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Figure 1. The correlation between BVH costs and tracing times for secondary and shadow

rays using binary BVHs. Both the BVH cost and the trace times are normalized by LBVH.

Abstract

Ray tracing is an inherent component of modern rendering algorithms. The bounding volume

hierarchy (BVH) is a commonly used acceleration data structure employed in most ray tracing

frameworks. Through the last decade, many methods addressing ray tracing with bounding

volume hierarchies have been proposed. However, most of these methods were typically
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compared to only one or two reference methods. The acceleration provided by a particular

BVH depends heavily on its construction algorithm. Even experts in the field dispute which

method is the best. To add more insight into this challenge, we empirically compare the most

popular methods addressing BVHs in the context of GPU ray tracing. Moreover, we combine

the construction algorithms with other enhancements such as spatial splits, ray reordering,

and wide BVHs. To estimate how close we are from the best performing BVH, we propose

a novel method using global optimization with simulated annealing and combine it with the

existing best-performing BVH builders. For the sake of fairness and consistency, all methods

are evaluated in a single unified framework, and we make all source code publicly available.

We also study the correlation between tracing times and the estimated traversal cost induced

by the surface area heuristic (SAH).

1. Introduction

Ray tracing stays at the core of many physically based rendering algorithms. These

algorithms model light transport by means of geometric optics, assuming that light

travels instantaneously through the medium in straight lines. Ray tracing serves as

an underlying engine to find the nearest intersections with scene geometry, to test

visibility between two points, or to find all ray-scene intersections. The challenge is

that we have to trace a large number of rays to achieve plausible results. Therefore, the

scene geometry is arranged into various spatial data structures to accelerate the search

for intersections. Modern ray tracing engines almost exclusively employ a bounding

volume hierarchy (BVH) as an acceleration data structure as it provides excellent ray

tracing performance, scalable construction times, and predictable memory footprints.

Over the last two decades, many different algorithms and methods addressing

BVHs have been proposed. Nonetheless, they were tested only in a very limited

setting, often against only one or very few reference algorithms. Moreover, using

a combination of multiple techniques at once is usually simplified to a claim that

individual techniques are orthogonal to each other, which might not be necessarily

the truth in practice.

In this paper, we present a performance comparison of the BVH algorithms and

techniques with a focus on GPU-based methods. To gain more insight into how close

the state-of-the-art techniques are from the optimal BVH for the given scene, we

extend and combine the state-of-the-art BVH build methods that provided the best

currently known BVHs. In particular, we propose a modification of the parallel rein-

sertion BVH (PRBVH) method that includes a simulating annealing–based global

optimization, and we combine this method with the well-known split BVH (SBVH)

method using spatial splits.

We mainly target offline rendering or static content in interactive or real-time ap-

plications, where the BVH is reused many times and thus the build time becomes
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negligible with respect to trace times. Therefore, our comparison focuses on the ray

tracing performance that can be achieved using the particular BVH construction al-

gorithm. To make the evaluation more informative, we also briefly discuss the BVH

build times.

We compare the performance of ten different construction algorithms that are

either existing well-known algorithms or newly designed modifications and combi-

nations. For each construction algorithm, we evaluate the ray tracing performance

of resulting BVHs with different branching factors. We also study the influence of

ray reordering on the BVH ray tracing performance. All evaluated methods are im-

plemented in a single unified framework in order to make the comparison as fair as

possible using a path tracer as the target rendering algorithm.

There are several works directly related to our paper. Meister et al. [2021] pro-

vided a comprehensive overview of bounding volume hierarchies methods. However,

an empirical analysis was missing. Aila et al. [2013] provided a performance com-

parison focusing on the BVH quality metrics and their correlation with the actual

tracing times limited to binary BVHs. Vinkler et al. [2016] conducted a performance

comparison of bounding volume hierarchies and KD-trees on the GPU.

2. Background

In this section, we briefly describe the methods that we use for our comparison. For

details, we refer to the individual papers or a recent survey by Meister et al. [2021].

2.1. Cost Model

We can estimate the quality of a particular BVH in terms of the expected number of

operations needed to find the nearest ray-triangle intersection. Using the surface area

heuristic (SAH) [Goldsmith and Salmon 1987], we can express the cost function as

follows:

c(N) =







cT +
�

Nc

SA(Nc)
SA(N) c(Nc) if N is an interior node,

cI |N | otherwise,

(1)

where c(N) is the cost of a subtree with root N , Nc is a child of node N , SA(N) is

a surface area of the bounding box of node N , and |N | is the number of triangles in

node N . Constants cT and cI express the average cost of the traversal and intersection

steps, respectively. We can remove the recurrence by unrolling:

c(N) =
1

SA(N)



cT
ø

Ni

SA(Ni) + cI
ø

Nl

SA(Nl)|Nl|



 , (2)

where Ni and Nl are interior and leaf nodes, respectively. This model only roughly

estimates what is happening in reality as it does not take into account many other fac-
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tors such as the actual ray distribution, occlusions, underlying hardware architecture,

or a particular rendering algorithm. However, most of the construction algorithms

minimize this cost function (at least locally) to maximize the actual ray tracing per-

formance. Notice that if we use one triangle per leaf, then the cost function reduces

simply to the sum of the surface areas of the bounding boxes in interior nodes, which

is a fact that some of the construction algorithms exploit.

Modern hardware architectures are equipped with SIMD units that allow the pro-

cessing of multiple intersections tests at once, for example, in wide BVHs, where a

single ray is tested against multiple bounding boxes. Triangles in leaves are processed

in a similar fashion, and thus it is desirable to have the number of triangles aligned

with the SIMD width as the number of executed intersection tests is equal to the SIMD

width. Motivated by this fact, Wald et al. [2008] proposed a modified version of the

cost model:

c(N) =
1

SA(N)



cT
ø

Ni

SA(Ni) + cI
ø

Nl

SA(Nl)k

�

|Nl|

k

�



 , (3)

where k is the branching factor or the SIMD width. The modified cost mode penalizes

leaves if their sizes are not aligned to k. Notice that we multiply the term by k to make

cT independent of k.

2.2. Construction

We first briefly describe the BVH construction algorithms evaluated in this paper.

Linear BVH Linear BVH (LBVH) is a very fast algorithm that reduces the problem

of the BVH construction to the sorting problem. The idea is to sort triangles along

a space-filling curve such as the Morton curve [Morton 1966]. The Morton curve

subdivides space into a uniform grid, where the order along the curve is given by the

Morton codes such that each Morton code corresponds to one cell of the grid. There

is a simple mapping between cell coordinates and Morton codes by interleaving suc-

cessive bits of cell coordinates. To construct a BVH over triangles, we approximate

each triangle by a single point (e.g., the centroid of its bounding box), project it to

the corresponding cell to compute its Morton code, and sort the triangles using the

Morton codes as sorting keys. The Morton curve encodes an implicit binary BVH

constructed by spatial median splits, where the most significant bit corresponds to the

top-most split and so on. Karras [2012] proposed an algorithm that constructs the

topology of this BVH in a single kernel launch, while the bounding boxes are com-

puted separately in an additional kernel launch in a bottom-up fashion using atomic

counters to prevent race conditions.

HLBVH LBVH is very fast, but it does not take into account the surface area heuris-

tic, and thus the resulting BVHs are of rather inferior quality. To address this issue,
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several researchers proposed to combine LBVH with SAH, which is known as hi-

erarchical LBVH (HLBVH) [Pantaleoni and Luebke 2010; Garanzha et al. 2011].

Garanzha et al. [2011] proposed to construct bottom levels by LBVH and then top

levels in a top-down manner by binning. To reduce the workload for binning, the

algorithm constructs the bottom levels by LBVH using fewer significant bits of Mor-

ton codes. Root nodes of bottom-level trees are further fed to binning using more

significant bits as bin indices. Top levels are constructed level by level using double

buffering, where each level requires a separate kernel launch.

Parallel locally ordered clustering Parallel locally ordered clustering (PLOC)

[Meister and Bittner 2018a] is a parallel bottom-up construction algorithm based on

agglomerative clustering. The algorithm starts from the individual triangles by con-

sidering them as clusters. Then, in each iteration, it merges multiple cluster pairs

in parallel, repeating this until only one cluster remains, which corresponds to the

root node. The algorithm employs the Morton curve to find the nearest neighbors

efficiently.

Treelet restructuring Treelet restructuring (TRBVH) is a parallel optimization

method that improves the quality of an existing BVH [Karras and Aila 2013]. The

algorithm starts from the leaves and proceeds up to the root until a given treelet size is

reached. Then, the treelets are restructured in order to locally minimize the BVH cost

induced by a particular treelet. After the treelet is restructured, the algorithm contin-

ues one level above and repeats the process. To avoid race conditions, a node is only

processed by the second thread (in the case of binary BVHs) using atomic counters to

be sure that both children were already processed. Karras and Aila [2013] restructured

the treelet in an optimal way regarding the cost function using a dynamic program-

ming approach. Later, Domingues and Pedrini [2015] showed that better results could

be achieved using agglomerative clustering (agglomerative treelet restructuring, ATR-

BVH), which is simple and thus allows for restructuring large treelets. This approach

provides BVHs of very good quality in reasonable times.

Parallel reinsertion Parallel reinsertion (PRBVH) [Meister and Bittner 2018b] is

an optimization algorithm that iteratively modifies the BVH topology by local updates

in order to decrease the global cost. The algorithm iteratively removes whole subtrees

and inserts them into new positions while tracking the cost reduction for each such

update. Thus, the cost function is systematically optimized as we know how exactly

each update will influence the global cost, which is not the case of other methods that

optimize the cost function only locally. The key observation is that we do not need to

remove the node to find a new position. This fact allows us to search for new positions

for all nodes in parallel, starting from original positions using simple state logic with

parent links. To prevent topological conflicts, we employ atomic locks, prioritizing

nodes with higher cost reduction. The algorithm always admits updates that reduce
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the global cost, which guarantees the global cost reduction. However, the algorithm

may get stuck in a local minimum. Therefore, we propose to combine the algorithm

with simulated annealing, which may also admit updates that temporally increase the

global cost based on the stochastic decision to prevent getting stuck in local minima.

We use the simulated annealing in a similar manner as Kensler [2008] proposed

for the rotation-based optimization. The acceptance probability is given by the Boltz-

mann factor:

P (∆d, T ) =

�

min(e−∆d/T , 1) T > 0,

0 T = 0,
(4)

where ∆d is the difference in surface area of the proposed change and T is the current

temperature. The temperature is a clamped sine function:

T (i) = max

�

0,− sin

�

2πi

f

��

Tmax
I − i

I
, (5)

where is f is the frequency of the sine function, Tmax is the hottest temperature al-

lowed, i is the current iteration, and I is the total number of iterations.

Nonetheless, in the case of reinsertion, there are two factors that make it more

complicated. The first factor is that the search space is huge, unlike the tree rotations,

where the space is limited to the constant number of rotations. Similarly, that is why

the method uses search space pruning [Meister and Bittner 2018b], which should also

be stochastic, as the acceptance. However, we would search practically the whole

space for high temperatures, which is not desirable. This effect is amplified through

multiple iterations as the original position used for pruning gets worse in each iteration

during the heating phase. Thus, we use probability P (Equation (4)) clamped to

Ppruning (a parameter of typically small value). Note that for the pruning we keep the

best value found so far not necessarily corresponding to the last accepted value, which

may also be negative.

The second factor is the parallel processing, which causes two more issues. First,

in the original algorithm [Meister and Bittner 2018b], there are two locking schemes

to prevent race conditions: aggressive strategy (lock only nodes that are modified) and

conservative strategy (lock the modified nodes and all nodes between them). The ag-

gressive strategy is more efficient as it allows to perform more reinsertions in parallel

as fewer nodes are locked. Nevertheless, this approach is not applicable for simulated

annealing because inserting two subtrees into each other may result in a cycle, discon-

necting the tree into two separate parts. In the case of hill climbing, these cases will

not happen as they are automatically rejected because they do not provide any cost

reduction. We resolve this issue by using the conservative strategy when the temper-

ature is positive. Second, we need to resolve the conflicts between nodes. Prioritizing

nodes with higher cost reductions would cause the deterministic reinsertions (with

positive cost reduction) to discard most of the stochastic reinsertions (with negative
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cost reduction), resulting in practically no change, assuming that the BVH is already

optimized. During the heating phase, we basically want to worsen the BVH to be able

to improve it later when the temperature reaches zero again. Therefore, during the

heating phase, we prioritize nodes with negative cost reduction.

Spatial splits A BVH may adapt poorly to overlapping triangles with nonuniform

sizes or long thin diagonal triangles. We can relax the restriction that each triangle

is referenced only once, allowing us to achieve tighter bounding boxes at the cost of

a higher number of triangle references in leaves. SBVH [Stich et al. 2009] is a top-

down construction algorithm that allows, besides standard objects, also spatial splits

in the same manner as in the KD-tree construction, selecting one that minimizes the

BVH cost. This algorithm provides BVHs of the highest quality at the cost of slower

construction and more difficult parallelization. Unlike standard BVHs, BVHs with

spatial splits cannot be easily updated by refitting the bounding volumes, which might

cause issues in handling dynamic scenes.

2.3. Traversal

Traversal on the GPU might be challenging due to warp divergence and incoherent

memory accesses. Aila and Laine [2009] proposed a stack-based traversal algorithm

with persistent warps and dynamic fetch. The algorithm spawns an optimal number of

warps that fetch rays from the global queue. To prevent warp divergence, the traversal

is divided into two independent loops processing interior and leaf nodes separately

(i.e., the while-while traversal). If all active threads in the warp reached leaf nodes,

then the algorithm switches to the second while loop and tests the triangles in the leaf

nodes. Dynamic fetch allows to fetch new rays if a certain number of threads are

inactive to keep parallel resources occupied enough.

Lier et al. [2018] proposed a stack-based traversal algorithm for wide BVHs. The

idea is to process a single node by multiple threads in a similar manner as nodes are

processed on the CPU using SIMD processing.

2.4. Ray Reordering

Ray reordering is a technique that regroups the rays in order to increase control flow,

increase cache-hit ratios, and decrease warp divergence [Meister et al. 2020]. Using

ray reordering only pays off if the performance gain outweighs additional overhead.

Ray reordering is typically implemented by sorting the rays along the Morton curve.

The crucial part is how the ray as a 5D entity is encoded into a Morton code, which is

not as straightforward as for 3D points.
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3. Implementation

In this section, we provide implementations details of the evaluated methods. Most

of the tested methods have publicly available implementations. However, to provide

a fair comparison, we have to use the same settings for all methods, which might be

difficult in different frameworks. Thus, we created a single unified framework with

publicly available implementations of the algorithm integrated into it. Our framework

is based on Aila’s ray tracing framework [Aila and Laine 2009].

Aila’s framework contains high-performance traversal kernels for binary BVHs.

To support wide BVHs, we adopted the publicly available implementations of the

method proposed by Lier et al. [2018]. In the original version of these kernels, the

leaf size is limited to the branching factor of the BVHs. We modified the kernels to

support arbitrary leaf sizes.

For LBVH [Karras 2012] and HLBVH [Garanzha et al. 2011], we use our im-

plementation. For PLOC [Meister and Bittner 2018a], ATRBVH [Domingues and

Pedrini 2015], and PRBVH [Meister and Bittner 2018b], we integrated publicly avail-

able implementations into our framework. For SBVH [Stich et al. 2009], we use the

implementation that is available in Aila’s framework [Aila and Laine 2009]. We im-

plemented the collapsing algorithm of Ylitie et al. [2017] to convert binary BVHs to

wide ones with adaptive leaf sizes while minimizing the BVH cost (Equation (3)).

The data layout (i.e., how nodes are stored in the memory) has a significant impact on

the actual ray tracing performance. Various methods provide BVHs in different data

layouts. Hence, to provide a fair comparison, we transform each BVH to the breadth-

first-search (BFS) layout prior to the actual ray tracing. The nodes are stored in the

array-of-structures fashion, where each node contains bounding boxes of children

and child indices, taking 32k bytes per node for k-ary BVHs.

We implemented a wavefront path tracing with next event estimation on top of our

ray tracing framework. We can optionally use ray reordering to sort secondary and

shadow rays. In the case of sorting, we access the rays indirectly through sorted in-

dices in the traversal kernels to minimize the overhead caused by the actual reordering

of the rays [Meister et al. 2020]. We use the compacted Aila’s method to compute the

Morton codes. We employ the radix sort algorithm by Merrill and Grimshaw [2011]

for both construction algorithms and ray reordering.

4. Results and Discussion

We evaluated selected methods on 12 scenes of various complexity (see Figure 2).

The path tracer uses 32 samples per pixel with the next event estimation using two

shadow rays per hit with the maximum recursion depth 8. We do not employ Rus-

sian roulette and so in closed interior scenes the maximum recursion depth is often

reached; in exterior scenes, the light paths are significantly shorter. All images were
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rendered in 1024 × 768 resolution. The reported numbers are averaged over three

different camera views to reduce the influence of view dependency. We evaluated all

methods with and without ray reordering. The reordering overhead is included in trace

times for the sake of fairness; both the traversal and the reordering are implemented

on the same platform, and thus we expect that similar performance results could be

obtained using hardware accelerated units for reordering and tracing. All experiments

were executed on the AMD Ryzen 9 5950X CPU and AMD Radeon 6800 XT GPU

and implemented using Heterogeneous-Computing Interface for Portability (HIP) as

part of ROCm 4.4.

We used six construction methods for our experiments: LBVH, HLBVH, PLOC,

ATRBVH, PRBVH, and SBVH. We used 60-bit Morton code for LBVH, HLBVH,

and PLOC. For HLBVH, we used 15 bits for the SAH splits. For PLOC, we used a

search radius of 100. For ATRBVH, we used 20 iterations and LBVH for the initial

construction. For PRBVH, we used four configurations: PRBVH (LBVH as the base

BVH with hill climbing), PRBVHA (LBVH as the base BVH with simulated anneal-

ing), PRBVHS (SBVH as the base BVH with hill climbing), and PRBVHA
S (SBVH as

the base BVH with simulated annealing). We used f = 50, Tmax = 1, I = 3000, and

Ppruning = 0.01 for the simulated annealing. For SBVH, we used 128 bins for spatial

splitting. We can disable spatial splits, which is equivalent to the standard full sweep

top-down construction (denoted by SAH). We used cT = 3 and cI = 2 for the BVH

cost computation and optimization. These values were established by experimental

evaluation as maximizing the trace performance on the target platform. We evaluated

all methods using three different branching factors: 2 (binary BVHs), 4 (quaternary

BVHs), and 8 (octal BVHs). (These branching factors are supported by the existing

traversal kernels.)

We present a compact summary of the results in Tables 1 and 2, where the values

are averaged over all scenes. A detailed overview of our results is in Tables 3, 4,

and 5 for branching factors 2, 4, and 8, respectively. For each method, we report the

BVH cost and trace performance for secondary and shadow rays with and without ray

reordering.

4.1. BVH Cost

PRBVHA
S achieves the lowest BVH cost across all configurations, showing that SBVH

can be optimized even further (about 7% on average for binary BVHs). We can ob-

serve that the improvement of the BVH cost achieved by simulated annealing is only

marginal. Therefore, we assume that the resulting BVHs are close to the optimal SAH

cost for the given scene. Interestingly, PRBVH and PRBVHA provide binary BVHs

of similar costs as SBVH. SAH, which was for a long time considered as a reference

solution, provides BVHs with relatively high costs on average, higher than PLOC and

ATRBVH.
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Br. Factor Rays LBVH HLBVH PLOC ATRBVH PRBVH PRBVHA PRBVHS PRBVHA
S SAH SBVH

Without Reordering

2 Secondary 1.00 1.10 1.25 1.39 1.45 1.48 1.85 1.84 1.43 1.86

Shadow 1.00 1.08 1.32 1.39 1.47 1.47 1.66 1.64 1.40 1.63

4 Secondary 1.04 1.16 1.31 1.39 1.49 1.50 1.76 1.74 1.41 1.73

Shadow 0.92 1.02 1.19 1.24 1.32 1.32 1.40 1.39 1.23 1.36

8 Secondary 0.98 1.08 1.21 1.31 1.40 1.42 1.58 1.57 1.30 1.54

Shadow 0.86 0.94 1.07 1.12 1.17 1.18 1.23 1.22 1.10 1.19

With Reordering

2 Secondary 1.09 1.20 1.36 1.50 1.56 1.58 1.98 1.96 1.54 2.01

Shadow 1.23 1.33 1.58 1.64 1.75 1.72 1.89 1.87 1.66 1.87

4 Secondary 1.17 1.30 1.44 1.53 1.62 1.63 1.90 1.88 1.54 1.88

Shadow 1.06 1.16 1.33 1.38 1.45 1.45 1.51 1.50 1.37 1.48

8 Secondary 1.08 1.19 1.31 1.41 1.50 1.52 1.68 1.65 1.41 1.64

Shadow 0.92 0.99 1.12 1.16 1.22 1.22 1.26 1.25 1.15 1.22

Table 1. Relative ray tracing performance of BVH builds using the tested construction algo-

rithms. The relative trace speed for tracing secondary and shadow rays are shown with and

without ray sorting using BVHs of different branching factors. The trace speed is normalized

by the speed of the binary LBVH and averaged over all tested scenes.

Scene LBVH HLBVH PLOC ATRBVH PRBVH PRBVHA PRBVHS PRBVHA
S SAH SBVH

Sibenik 2.0 7.5 17.2 8.2 22.0 3843 2811 7269 281 2801

Crytek Sponza 2.3 7.9 20.9 12.8 52.0 11218 6494 19427 1266 6467

Conference 2.6 7.9 21.2 15.2 107 25215 4347 30759 1561 4271

Gallery 3.9 11.0 22.0 21.3 99.0 37018 20904 63757 4915 20851

Happy Buddha 4.2 11.3 26.6 22.9 123 40294 19062 62096 5494 19004

Sodahall 7.3 15.9 35.2 50.1 453 101822 29896 140533 12024 29575

Hairball 8.7 17.4 55.1 60.7 543 154483 219852 682155 14049 218225

Crown 15.5 26.1 66.5 110 799 223908 51998 292668 30168 51623

Pompeii 17.5 31.7 63.5 145 3500 325587 74168 421387 31482 73344

San Miguel 24.4 38.5 96.3 183 2309 531512 78568 552505 51540 77480

Vienna 27.1 43.2 82.7 207 4254 536393 77383 612130 53257 76493

Powerplant 36.7 53.0 129 292 5752 837940 147898 907441 88119 146337

Avg. build time 1.0 2.3 5.6 6.6 76.1 13720 5237 22134 1444 5196

Table 2. Build times in milliseconds for binary BVHs. The last line shows the average build

times; the times are normalized prior to averaging by a value given by LBVH.

4.2. Trace Speed

The results show that PRBVHS, PRBVHA
S , and SBVH achieve the highest trace per-

formance. In most cases, PRBVHS performs better than SBVH with the exception

of secondary rays with binary BVHs, which achieves slightly higher trace speed than

PRBVHS and PRBVHA
S . The results indicate that PRBVH can improve an input

SBVH in some cases. Interestingly, PRBVHA
S is slightly worse than PRBVHS. An

explanation could be that the simulated annealing breaks optimized top-level splits of

the SBVH (see Section 4.3).

We can observe that the trace performance drops significantly with increasing

branching factor for both secondary and shadow rays. This behavior is the most

pronounced for primary rays that exhibit the highest coherence (the tables do not

show numbers for primary rays, as these constitute a small fraction of the render-
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Scene Statistic LBVH HLBVH PLOC ATRBVH PRBVH PRBVHA PRBVHS PRBVHA
S SAH SBVH

BVH cost 177 (1.00) 139 (0.79) 136 (0.77) 124 (0.70) 116 (0.66) 114 (0.65) 112 (0.63) 111 (0.63) 129 (0.73) 118 (0.67)

Sibenik Secondary rays 261 (1.00) 299 (1.14) 302 (1.16) 334 (1.28) 361 (1.38) 364 (1.39) 389 (1.49) 386 (1.48) 349 (1.34) 385 (1.47)

# triangles Shadow rays 604 (1.00) 627 (1.04) 702 (1.16) 712 (1.18) 773 (1.28) 803 (1.33) 814 (1.35) 814 (1.35) 721 (1.19) 769 (1.27)

75k Second. rays reord. 311 (1.19) 351 (1.34) 348 (1.33) 385 (1.47) 415 (1.59) 418 (1.60) 449 (1.72) 443 (1.70) 405 (1.55) 447 (1.71)

Shadow rays reord. 891 (1.47) 941 (1.56) 1000 (1.66) 1016 (1.68) 1073 (1.78) 1107 (1.83) 1103 (1.83) 1107 (1.83) 1035 (1.71) 1078 (1.79)

BVH cost 268 (1.00) 195 (0.73) 168 (0.63) 162 (0.60) 155 (0.58) 153 (0.57) 149 (0.56) 148 (0.55) 198 (0.74) 168 (0.63)

Crytek Sponza Secondary rays 159 (1.00) 190 (1.20) 215 (1.36) 247 (1.56) 251 (1.58) 278 (1.75) 298 (1.88) 298 (1.88) 222 (1.40) 281 (1.77)

# triangles Shadow rays 401 (1.00) 455 (1.13) 553 (1.38) 603 (1.50) 656 (1.63) 656 (1.63) 583 (1.45) 584 (1.46) 481 (1.20) 531 (1.32)

262k Second. rays reord. 205 (1.29) 238 (1.50) 271 (1.71) 302 (1.91) 313 (1.97) 336 (2.11) 368 (2.32) 366 (2.31) 279 (1.76) 349 (2.20)

Shadow rays reord. 597 (1.49) 678 (1.69) 758 (1.89) 822 (2.05) 880 (2.19) 885 (2.21) 808 (2.02) 807 (2.01) 708 (1.77) 758 (1.89)

BVH cost 154 (1.00) 112 (0.72) 85 (0.55) 83 (0.54) 80 (0.52) 79 (0.51) 79 (0.51) 79 (0.51) 92 (0.59) 92 (0.60)

Conference Secondary rays 278 (1.00) 327 (1.18) 384 (1.38) 402 (1.45) 401 (1.44) 403 (1.45) 487 (1.75) 477 (1.72) 407 (1.47) 439 (1.58)

# triangles Shadow rays 525 (1.00) 648 (1.24) 783 (1.49) 799 (1.52) 821 (1.57) 833 (1.59) 898 (1.71) 892 (1.70) 821 (1.57) 797 (1.52)

331k Second. rays reord. 331 (1.19) 385 (1.39) 449 (1.62) 468 (1.68) 468 (1.69) 469 (1.69) 562 (2.03) 549 (1.98) 468 (1.69) 525 (1.89)

Shadow rays reord. 836 (1.59) 1047 (1.99) 1153 (2.20) 1178 (2.25) 1191 (2.27) 1208 (2.30) 1234 (2.35) 1215 (2.32) 1214 (2.31) 1160 (2.21)

BVH cost 197 (1.00) 195 (0.99) 188 (0.95) 167 (0.85) 161 (0.82) 157 (0.80) 146 (0.74) 146 (0.74) 159 (0.81) 149 (0.76)

Gallery Secondary rays 148 (1.00) 149 (1.00) 155 (1.05) 168 (1.13) 176 (1.19) 178 (1.20) 187 (1.26) 186 (1.25) 179 (1.20) 188 (1.27)

# triangles Shadow rays 355 (1.00) 338 (0.95) 382 (1.08) 392 (1.10) 416 (1.17) 416 (1.17) 427 (1.20) 424 (1.20) 403 (1.14) 426 (1.20)

998k Second. rays reord. 165 (1.11) 165 (1.11) 172 (1.16) 186 (1.25) 196 (1.32) 197 (1.33) 202 (1.37) 202 (1.36) 199 (1.34) 205 (1.38)

Shadow rays reord. 479 (1.35) 458 (1.29) 516 (1.45) 524 (1.48) 553 (1.56) 553 (1.56) 563 (1.58) 561 (1.58) 539 (1.52) 564 (1.59)

BVH cost 204 (1.00) 184 (0.91) 178 (0.87) 168 (0.83) 159 (0.78) 156 (0.76) 148 (0.73) 147 (0.72) 156 (0.77) 150 (0.74)

Happy Buddha Secondary rays 105 (1.00) 105 (1.01) 108 (1.03) 115 (1.10) 122 (1.16) 122 (1.16) 125 (1.20) 124 (1.18) 124 (1.19) 127 (1.22)

# triangles Shadow rays 159 (1.00) 161 (1.01) 173 (1.09) 179 (1.12) 184 (1.16) 186 (1.17) 189 (1.19) 188 (1.18) 189 (1.19) 193 (1.21)

1087k Second. rays reord. 98 (0.93) 98 (0.94) 102 (0.97) 107 (1.02) 112 (1.07) 112 (1.07) 116 (1.11) 115 (1.09) 115 (1.10) 117 (1.12)

Shadow rays reord. 135 (0.85) 138 (0.87) 150 (0.94) 154 (0.97) 157 (0.98) 158 (0.99) 162 (1.02) 160 (1.01) 161 (1.01) 165 (1.04)

BVH cost 254 (1.00) 217 (0.86) 174 (0.69) 163 (0.64) 143 (0.56) 141 (0.56) 140 (0.55) 140 (0.55) 186 (0.73) 163 (0.64)

Sodahall Secondary rays 220 (1.00) 255 (1.15) 248 (1.13) 284 (1.29) 319 (1.45) 319 (1.45) 375 (1.70) 370 (1.68) 310 (1.41) 363 (1.65)

# triangles Shadow rays 603 (1.00) 615 (1.02) 721 (1.20) 758 (1.26) 808 (1.34) 806 (1.34) 786 (1.30) 777 (1.29) 727 (1.21) 773 (1.28)

2169k Second. rays reord. 240 (1.09) 272 (1.23) 266 (1.21) 300 (1.36) 331 (1.50) 332 (1.50) 378 (1.72) 373 (1.69) 323 (1.46) 375 (1.70)

Shadow rays reord. 667 (1.11) 660 (1.09) 750 (1.24) 772 (1.28) 824 (1.37) 809 (1.34) 792 (1.31) 781 (1.29) 759 (1.26) 790 (1.31)

BVH cost 1233 (1.00) 1225 (0.99) 1082 (0.88) 1051 (0.85) 981 (0.80) 979 (0.79) 835 (0.68) 834 (0.68) 1054 (0.85) 925 (0.75)

Hairball Secondary rays 74 (1.00) 74 (1.00) 71 (0.96) 86 (1.16) 91 (1.24) 89 (1.20) 104 (1.41) 101 (1.37) 91 (1.24) 101 (1.37)

# triangles Shadow rays 170 (1.00) 169 (1.00) 175 (1.03) 193 (1.14) 202 (1.19) 200 (1.18) 221 (1.30) 218 (1.29) 202 (1.19) 217 (1.28)

2880k Second. rays reord. 79 (1.07) 80 (1.08) 77 (1.04) 92 (1.25) 98 (1.32) 96 (1.30) 112 (1.52) 109 (1.48) 98 (1.33) 110 (1.49)

Shadow rays reord. 192 (1.13) 191 (1.12) 202 (1.19) 219 (1.29) 229 (1.35) 228 (1.34) 247 (1.46) 243 (1.43) 229 (1.35) 243 (1.43)

BVH cost 76 (1.00) 70 (0.92) 68 (0.89) 63 (0.83) 61 (0.80) 60 (0.79) 58 (0.77) 58 (0.77) 62 (0.82) 60 (0.79)

Crown Secondary rays 94 (1.00) 92 (0.98) 103 (1.09) 109 (1.16) 118 (1.24) 115 (1.22) 131 (1.39) 128 (1.35) 120 (1.27) 135 (1.43)

# triangles Shadow rays 221 (1.00) 221 (1.00) 254 (1.15) 257 (1.16) 267 (1.21) 267 (1.21) 290 (1.31) 289 (1.31) 275 (1.25) 301 (1.37)

4868k Second. rays reord. 96 (1.02) 94 (1.00) 105 (1.11) 111 (1.18) 119 (1.26) 118 (1.25) 134 (1.42) 130 (1.38) 123 (1.30) 139 (1.47)

Shadow rays reord. 227 (1.03) 226 (1.02) 264 (1.20) 269 (1.22) 278 (1.26) 276 (1.25) 303 (1.37) 300 (1.36) 282 (1.28) 310 (1.40)

BVH cost 428 (1.00) 314 (0.73) 201 (0.47) 173 (0.41) 159 (0.37) 159 (0.37) 109 (0.26) 109 (0.26) 190 (0.44) 120 (0.28)

Pompeii Secondary rays 86 (1.00) 101 (1.17) 123 (1.43) 135 (1.57) 145 (1.68) 143 (1.66) 229 (2.66) 225 (2.61) 145 (1.68) 234 (2.71)

# triangles Shadow rays 190 (1.00) 225 (1.19) 290 (1.53) 308 (1.62) 326 (1.72) 324 (1.71) 472 (2.49) 464 (2.44) 317 (1.67) 479 (2.52)

5632k Second. rays reord. 89 (1.03) 103 (1.19) 126 (1.46) 139 (1.61) 149 (1.72) 145 (1.69) 227 (2.63) 222 (2.58) 147 (1.70) 231 (2.68)

Shadow rays reord. 215 (1.13) 251 (1.32) 324 (1.70) 344 (1.81) 366 (1.93) 356 (1.88) 487 (2.56) 480 (2.53) 355 (1.87) 500 (2.63)

BVH cost 251 (1.00) 183 (0.73) 142 (0.56) 136 (0.54) 128 (0.51) 125 (0.50) 115 (0.46) 115 (0.46) 157 (0.63) 133 (0.53)

San Miguel Secondary rays 72 (1.00) 87 (1.21) 103 (1.44) 111 (1.55) 128 (1.79) 134 (1.87) 150 (2.09) 148 (2.06) 120 (1.67) 141 (1.97)

# triangles Shadow rays 194 (1.00) 232 (1.20) 309 (1.59) 329 (1.70) 340 (1.75) 347 (1.79) 378 (1.95) 372 (1.92) 330 (1.70) 358 (1.85)

7880k Second. rays reord. 84 (1.17) 100 (1.39) 121 (1.69) 129 (1.80) 148 (2.06) 153 (2.13) 171 (2.39) 168 (2.35) 141 (1.96) 167 (2.33)

Shadow rays reord. 262 (1.35) 313 (1.61) 396 (2.04) 426 (2.19) 445 (2.30) 448 (2.31) 477 (2.46) 469 (2.42) 434 (2.24) 467 (2.41)

BVH cost 299 (1.00) 215 (0.72) 135 (0.45) 110 (0.37) 101 (0.34) 98 (0.33) 80 (0.27) 80 (0.27) 115 (0.38) 87 (0.29)

Vienna Secondary rays 101 (1.00) 103 (1.02) 175 (1.74) 192 (1.91) 204 (2.03) 212 (2.11) 240 (2.38) 237 (2.36) 208 (2.07) 236 (2.34)

# triangles Shadow rays 179 (1.00) 194 (1.08) 334 (1.86) 357 (1.99) 380 (2.12) 382 (2.13) 434 (2.42) 430 (2.40) 384 (2.14) 437 (2.43)

8637k Second. rays reord. 103 (1.02) 106 (1.05) 180 (1.79) 194 (1.93) 208 (2.07) 213 (2.12) 236 (2.35) 234 (2.33) 209 (2.08) 233 (2.32)

Shadow rays reord. 195 (1.08) 208 (1.16) 367 (2.05) 377 (2.10) 402 (2.24) 402 (2.24) 438 (2.44) 435 (2.42) 400 (2.23) 439 (2.45)

BVH cost 124 (1.00) 111 (0.90) 78 (0.63) 75 (0.61) 69 (0.56) 69 (0.55) 52 (0.42) 52 (0.42) 85 (0.69) 58 (0.46)

Powerplant Secondary rays 53 (1.00) 60 (1.14) 68 (1.28) 81 (1.53) 67 (1.27) 65 (1.22) 162 (3.05) 165 (3.11) 67 (1.26) 191 (3.60)

# triangles Shadow rays 190 (1.00) 207 (1.09) 249 (1.31) 250 (1.31) 295 (1.55) 264 (1.39) 429 (2.26) 421 (2.21) 250 (1.31) 433 (2.28)

12759k Second. rays reord. 52 (0.98) 61 (1.16) 67 (1.26) 80 (1.52) 62 (1.17) 60 (1.13) 172 (3.25) 173 (3.27) 65 (1.23) 201 (3.79)

Shadow rays reord. 224 (1.18) 239 (1.25) 269 (1.41) 258 (1.36) 344 (1.81) 265 (1.39) 444 (2.33) 437 (2.30) 273 (1.43) 454 (2.39)

Table 3. Performance comparison for all tested methods and scenes showing the BVH cost

and trace speed in MRays/s for secondary and shadow rays with and without ray sorting using

binary BVHs.

ing times). One reason might be that wide BVHs use a different traversal algorithm

[Lier et al. 2018] than binary BVHs [Aila and Laine 2009]. For quaternary and octal

BVHs, PRBVHS and PRBVHA
S outperform SBVH for both secondary and shadow

rays. GPU ray tracing is memory bandwidth limited, and thus to achieve higher trace

performance for higher branching factors, it is necessary to employ some kind of node

compression [Ylitie et al. 2017], which was not used in our comparison.
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Scene Statistic LBVH HLBVH PLOC ATRBVH PRBVH PRBVHA PRBVHS PRBVHA
S SAH SBVH

BVH cost 108 (1.00) 92 (0.85) 90 (0.83) 84 (0.78) 80 (0.74) 79 (0.74) 76 (0.71) 76 (0.70) 84 (0.78) 77 (0.71)

Sibenik Secondary rays 229 (1.00) 266 (1.16) 248 (1.08) 280 (1.22) 296 (1.29) 300 (1.31) 308 (1.35) 307 (1.34) 287 (1.25) 307 (1.34)

# triangles Shadow rays 496 (1.00) 541 (1.09) 554 (1.12) 583 (1.18) 613 (1.24) 630 (1.27) 623 (1.26) 620 (1.25) 580 (1.17) 597 (1.21)

75k Second. rays reord. 267 (1.16) 304 (1.33) 282 (1.23) 317 (1.38) 333 (1.45) 337 (1.47) 349 (1.52) 348 (1.52) 327 (1.42) 349 (1.52)

Shadow rays reord. 626 (1.26) 672 (1.36) 688 (1.39) 710 (1.43) 742 (1.50) 760 (1.53) 743 (1.50) 744 (1.50) 712 (1.44) 721 (1.46)

BVH cost 163 (1.00) 132 (0.81) 118 (0.72) 115 (0.71) 115 (0.71) 113 (0.70) 107 (0.66) 107 (0.66) 131 (0.81) 113 (0.70)

Crytek Sponza Secondary rays 158 (1.00) 180 (1.14) 185 (1.17) 197 (1.25) 226 (1.43) 226 (1.43) 241 (1.53) 238 (1.51) 186 (1.18) 230 (1.46)

# triangles Shadow rays 320 (1.00) 376 (1.17) 415 (1.30) 445 (1.39) 482 (1.50) 480 (1.50) 452 (1.41) 455 (1.42) 376 (1.18) 420 (1.31)

262k Second. rays reord. 196 (1.24) 226 (1.43) 232 (1.47) 242 (1.53) 274 (1.74) 276 (1.75) 297 (1.88) 293 (1.85) 228 (1.45) 284 (1.80)

Shadow rays reord. 419 (1.31) 485 (1.52) 519 (1.62) 549 (1.71) 591 (1.85) 594 (1.86) 562 (1.76) 562 (1.76) 482 (1.51) 530 (1.65)

BVH cost 90 (1.00) 74 (0.83) 61 (0.68) 61 (0.68) 61 (0.68) 60 (0.66) 61 (0.68) 61 (0.68) 61 (0.68) 63 (0.70)

Conference Secondary rays 256 (1.00) 299 (1.17) 359 (1.40) 357 (1.39) 368 (1.44) 375 (1.46) 384 (1.50) 380 (1.48) 356 (1.39) 342 (1.34)

# triangles Shadow rays 484 (1.00) 599 (1.24) 698 (1.44) 710 (1.47) 758 (1.57) 736 (1.52) 738 (1.53) 736 (1.52) 658 (1.36) 602 (1.24)

331k Second. rays reord. 317 (1.24) 364 (1.42) 423 (1.65) 422 (1.65) 434 (1.69) 439 (1.71) 455 (1.77) 453 (1.77) 425 (1.66) 425 (1.66)

Shadow rays reord. 649 (1.34) 778 (1.61) 893 (1.85) 906 (1.87) 938 (1.94) 907 (1.87) 909 (1.88) 905 (1.87) 851 (1.76) 790 (1.63)

BVH cost 119 (1.00) 117 (0.98) 114 (0.96) 104 (0.88) 101 (0.85) 99 (0.83) 92 (0.78) 92 (0.78) 99 (0.84) 93 (0.78)

Gallery Secondary rays 134 (1.00) 135 (1.01) 139 (1.04) 147 (1.10) 153 (1.14) 154 (1.15) 161 (1.20) 160 (1.20) 153 (1.14) 161 (1.20)

# triangles Shadow rays 290 (1.00) 284 (0.98) 305 (1.05) 314 (1.08) 330 (1.14) 331 (1.14) 338 (1.17) 335 (1.15) 320 (1.10) 331 (1.14)

998k Second. rays reord. 146 (1.09) 147 (1.10) 153 (1.14) 161 (1.20) 167 (1.25) 168 (1.26) 173 (1.30) 172 (1.29) 168 (1.26) 174 (1.30)

Shadow rays reord. 349 (1.20) 340 (1.17) 367 (1.26) 374 (1.29) 391 (1.35) 393 (1.35) 402 (1.38) 399 (1.37) 382 (1.32) 392 (1.35)

BVH cost 118 (1.00) 110 (0.94) 107 (0.91) 103 (0.88) 98 (0.83) 96 (0.82) 92 (0.79) 92 (0.78) 96 (0.82) 93 (0.79)

Happy Buddha Secondary rays 118 (1.00) 120 (1.01) 119 (1.01) 126 (1.06) 131 (1.10) 129 (1.09) 135 (1.14) 134 (1.13) 132 (1.11) 134 (1.13)

# triangles Shadow rays 169 (1.00) 170 (1.01) 177 (1.05) 181 (1.07) 186 (1.10) 186 (1.10) 190 (1.12) 188 (1.12) 187 (1.11) 189 (1.12)

1087k Second. rays reord. 114 (0.96) 115 (0.97) 115 (0.98) 120 (1.01) 124 (1.05) 123 (1.04) 127 (1.07) 126 (1.07) 125 (1.05) 128 (1.08)

Shadow rays reord. 154 (0.91) 155 (0.92) 159 (0.94) 163 (0.96) 167 (0.99) 166 (0.99) 169 (1.00) 169 (1.00) 168 (1.00) 170 (1.01)

BVH cost 149 (1.00) 134 (0.90) 116 (0.77) 110 (0.74) 100 (0.67) 100 (0.67) 98 (0.66) 98 (0.66) 116 (0.78) 104 (0.69)

Sodahall Secondary rays 212 (1.00) 250 (1.18) 245 (1.16) 274 (1.29) 314 (1.48) 307 (1.45) 334 (1.58) 327 (1.54) 283 (1.34) 319 (1.50)

# triangles Shadow rays 484 (1.00) 524 (1.08) 557 (1.15) 593 (1.23) 604 (1.25) 603 (1.25) 599 (1.24) 580 (1.20) 575 (1.19) 579 (1.20)

2169k Second. rays reord. 234 (1.10) 268 (1.26) 264 (1.24) 292 (1.38) 326 (1.54) 318 (1.50) 342 (1.61) 335 (1.58) 299 (1.41) 328 (1.55)

Shadow rays reord. 528 (1.09) 556 (1.15) 589 (1.22) 620 (1.28) 629 (1.30) 624 (1.29) 616 (1.27) 601 (1.24) 605 (1.25) 602 (1.24)

BVH cost 922 (1.00) 919 (1.00) 797 (0.86) 788 (0.85) 742 (0.80) 742 (0.80) 608 (0.66) 606 (0.66) 802 (0.87) 658 (0.71)

Hairball Secondary rays 71 (1.00) 72 (1.02) 71 (1.00) 83 (1.18) 90 (1.28) 90 (1.27) 93 (1.32) 92 (1.31) 87 (1.23) 90 (1.28)

# triangles Shadow rays 151 (1.00) 154 (1.02) 163 (1.07) 177 (1.17) 190 (1.25) 188 (1.24) 189 (1.25) 186 (1.23) 183 (1.21) 184 (1.22)

2880k Second. rays reord. 80 (1.13) 82 (1.16) 80 (1.14) 94 (1.33) 101 (1.43) 100 (1.42) 105 (1.49) 103 (1.47) 97 (1.37) 102 (1.45)

Shadow rays reord. 173 (1.14) 175 (1.16) 191 (1.26) 203 (1.34) 216 (1.43) 214 (1.42) 210 (1.39) 208 (1.38) 210 (1.39) 207 (1.37)

BVH cost 46 (1.00) 44 (0.96) 42 (0.91) 40 (0.87) 39 (0.85) 39 (0.84) 38 (0.81) 38 (0.81) 40 (0.86) 38 (0.83)

Crown Secondary rays 104 (1.00) 104 (1.01) 114 (1.11) 118 (1.14) 126 (1.21) 125 (1.20) 135 (1.30) 131 (1.27) 125 (1.21) 135 (1.31)

# triangles Shadow rays 211 (1.00) 215 (1.02) 240 (1.14) 242 (1.15) 251 (1.19) 252 (1.19) 260 (1.23) 256 (1.22) 249 (1.18) 261 (1.24)

4868k Second. rays reord. 114 (1.10) 115 (1.12) 126 (1.22) 130 (1.26) 138 (1.33) 136 (1.31) 147 (1.42) 145 (1.40) 136 (1.32) 148 (1.43)

Shadow rays reord. 220 (1.04) 223 (1.06) 249 (1.18) 250 (1.19) 259 (1.23) 258 (1.22) 267 (1.27) 265 (1.26) 255 (1.21) 268 (1.27)

BVH cost 255 (1.00) 202 (0.79) 151 (0.59) 137 (0.54) 130 (0.51) 129 (0.51) 81 (0.32) 81 (0.32) 136 (0.53) 82 (0.32)

Pompeii Secondary rays 95 (1.00) 111 (1.17) 136 (1.44) 153 (1.61) 162 (1.70) 160 (1.69) 228 (2.40) 224 (2.36) 157 (1.65) 230 (2.42)

# triangles Shadow rays 173 (1.00) 213 (1.23) 276 (1.60) 292 (1.69) 314 (1.82) 310 (1.79) 406 (2.35) 400 (2.31) 305 (1.76) 414 (2.39)

5632k Second. rays reord. 99 (1.05) 116 (1.22) 143 (1.50) 156 (1.64) 165 (1.74) 164 (1.73) 228 (2.40) 223 (2.35) 161 (1.70) 230 (2.42)

Shadow rays reord. 192 (1.11) 230 (1.33) 292 (1.69) 307 (1.78) 326 (1.88) 322 (1.86) 409 (2.37) 401 (2.32) 320 (1.85) 415 (2.40)

BVH cost 146 (1.00) 117 (0.80) 98 (0.67) 96 (0.66) 92 (0.63) 90 (0.62) 82 (0.56) 82 (0.56) 102 (0.69) 86 (0.59)

San Miguel Secondary rays 69 (1.00) 86 (1.25) 103 (1.49) 107 (1.55) 116 (1.68) 121 (1.75) 131 (1.90) 131 (1.90) 106 (1.53) 128 (1.85)

# triangles Shadow rays 174 (1.00) 217 (1.25) 255 (1.46) 264 (1.51) 276 (1.59) 276 (1.59) 296 (1.70) 293 (1.68) 267 (1.53) 288 (1.65)

7880k Second. rays reord. 82 (1.19) 102 (1.47) 119 (1.73) 124 (1.80) 135 (1.95) 140 (2.02) 151 (2.18) 150 (2.17) 125 (1.80) 147 (2.13)

Shadow rays reord. 224 (1.29) 269 (1.54) 310 (1.78) 322 (1.85) 333 (1.91) 332 (1.91) 350 (2.01) 347 (1.99) 324 (1.86) 345 (1.98)

BVH cost 163 (1.00) 124 (0.76) 89 (0.54) 77 (0.47) 71 (0.44) 70 (0.43) 52 (0.32) 52 (0.32) 77 (0.47) 54 (0.33)

Vienna Secondary rays 106 (1.00) 118 (1.11) 170 (1.60) 184 (1.74) 201 (1.89) 204 (1.92) 227 (2.14) 225 (2.11) 194 (1.83) 219 (2.06)

# triangles Shadow rays 166 (1.00) 195 (1.18) 291 (1.75) 318 (1.92) 339 (2.05) 346 (2.08) 375 (2.26) 370 (2.23) 331 (2.00) 367 (2.21)

8637k Second. rays reord. 114 (1.07) 127 (1.19) 178 (1.67) 193 (1.81) 208 (1.96) 210 (1.97) 232 (2.19) 231 (2.17) 199 (1.88) 224 (2.11)

Shadow rays reord. 182 (1.10) 210 (1.26) 303 (1.83) 327 (1.97) 347 (2.09) 351 (2.11) 376 (2.27) 373 (2.25) 338 (2.03) 368 (2.22)

BVH cost 75 (1.00) 70 (0.93) 55 (0.73) 54 (0.72) 51 (0.68) 50 (0.67) 36 (0.49) 36 (0.48) 57 (0.76) 37 (0.49)

Powerplant Secondary rays 81 (1.00) 92 (1.14) 116 (1.44) 115 (1.43) 119 (1.48) 120 (1.49) 196 (2.43) 195 (2.42) 108 (1.34) 203 (2.52)

# triangles Shadow rays 231 (1.00) 248 (1.07) 310 (1.34) 312 (1.35) 340 (1.47) 340 (1.47) 392 (1.69) 382 (1.65) 295 (1.28) 388 (1.68)

12759k Second. rays reord. 94 (1.17) 106 (1.31) 128 (1.59) 128 (1.59) 128 (1.59) 129 (1.60) 211 (2.62) 207 (2.57) 120 (1.49) 215 (2.67)

Shadow rays reord. 259 (1.12) 275 (1.19) 335 (1.45) 333 (1.44) 361 (1.56) 361 (1.56) 397 (1.71) 387 (1.67) 326 (1.41) 395 (1.71)

Table 4. Performance comparison for all tested methods and scenes showing the BVH cost

and trace speed in MRays/s for secondary and shadow rays with and without ray sorting using

quaternary BVHs.

Table 1 shows that using spatial splitting pays off overall, improving trace perfor-

mance by about 24% for secondary rays and 12% for shadow rays on average. How-

ever, the speedup provided by spatial splits depends heavily on a particular scene.

There is a rather marginal improvement for finely tessellated scenes such as Confer-

ence, Happy Buddha, and Hairball. On the other hand, for a complex scene such as

Powerplant, the speedup is almost threefold.
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Scene Statistic LBVH HLBVH PLOC ATRBVH PRBVH PRBVHA PRBVHS PRBVHA
S SAH SBVH

BVH cost 113 (1.00) 102 (0.90) 97 (0.86) 94 (0.83) 91 (0.81) 90 (0.80) 85 (0.76) 85 (0.76) 92 (0.82) 84 (0.74)

Sibenik Secondary rays 197 (1.00) 222 (1.13) 215 (1.09) 234 (1.19) 244 (1.24) 247 (1.26) 253 (1.29) 253 (1.28) 233 (1.19) 250 (1.27)

# triangles Shadow rays 439 (1.00) 449 (1.02) 475 (1.08) 472 (1.07) 500 (1.14) 508 (1.16) 515 (1.17) 516 (1.18) 486 (1.11) 482 (1.10)

75k Second. rays reord. 225 (1.14) 250 (1.27) 240 (1.22) 261 (1.33) 273 (1.39) 275 (1.40) 282 (1.44) 282 (1.43) 262 (1.33) 280 (1.42)

Shadow rays reord. 497 (1.13) 505 (1.15) 531 (1.21) 524 (1.19) 555 (1.26) 562 (1.28) 565 (1.29) 568 (1.29) 540 (1.23) 533 (1.21)

BVH cost 176 (1.00) 142 (0.81) 137 (0.78) 136 (0.77) 135 (0.77) 133 (0.76) 129 (0.73) 128 (0.73) 136 (0.77) 130 (0.74)

Crytek Sponza Secondary rays 130 (1.00) 151 (1.16) 159 (1.22) 172 (1.32) 194 (1.49) 198 (1.52) 200 (1.54) 199 (1.53) 156 (1.20) 190 (1.46)

# triangles Shadow rays 279 (1.00) 326 (1.17) 345 (1.24) 376 (1.35) 425 (1.52) 431 (1.54) 374 (1.34) 375 (1.35) 313 (1.12) 348 (1.25)

262k Second. rays reord. 158 (1.21) 183 (1.41) 189 (1.45) 203 (1.56) 228 (1.75) 232 (1.78) 237 (1.82) 235 (1.81) 188 (1.44) 227 (1.74)

Shadow rays reord. 326 (1.17) 373 (1.34) 393 (1.41) 428 (1.54) 477 (1.71) 484 (1.73) 422 (1.51) 420 (1.51) 360 (1.29) 396 (1.42)

BVH cost 91 (1.00) 83 (0.91) 75 (0.83) 75 (0.82) 75 (0.83) 75 (0.83) 78 (0.86) 78 (0.86) 70 (0.77) 75 (0.82)

Conference Secondary rays 242 (1.00) 274 (1.13) 322 (1.33) 328 (1.36) 334 (1.38) 335 (1.38) 322 (1.33) 320 (1.32) 318 (1.31) 292 (1.21)

# triangles Shadow rays 481 (1.00) 557 (1.16) 638 (1.33) 643 (1.34) 655 (1.36) 659 (1.37) 622 (1.29) 621 (1.29) 583 (1.21) 539 (1.12)

331k Second. rays reord. 287 (1.19) 322 (1.33) 367 (1.52) 371 (1.54) 381 (1.58) 379 (1.57) 369 (1.52) 366 (1.51) 367 (1.52) 350 (1.45)

Shadow rays reord. 544 (1.13) 634 (1.32) 720 (1.50) 717 (1.49) 738 (1.53) 738 (1.53) 685 (1.42) 682 (1.42) 658 (1.37) 615 (1.28)

BVH cost 119 (1.00) 117 (0.99) 111 (0.94) 106 (0.89) 101 (0.85) 99 (0.83) 93 (0.78) 92 (0.78) 100 (0.84) 93 (0.78)

Gallery Secondary rays 114 (1.00) 116 (1.02) 117 (1.03) 126 (1.11) 130 (1.14) 131 (1.15) 140 (1.23) 139 (1.22) 131 (1.15) 139 (1.22)

# triangles Shadow rays 252 (1.00) 249 (0.99) 267 (1.06) 282 (1.12) 287 (1.14) 295 (1.17) 305 (1.21) 305 (1.21) 286 (1.14) 302 (1.20)

998k Second. rays reord. 126 (1.10) 128 (1.12) 131 (1.15) 140 (1.23) 143 (1.26) 147 (1.29) 154 (1.35) 153 (1.34) 147 (1.29) 153 (1.34)

Shadow rays reord. 283 (1.12) 278 (1.10) 301 (1.19) 315 (1.25) 321 (1.28) 330 (1.31) 341 (1.35) 341 (1.35) 320 (1.27) 337 (1.34)

BVH cost 115 (1.00) 111 (0.97) 105 (0.91) 102 (0.89) 97 (0.85) 95 (0.83) 92 (0.80) 92 (0.80) 96 (0.84) 93 (0.81)

Happy Buddha Secondary rays 115 (1.00) 116 (1.01) 116 (1.02) 122 (1.06) 128 (1.12) 127 (1.11) 131 (1.14) 131 (1.14) 129 (1.12) 131 (1.14)

# triangles Shadow rays 158 (1.00) 159 (1.00) 163 (1.03) 170 (1.07) 174 (1.10) 174 (1.10) 176 (1.12) 175 (1.11) 174 (1.11) 175 (1.11)

1087k Second. rays reord. 109 (0.95) 110 (0.96) 110 (0.96) 115 (1.01) 119 (1.03) 119 (1.04) 122 (1.06) 121 (1.06) 119 (1.04) 122 (1.06)

Shadow rays reord. 141 (0.90) 143 (0.90) 146 (0.92) 151 (0.96) 154 (0.98) 154 (0.98) 156 (0.99) 155 (0.98) 154 (0.97) 156 (0.99)

BVH cost 153 (1.00) 142 (0.93) 126 (0.82) 122 (0.79) 115 (0.75) 115 (0.75) 112 (0.73) 112 (0.73) 119 (0.78) 111 (0.73)

Sodahall Secondary rays 185 (1.00) 224 (1.21) 214 (1.16) 239 (1.29) 274 (1.48) 272 (1.47) 278 (1.50) 276 (1.49) 244 (1.32) 269 (1.45)

# triangles Shadow rays 394 (1.00) 436 (1.11) 462 (1.17) 468 (1.19) 496 (1.26) 498 (1.27) 480 (1.22) 478 (1.21) 467 (1.19) 469 (1.19)

2169k Second. rays reord. 201 (1.09) 238 (1.29) 229 (1.24) 250 (1.35) 282 (1.53) 280 (1.52) 286 (1.55) 283 (1.53) 256 (1.39) 277 (1.50)

Shadow rays reord. 408 (1.04) 443 (1.12) 468 (1.19) 470 (1.19) 493 (1.25) 495 (1.26) 480 (1.22) 476 (1.21) 470 (1.19) 470 (1.19)

BVH cost 979 (1.00) 979 (1.00) 828 (0.85) 828 (0.85) 781 (0.80) 780 (0.80) 621 (0.63) 624 (0.64) 825 (0.84) 632 (0.65)

Hairball Secondary rays 70 (1.00) 72 (1.02) 66 (0.94) 79 (1.12) 84 (1.19) 83 (1.18) 91 (1.29) 89 (1.27) 80 (1.14) 86 (1.22)

# triangles Shadow rays 157 (1.00) 160 (1.02) 161 (1.03) 175 (1.11) 181 (1.15) 180 (1.14) 188 (1.20) 186 (1.18) 176 (1.12) 180 (1.15)

2880k Second. rays reord. 79 (1.12) 80 (1.13) 75 (1.06) 88 (1.25) 93 (1.32) 92 (1.31) 101 (1.43) 99 (1.40) 89 (1.27) 96 (1.36)

Shadow rays reord. 170 (1.08) 173 (1.10) 177 (1.12) 189 (1.20) 195 (1.24) 193 (1.23) 200 (1.27) 198 (1.26) 189 (1.20) 192 (1.22)

BVH cost 47 (1.00) 46 (0.98) 43 (0.91) 42 (0.90) 41 (0.87) 41 (0.87) 39 (0.84) 39 (0.84) 41 (0.88) 40 (0.84)

Crown Secondary rays 100 (1.00) 100 (1.00) 108 (1.08) 112 (1.12) 118 (1.18) 117 (1.17) 125 (1.25) 124 (1.24) 116 (1.16) 124 (1.24)

# triangles Shadow rays 201 (1.00) 202 (1.01) 220 (1.10) 224 (1.12) 230 (1.14) 232 (1.15) 235 (1.17) 236 (1.17) 227 (1.13) 233 (1.16)

4868k Second. rays reord. 108 (1.08) 108 (1.08) 116 (1.16) 121 (1.21) 126 (1.26) 125 (1.25) 133 (1.33) 132 (1.32) 125 (1.25) 133 (1.32)

Shadow rays reord. 198 (0.99) 199 (0.99) 216 (1.07) 220 (1.09) 225 (1.12) 226 (1.12) 231 (1.15) 231 (1.15) 223 (1.11) 229 (1.14)

BVH cost 250 (1.00) 222 (0.89) 169 (0.68) 157 (0.63) 151 (0.60) 151 (0.60) 92 (0.37) 92 (0.37) 147 (0.59) 87 (0.35)

Pompeii Secondary rays 87 (1.00) 103 (1.18) 129 (1.48) 141 (1.62) 152 (1.75) 151 (1.73) 204 (2.34) 201 (2.31) 146 (1.67) 205 (2.35)

# triangles Shadow rays 160 (1.00) 192 (1.20) 242 (1.51) 261 (1.63) 272 (1.70) 271 (1.69) 344 (2.15) 339 (2.12) 265 (1.65) 345 (2.16)

5632k Second. rays reord. 90 (1.03) 105 (1.21) 132 (1.51) 143 (1.64) 152 (1.75) 151 (1.74) 202 (2.32) 199 (2.28) 147 (1.69) 204 (2.34)

Shadow rays reord. 164 (1.03) 194 (1.21) 242 (1.51) 259 (1.62) 268 (1.67) 267 (1.67) 333 (2.08) 327 (2.04) 262 (1.64) 335 (2.09)

BVH cost 149 (1.00) 128 (0.86) 110 (0.74) 109 (0.73) 105 (0.70) 104 (0.70) 93 (0.63) 93 (0.63) 110 (0.74) 93 (0.62)

San Miguel Secondary rays 67 (1.00) 79 (1.18) 93 (1.39) 97 (1.45) 106 (1.58) 111 (1.65) 120 (1.79) 117 (1.75) 95 (1.42) 110 (1.64)

# triangles Shadow rays 170 (1.00) 202 (1.19) 238 (1.40) 242 (1.42) 253 (1.49) 255 (1.50) 271 (1.59) 266 (1.57) 244 (1.44) 252 (1.48)

7880k Second. rays reord. 77 (1.16) 91 (1.36) 106 (1.58) 111 (1.66) 121 (1.80) 126 (1.88) 134 (2.01) 131 (1.96) 110 (1.64) 127 (1.89)

Shadow rays reord. 197 (1.16) 231 (1.36) 270 (1.59) 276 (1.63) 285 (1.68) 287 (1.69) 301 (1.77) 297 (1.75) 280 (1.65) 287 (1.69)

BVH cost 145 (1.00) 123 (0.85) 87 (0.60) 76 (0.53) 71 (0.49) 70 (0.49) 54 (0.37) 54 (0.37) 74 (0.51) 54 (0.37)

Vienna Secondary rays 102 (1.00) 113 (1.11) 156 (1.53) 174 (1.70) 189 (1.85) 193 (1.89) 209 (2.04) 207 (2.02) 180 (1.76) 202 (1.97)

# triangles Shadow rays 164 (1.00) 192 (1.18) 260 (1.59) 287 (1.75) 307 (1.88) 310 (1.89) 328 (2.00) 325 (1.99) 295 (1.80) 323 (1.97)

8637k Second. rays reord. 108 (1.05) 119 (1.16) 160 (1.57) 178 (1.74) 192 (1.87) 194 (1.89) 210 (2.05) 207 (2.02) 182 (1.78) 203 (1.98)

Shadow rays reord. 167 (1.02) 193 (1.18) 256 (1.57) 281 (1.72) 299 (1.83) 300 (1.83) 318 (1.94) 314 (1.92) 287 (1.75) 313 (1.91)

BVH cost 70 (1.00) 67 (0.96) 55 (0.79) 55 (0.79) 53 (0.76) 53 (0.75) 38 (0.55) 38 (0.55) 55 (0.78) 37 (0.52)

Powerplant Secondary rays 84 (1.00) 96 (1.14) 120 (1.42) 129 (1.54) 133 (1.58) 141 (1.67) 183 (2.18) 180 (2.13) 119 (1.41) 184 (2.19)

# triangles Shadow rays 223 (1.00) 241 (1.08) 286 (1.29) 293 (1.32) 307 (1.38) 316 (1.42) 341 (1.53) 336 (1.51) 277 (1.25) 339 (1.52)

12759k Second. rays reord. 97 (1.15) 108 (1.28) 131 (1.55) 141 (1.68) 149 (1.77) 156 (1.86) 191 (2.27) 187 (2.22) 132 (1.57) 192 (2.28)

Shadow rays reord. 233 (1.05) 249 (1.12) 293 (1.32) 297 (1.33) 313 (1.41) 317 (1.42) 337 (1.52) 332 (1.49) 284 (1.27) 335 (1.50)

Table 5. Performance comparison for all tested methods and scenes showing the BVH cost

and trace speed in MRays/s for secondary and shadow rays with and without ray sorting using

octal BVHs.

4.3. Cost and Trace Speed Correlation

It is a well-known fact that there is a discrepancy between the BVH cost and the ac-

tual trace performance [Aila et al. 2013]. In other words, cost reduction does not

necessarily mean trace performance improvement. Top-down builders, such as SAH

and SBVH, provide BVHs with higher costs than other approaches, but the top levels
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Br. Factor Statistic LBVH HLBVH PLOC ATRBVH PRBVH PRBVHA PRBVHS PRBVHA
S SAH SBVH

2 BVH cost 1.00 0.83 0.70 0.65 0.61 0.60 0.55 0.55 0.68 0.59

Secondary rays 1.00 1.11 1.21 1.18 1.21 1.21 1.11 1.12 1.07 1.02

Shadow rays 1.00 1.13 1.14 1.18 1.19 1.21 1.22 1.24 1.10 1.14

Secondary rays reord. 0.92 1.03 1.12 1.10 1.14 1.16 1.05 1.07 1.01 0.96

Shadow rays reord. 0.84 0.95 0.98 1.03 1.03 1.07 1.10 1.11 0.95 1.01

4 BVH cost 1.00 0.88 0.77 0.73 0.70 0.69 0.62 0.62 0.74 0.64

Secondary rays 1.00 1.03 1.08 1.06 1.04 1.04 1.07 1.08 1.03 1.06

Shadow rays 1.00 1.03 1.04 1.05 1.04 1.05 1.16 1.17 1.05 1.16

Second. rays reord. 0.89 0.93 0.98 0.97 0.96 0.97 1.00 1.01 0.94 0.98

Shadow rays reord. 0.87 0.92 0.94 0.95 0.95 0.97 1.08 1.09 0.94 1.07

8 BVH cost 1.00 0.92 0.81 0.79 0.76 0.75 0.67 0.67 0.76 0.66

Secondary rays 1.00 0.99 1.04 0.99 0.96 0.96 1.02 1.03 1.01 1.06

Shadow rays 1.00 1.00 1.02 1.01 1.00 1.00 1.12 1.13 1.06 1.18

Second. rays reord. 0.91 0.90 0.96 0.92 0.90 0.90 0.96 0.97 0.94 0.99

Shadow rays reord. 0.94 0.95 0.98 0.97 0.97 0.97 1.10 1.11 1.02 1.14

Table 6. Comparison of the BVH costs and the average trace times per a unit BVH cost (i.e.,

trace time divided by the BVH cost). The values are normalized prior to averaging by a value

given by LBVH of the corresponding BVH branching factor.

are locally well optimized, which is important as most of the time during the traver-

sal is spent in the top levels because they are visited by almost all rays. To quantize

this fact, we compute the ratio between trace time and cost, which expresses the time

needed for a unit cost (see Table 6). These values are averaged over all scenes. The

values are normalized prior to averaging by a value given by LBVH of the corre-

sponding branching factor. Top-down builders such as SAH and SBVH have lower

values, whereas optimization algorithms such as PRBVH and bottom-up algorithms

such as PLOC have higher values. These values can be considered as a correction to

the actual cost values. By multiplying the cost by these values, we can obtain a cor-

rected cost that actually corresponds to the trace times. We also plot normalized trace

times and normalized BVH costs in Figure 1 to see the correlation between these two

quantities.

4.4. Influence of Ray Reordering

Table 1 indicates that using ray reordering pays off on average, providing a 7%

speedup for secondary rays and 8% for shadow rays. Particularly, ray reordering

improves trace performance for Crytek Sponza (23% for secondary rays and 39% for

shadow rays), Conference (15% for secondary rays and 37% for shadow rays), and

San Miguel (14% for secondary rays and 26% for shadow rays) using binary BVHs.

Ray reordering typically benefits from using larger ray batches as it is more likely

to extract coherence from a large number of rays. Furthermore, the speed of the ray

sorting algorithm, i.e., the number of rays sorted per second, increases with more

rays. Thus, it pays off to use ray reordering for complex scenes (e.g., Hairball) or

architectural scenes (e.g., San Miguel). Conversely, in object-like scenes (e.g., Happy

Buddha), most of the rays escape the scene after the first bounce, and further bounces

are generated only in concave regions, generating only a few secondary rays. Thus,
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Sibenik Crytek Sponza Conference Gallery Happy Buddha Sodahall

75k 262k 331k 998k 1087k 2169k

Hairball Crown Pompeii San Miguel Vienna Powerplant

2880k 4868k 5632k 7880k 8637k 12759k

Figure 2. Rendered images of 12 tested scenes in resolution 1024 × 768. We use three

representative views for each scene.

it is difficult to extract some coherence from a small number of rays and fully utilize

parallel resources.

However, we can observe that the effect of ray reordering decreases with increas-

ing branching factor, especially for shadow rays. For example, ray reordering im-

proves trace performance for shadow rays in San Miguel by 26% for binary BVHs,

18% for quaternary BVHs, and 11% for octal BVHs using PRBVHS. One reason

might be again that for wide BVHs we use a completely different trace kernel [Lier

et al. 2018] than for binary BVHs [Aila and Laine 2009]. Another reason might be

that in wide BVHs we visit fewer nodes during the traversal, which results in fewer

memory accesses, decreasing the importance of ray coherence.

5. Conclusion and Future Work

We provided an overview of the state-of-the-art BVH construction methods together

with their extensive empirical performance comparison. In particular, we compared
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the various state-of-the-art construction algorithms, spatial splitting, ray reordering,

and wide BVHs. We also measured the discrepancy between trace times and BVH

costs. We found that the best results are provided by binary BVHs constructed by

SBVH, while ray reordering pays off in most cases. We also showed that parallel

reinsertion in combination with simulated annealing can provide slightly better costs

than parallel reinsertion itself.

The results indicate several promising directions for future work. One obvious

direction would be a fast construction using spatial splits while keeping the quality of

SBVH. Another interesting direction might be a hybrid construction using top-down

construction for top levels and bottom-up construction for bottom levels. On a similar

note, we could modify PRBVH to penalize or completely disable updates in top levels

to preserve top splits provided by SBVH. Furthermore, during the conversion to wide

BVH, some nodes are discarded. Thus, it makes sense to focus the optimization only

on the nodes that remain and not on the discarded nodes. However, as was pointed by

Meister et al. [2021], this is a difficult challenge as the cost function in wide BVHs

is piecewise constant (i.e., some of the topological updates do not change the cost

value), which makes the navigation in the search space more difficult.

Simulated annealing could also be used with other BVH construction methods

such as treelet restructuring. Moreover, in simulated annealing, we clamp the proba-

bility used for pruning to a constant and prioritize nodes with negative values during

the heating phase. In both cases, we could use more sophisticated approaches. We

leave these problems for future work.
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The source codes of the algorithm can be downloaded from GitHub:

https://github.com/meistdan/hippie.

Publication snapshot at

https://jcgt.org/published/0011/03/06/hippie-main.zip

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of ray traversal on GPUs. In

Proceedings of the Conference on High-Performance Graphics, Association for Computing

Machinery, 145–149. URL: https://doi.org/10.1145/1572769.1572792. 7,

8, 11, 15

AILA, T., KARRAS, T., AND LAINE, S. 2013. On quality metrics of bounding volume hierar-

chies. In Proceedings of the 5th High-Performance Graphics Conference, Association for

Computing Machinery, 101–108. URL: https://doi.org/10.1145/2492045.

2492056. 3, 13

DOMINGUES, L., AND PEDRINI, H. 2015. Bounding volume hierarchy optimization

through agglomerative treelet restructuring. In Proceedings of the 7th Conference on High-

Performance Graphic, Association for Computing Machinery, 13–20. URL: https:

//doi.org/10.1145/2790060.2790065. 5, 8

GARANZHA, K., PANTALEONI, J., AND MCALLISTER, D. 2011. Simpler and faster

HLBVH with work queues. In Proceedings of the ACM SIGGRAPH Symposium on High

Performance Graphics, Association for Computing Machinery, 59–64. URL: https:

//doi.org/10.1145/2018323.2018333. 5, 8

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation of object hierarchies for

ray tracing. IEEE Computer Graphics and Applications 7, 5, 14–20. URL: https:

//ieeexplore.ieee.org/document/4057175. 3

KARRAS, T., AND AILA, T. 2013. Fast parallel construction of high-quality bounding

volume hierarchies. In Proceedings of the 5th High-Performance Graphics Conference,

Association for Computing Machinery, 89–99. URL: https://doi.org/10.1145/

2492045.2492055. 5

KARRAS, T. 2012. Maximizing parallelism in the construction of BVHs, oc-

trees, and k-d trees. In Proceedings of the Fourth ACM SIGGRAPH/Euro-

graphics Conference on High-Performance Graphics, Eurographics Associa-

tion, 33–37. URL: https://research.nvidia.com/publication/

maximizing-parallelism-construction-bvhs-octrees-and-k-d-trees.

4, 8

KENSLER, A. 2008. Tree rotations for improving bounding volume hierarchies. In IEEE

Symposium on Interactive Ray Tracing, IEEE, 73–76. URL: https://ieeexplore.

ieee.org/document/4634624. 6

17

http://jcgt.org
https://github.com/meistdan/hippie
https://jcgt.org/published/0011/03/06/hippie-main.zip
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/2492045.2492056
https://doi.org/10.1145/2492045.2492056
https://doi.org/10.1145/2790060.2790065
https://doi.org/10.1145/2790060.2790065
https://doi.org/10.1145/2018323.2018333
https://doi.org/10.1145/2018323.2018333
https://ieeexplore.ieee.org/document/4057175
https://ieeexplore.ieee.org/document/4057175
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/2492045.2492055
https://research.nvidia.com/publication/maximizing-parallelism-construction-bvhs-octrees-and-k-d-trees
https://research.nvidia.com/publication/maximizing-parallelism-construction-bvhs-octrees-and-k-d-trees
https://ieeexplore.ieee.org/document/4634624
https://ieeexplore.ieee.org/document/4634624


Journal of Computer Graphics Techniques

Performance Comparison of BVHs for GPU Ray Tracing

Vol. 11, No. 3, 2022

http://jcgt.org

LIER, A., STAMMINGER, M., AND SELGRAD, K. 2018. CPU-style SIMD ray traversal

on GPUs. In Proceedings of the Conference on High-Performance Graphics, Association

for Computing Machinery, 7:1–7:4. URL: https://doi.org/10.1145/3231578.

3231583. 7, 8, 11, 15

MCGUIRE, M., 2017. Computer Graphics Archive, July. URL: https://

casual-effects.com/data. 16

MEISTER, D., AND BITTNER, J. 2018. Parallel locally-ordered clustering for bounding vol-

ume hierarchy construction. IEEE Transactions on Visualization and Computer Graphics

24, 3, 1345–1353. URL: https://doi.org/10.1109/TVCG.2017.2669983. 5,

8

MEISTER, D., AND BITTNER, J. 2018. Parallel reinsertion for bounding volume hierarchy

optimization. Computer Graphics Forum (Proceedings of Eurographics) 37, 2, 463–473.

URL: https://diglib.eg.org:443/handle/10.1111/cgf13376. 5, 6, 8
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