our own derivation of how to intersect a ray

with the surface defined by trilinearly interpolating SDF values from the 2 × 2 × 2

corners of a voxel. The fastest traversal method (SVS) is the one where a BVH is

built around each non-empty voxel, which is then traced by the GPU ray tracing hard-

ware on the RTX 3090. A custom intersection shader then handles the intersection

between the surface in a voxel and a ray. In combination with SVS, solving the third-

order polynomial analytically or solving it using repeated linear interpolation gave

the fastest total performance.

Our new method for interpolating normals uses 1–7% more time compared to

the baseline, but provides substantially smoother images when viewing surfaces from

a short distance. For future work, it could be worthwhile to let ray cones [Akenine-

Möller et al. 2019] control when to switch from a less-expensive, lower-quality method

to our method. We recommend that the shadow ray optimization that we have pro-

posed is always used for methods based on polynomial splitting. In the future, it

would also be useful to evaluate all methods using level of detail with ray cones, so

that traversal would be stopped at a level where the voxel is approximately as large as

the cone diameter. DXR does not have support for this at the moment, however.

109

http://jcgt.org


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

Acknowledgements

Thanks to Aaron Lefohn for supporting this work, and thanks to Pontus Andersson,

Marco Salvi, and Eric Haines for providing feedback. We are grateful to Jonathan

Åleskog for modeling the “sad guy” in the teaser image.

References

AALTONEN, S., 2018. GPU-based clay simulation and ray tracing tech in Claybook.

Presentation at Game Developers Conference, March 19–23. URL: https://ub

m-twvideo01.s3.amazonaws.com/o1/vault/gdc2018/present

ations/Aaltonen_Sebastian_GPU_Based_Clay.pdf. 95, 103

AKENINE-MÖLLER, T., NILSSON, J., ANDERSSON, M., BARRÉ-BRISEBOIS, C.,

TOTH, R., AND KARRAS, T. 2019. Texture level of detail strategies for real-time

ray tracing. In Ray Tracing Gems, E. Haines and T. Akenine-Möller, Eds. Apress,

ch. 20, 321–345. URL: https://link.springer.com/chapter/10.1

007/978-1-4842-4427-2_20. 109

BÁLINT, C., AND VALASEK, G. 2018. Accelerating sphere tracing. In Eurographics

Short Papers, The Eurographics Association, 29–32. URL: http://dx.doi.o

rg/10.2312/egs.20181037. 95

BLOOMENTHAL, J., BAJAJ, C., BLINN, J., CANI-GASCUEL, M.-P., ROCKWOOD,

A., WYVILL, B., AND WYVILL, G. 1997. Introduction to Implicit Surfaces.

Morgan Kaufmann. URL: https://dl.acm.org/doi/book/10.5555/

549676. 94

CRASSIN, C., NEYRET, F., LEFEBVRE, S., AND EISEMANN, E. 2009. GigaVoxels:

Ray-guided streaming for efficient and detailed voxel rendering. In Proceedings

on the 2009 Symposium on Interactive 3D Graphics and Games, Association for

Computing Machinery, 15–22. URL: https://maverick.inria.fr/Pu

blications/2009/CNLE09/CNLE09.pdf. 104

EVANS, A., 2015. Learning from failure: A survey of promising, unconventional

and mostly abandoned renderers for Dreams PS4, a geometrically dense, painterly

UGC game. Advances in Real-Time Rendering in Games, SIGGRAPH Course.

URL: http://advances.realtimerendering.com/s2015/AlexE

vans_SIGGRAPH-2015-sml.pdf. 95, 104

FALCÃO, P., 2008. Implicit function to distance function. URL: https://www.

pouet.net/topic.php?which=5604&page=3#c233266. 100, 107,

108

110

http://jcgt.org
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc2018/presentations/Aaltonen_Sebastian_GPU_Based_Clay.pdf
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc2018/presentations/Aaltonen_Sebastian_GPU_Based_Clay.pdf
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/gdc2018/presentations/Aaltonen_Sebastian_GPU_Based_Clay.pdf
https://link.springer.com/chapter/10.1007/978-1-4842-4427-2_20
https://link.springer.com/chapter/10.1007/978-1-4842-4427-2_20
http://dx.doi.org/10.2312/egs.20181037
http://dx.doi.org/10.2312/egs.20181037
https://dl.acm.org/doi/book/10.5555/549676
https://dl.acm.org/doi/book/10.5555/549676
https://maverick.inria.fr/Publications/2009/CNLE09/CNLE09.pdf
https://maverick.inria.fr/Publications/2009/CNLE09/CNLE09.pdf
http://advances.realtimerendering.com/s2015/AlexEvans_SIGGRAPH-2015-sml.pdf
http://advances.realtimerendering.com/s2015/AlexEvans_SIGGRAPH-2015-sml.pdf
https://www.pouet.net/topic.php?which=5604&page=3#c233266
https://www.pouet.net/topic.php?which=5604&page=3#c233266


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R. 2000.

Adaptively sampled distance fields: A general representation of shape for computer

graphics. In Proceedings of the 27th Annual Conference on Computer Graphics

and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., 249–254.

URL: https://dl.acm.org/doi/10.1145/344779.344899. 99

GALIN, E., GUÉRIN, E., PARIS, A., AND PEYTAVIE, A. 2020. Segment tracing

using local Lipschitz bounds. Computer Graphics Forum 39, 2, 545–554. URL:

https://doi.org/10.1111/cgf.13951. 95

HART, J. C. 1995. Sphere tracing: A geometric method for the antialiased ray

tracing of implicit surfaces. The Visual Computer 12, 527–545. URL: https:

//link.springer.com/article/10.1007/s003710050084. 95, 96

KALLWEIT, S., CLARBERG, P., KOLB, C., YAO, K.-H., FOLEY, T., WU, L.,

CHEN, L., AKENINE-MÖLLER, T., WYMAN, C., CRASSIN, C., AND BENTY,

N., 2021. The Falcor rendering framework, August. URL: https://github

.com/NVIDIAGameWorks/Falcor. 102

KEINERT, B., SCHÄFER, H., KORNDÖRFER, J., GANSE, U., AND STAMMINGER,

M. 2014. Enhanced sphere tracing. In Smart Tools and Apps for Graphics—

Eurographics Italian Chapter Conference, The Eurographics Association, 1–8.

URL: http://dx.doi.org/10.2312/stag.20141233. 95

LAINE, S., AND KARRAS, T. 2010. Efficient sparse voxel octrees—Analysis, exten-

sions, and implementation. NVIDIA Technical Report NVR-2010-001, NVIDIA.

URL: https://research.nvidia.com/publication/2010-02_ef

ficient-sparse-voxel-octrees-analysis-extensions-and-i

mplementation. 104

LOPES, A., AND BRODLIE, K. 2003. Improving the robustness and accuracy of the

marching cubes algorithm for isosurfacing. IEEE Transactions on Visualization

and Computer Graphics 9, 1, 16–29. URL: https://ieeexplore.ieee.

org/document/1175094. 95

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high resolution 3D

surface construction algorithm. Computer Graphics (SIGGRAPH) 21, 4, 163–169.

URL: https://doi.org/10.1145/37402.37422. 95

MARMITT, G., KLEER, A., WALD, I., AND FRIEDRICH, H. 2004. Fast and accurate

ray-voxel intersection techniques for iso-surface ray tracing. In Vision, Modeling,

and Visualization, AKA, vol. 4, 429–435. 98, 105

111

http://jcgt.org
https://dl.acm.org/doi/10.1145/344779.344899
https://doi.org/10.1111/cgf.13951
https://link.springer.com/article/10.1007/s003710050084
https://link.springer.com/article/10.1007/s003710050084
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
http://dx.doi.org/10.2312/stag.20141233
https://research.nvidia.com/publication/2010-02_efficient-sparse-voxel-octrees-analysis-extensions-and-implementation
https://research.nvidia.com/publication/2010-02_efficient-sparse-voxel-octrees-analysis-extensions-and-implementation
https://research.nvidia.com/publication/2010-02_efficient-sparse-voxel-octrees-analysis-extensions-and-implementation
https://ieeexplore.ieee.org/document/1175094
https://ieeexplore.ieee.org/document/1175094
https://doi.org/10.1145/37402.37422


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

MUSETH, K. 2013. VDB: High-resolution sparse volumes with dynamic topology.

ACM Transactions on Graphics 32, 3, 27:1–27:22. URL: https://doi.org/

10.1145/2487228.2487235. 104

MUSETH, K. 2021. NanoVDB: A GPU-friendly and portable VDB data structure for

real-time rendering and simulation. In ACM SIGGRAPH 2021 Talks, Association

for Computing Machinery, 1:1–1:2. URL: https://doi.org/10.1145/34

50623.3464653. 104

PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND SLOAN, P.-P. 1998.

Interactive ray tracing for isosurface rendering. In Proceedings Visualization ’98,

IEEE, 233–238. URL: https://ieeexplore.ieee.org/document/7

45713. 95, 97

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P.

2007. Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge

University Press. URL: http://numerical.recipes/. 98

VLACHOS, A., PETERS, J., BOYD, C., AND MITCHELL, J. L. 2001. Curved PN

triangles. In Proceedings of the Symposium on Interactive 3D Graphics, Associa-

tion for Computing Machinery, 159–166. URL: https://doi.org/10.114

5/364338.364387. 100

Author Contact Information

Herman Hansson Söderlund

NVIDIA

Ideon Science Park

Scheelevägen 28

223 70 Lund

Sweden

hermanh@nvidia.com

Alex Evans

NVIDIA Ltd.

100 Brook Drive

READING

RG2 6UJ

United Kingdom

alexe@nvidia.com

Tomas Akenine-Möller

NVIDIA

Ideon Science Park

Scheelevägen 28

223 70 Lund

Sweden

takenine@nvidia.com

H. Hansson Söderlund, A. Evans, and T. Akenine-Möller, Path Tracing of Signed

Distance Function Grids, Journal of Computer Graphics Techniques (JCGT), vol. 11,

no. 3, 94–113, 2022

http://jcgt.org/published/0011/03/06/

Received: 2021-09-08

Recommended: 2022-02-17 Corresponding Editor: Natalya Tatarchuk

Published: 2022-09-21 Editor-in-Chief: Marc Olano

112

http://jcgt.org
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/3450623.3464653
https://doi.org/10.1145/3450623.3464653
https://ieeexplore.ieee.org/document/745713
https://ieeexplore.ieee.org/document/745713
http://numerical.recipes/
https://doi.org/10.1145/364338.364387
https://doi.org/10.1145/364338.364387
mailto:hermanh@nvidia.com
mailto:alexe@nvidia.com
mailto:takenine@nvidia.com
http://jcgt.org/published/0011/03/06/


Journal of Computer Graphics Techniques

Path Tracing of Signed Distance Function Grids

Vol. 11, No. 3, 2022

http://jcgt.org

© 2022 H. Hansson Söderlund, A. Evans, and T. Akenine-Möller (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-

ND 3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/.

The Authors further grant permission for reuse of images and text from the first page

of the Work, provided that the reuse is for the purpose of promoting and/or summa-

rizing the Work in scholarly venues and that any reuse is accompanied by a scientific

citation to the Work.

113

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

