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Figure 1. Two scenes rendered in less than a minute with our hardware ray traced photon
mapper. Two million photons are distributed per iteration in both scenes. Left: Bistro (30 s,
2304 it, ∼13 ms per iteration). Right: Caustic Glass (2 s, 193 it, ∼10.4 ms per iteration).
Times were captured with an NVIDIA GeForce RTX 2080 SUPER.

Abstract

Photon mapping is a numerical solution to the rendering equation based on tracing random
rays. It works by first tracing the paths of the emitted light (photons) and storing them in a
data structure to then collect them later from the perspective of the camera. Especially, the
collection step is difficult to realize on the GPU due to its sequential nature. We present an
implementation of a progressive photon mapper for ray tracing hardware (RTPM) based on a
combination of existing techniques. Additionally, we present two small novel techniques that
speed up RTPM even further by reducing the number of photons stored and evaluated. We
demonstrate that RTPM outperforms existing hash-based photon mappers, especially on large
and complex scenes.
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1. Introduction

One popular approximate solution to the rendering equation [Kajiya 1986] is photon
mapping [Jensen 2001], which is based on ray tracing and Monte Carlo integration.
Other popular algorithms to approximate the rendering solution are path tracing [Ka-
jiya 1986], bidirectional path tracing [Lafortune and Willems 1993], metropolis light
transport [Veach and Guibas 1997], and vertex connection and merging [Georgiev
et al. 2012], which is a combination of photon mapping and bidirectional path trac-
ing. In contrast to these techniques, photon mapping [Jensen 2001] especially excels
in rendering patches of light called caustics.

Photon mapping is a two-pass algorithm that is split into photon generation and
collection phases. Photons are distributed from light sources and ray-traced through
the scene for photon generation. Hits on diffuse surfaces are stored in a photon map.
In the collection step, the scene is traced from the point of the camera where all
photons within a given radius that hit a diffuse surface are collected.

The improved graphics hardware that now allows for hardware-supported ray trac-
ing has sped up many of those techniques. This can be used directly to speed up the
gathering of photons. With fast radius search [Evangelou et al. 2021], it was shown
that the collection step can be sped up by exploiting the ray tracing API by storing the
photons inside a ray tracing acceleration structure and collecting them via ray tracing.
The performance of the new collection method was compared to a k-d tree framework
with the result that the hardware ray tracing accelerated collection is faster.

We describe a progressive photon mapper optimized for ray tracing hardware that
uses the idea of fast radius search [Evangelou et al. 2021] to collect the photons. In
addition, we introduce two novel techniques that speed up the progressive photon
mapper even further. One is Photon Culling, where photons outside our camera view
are not stored, reducing the acceleration structure build time for large and complex
scenes, especially when large parts of the scene are not visible from the camera view.
The other is Stochastic Evaluation, where we only evaluate a small number of pho-
tons stochastically to reduce the number of lighting calculations. This speeds up the
photon collection process for areas with higher photon densities, which often occur
with larger photon radii. We compare our photon mapper against two state-of-the-
art GPU hash techniques [Mara et al. 2013; Hachisuka and Jensen 2010] on various
scenes.

2. Related Work

Photon mapping [Jensen 2001] uses two passes to approximate global illumination by
using photon maps. In the first pass, packets of energy (photons) are emitted from the
light sources, which are stored in two photon maps on every diffuse surface hit within
the scene. One photon map stores caustic photons, which are reflected or transmitted
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by specular surfaces before hitting the first diffuse surface. This is equivalent to LS+D
paths, where L is the light source, S is a specular hit, and D is a diffuse hit. All other
photons are stored in the global photon map. A smaller radius is usually used for the
caustic photon map as the density of photons is generally higher. The second pass
renders the scene using path tracing and both photon maps. The caustic photon map
is directly evaluated with a radiance estimate on the first (diffuse) hit. The global
photons are evaluated using final gathering, where the photon map is only evaluated
for indirect lighting. A path tracer is used to calculate the direct lighting on the first
hit and determine the second (diffuse) hit, where the global photon map is evaluated.
The radiance estimate can also be used for the global photons to get a fast preview
of the final image. However, photon mapping is biased, as it retains the same search
radius for photons for the whole pass, which leads to a smoothing effect. An infinite
number of photons with an infinitely small radius would have to be used to get an
unbiased result.

Progressive photon mapping [Hachisuka et al. 2008] and stochastic progressive
photon mapping [Hachisuka and Jensen 2009] solve that problem by reformulating
the photon mapping algorithm to an iterative one. With this, the problem is decoupled
from its memory bottleneck, and better results can be achieved as the image converges
to a consistent result. Depending on the number of photons that were collected for
one pixel, the collection radius is reduced for the upcoming iterations. Knaus and
Zwicker [2011] showed that the radius reduction can be done by a fixed sequence
instead of depending on the number of photons collected.

With parallel progressive photon mapping, Hachisuka and Jensen [2010] pre-
sented a fast GPU implementation for photon mapping by stochastically storing only
one photon for one hash cell. This avoids creating and searching through a list of hash
entries, which does not work well in parallel.

In 2013, Mara et al. [2013] introduced four photon mapping algorithms that work
well on a GPU. Two of them use photons as a bounded geometry and render them
into the scene. For the other two, a hash grid and a frustum-based tile grid are used to
accelerate the photon collection step.

Caustics using screen-space photon mapping [Kim 2019] and real-time ray traced
caustics [Yang and Ouyang 2021] both introduced a real-time caustic rendering tech-
nique using hardware-supported ray tracing. The hardware ray tracing API is used to
trace the photons while only storing the caustic photons. Both use different screen-
space techniques to project the caustic photons to the final image.

Fast radius search [Evangelou et al. 2021] introduced a way to exploit the hard-
ware ray tracing API to accelerate the radius search operation. Instead of searching
for all points in a radius around the query, the operation is reversed so that the radius
is mapped to each search point instead. A query then collects all search points where
the query is inside the radius of a search point. A ray tracing acceleration structure is
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built with the search point and a small ray from the query is then used to collect all
search points.

3. Hardware Ray Tracing Photon Mapper

In this article, we present implementation details for the hardware ray tracing–based
progressive photon mapper (RTPM). Section 3.1 outlines the fundamentals needed.
Sections 3.2 to 3.6 explore our implementation in detail. In Sections 3.7 and 3.8,
we present our two novel speedup techniques for our RTPM: Photon Culling and
Stochastic Evaluation.

3.1. Fundamentals

RTPM is based on photon mapping [Jensen 2001], which can approximate the global
illumination of a scene and excels at rendering caustics. First, the scene is traced from
light sources, with every ray representing a photon. Photons are only stored in photon
maps if they hit diffuse surfaces. In the second pass, photons are collected from the
perspective of the camera. With a photon map, the exitant radiance for a location x⃗

on a surface can be estimated with

L(x⃗, ω̂) ≈ 1

πr2

N∑
p=1

fr(x⃗, ω̂, ω̂p)Φp(x⃗, ω̂p), (1)

where N is the number of photons inside the radius r. For every photon in the radius,
the flux Φp is multiplied with the BRDF fr, which depends on the point x⃗, view
direction ω̂, and photon direction ω̂p. The sum of reflected photon flux values is
divided by the circular area in which photons are collected.

As it is not feasible to emit and collect all photons in one iteration on the GPU, our
algorithm is based on stochastic progressive photon mapping (SPPM) [Hachisuka and
Jensen 2009], which is an extension of progressive photon mapping (PPM) [Hachisuka
et al. 2008]. In PPM the emission and collection steps are done iteratively with
a shrinking radius, depending on the number of photons collected. The collection
points from the second pass of the original photon mapping stay the same through-
out the whole algorithm. In SPPM these collection points are traced anew for every
iteration. Knaus and Zwicker [2011] showed that a fixed sequence (Equation (2)) can
be used for radius reduction instead of reducing the radius for every collection point
depending on the number of photons collected:

ri+1 = ri
√

(i+ α)/(i+ 1). (2)

Here, r is the radius, i is the current iteration, and α is a user parameter between 0
and 1. Kaplanyan and Dachsbacher [2013] proved that an α value of 2/3 is optimal.
The radius reduction by Knaus and Zwicker [2011] is used in RTPM because the
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Figure 2. (a) A radius search operation, where the query q searches for all points p in the
radius r. (b) The inverse radius search where the radius r is mapped to each point p instead of
the query q. All points that have the query within their radius are collected. (c) How the radius
inverse search is implemented for a ray tracing operation. The spheres are stored as AABBs
and for the search query, an infinitely small ray is used. All spheres that intersect with the ray
are collected.

radius for caustic and global photons can be stored globally in contrast to storing the
radius for every photon. Additionally, the radius reduction used in PPM [Hachisuka
et al. 2008] and SPPM [Hachisuka and Jensen 2009] would not be feasible, which is
further explored in Section 3.2.

In RTPM, photons are collected with small rays using the inverse radius search
operation [Evangelou et al. 2021]. Figure 2 shows how inverse radius search works
by deriving it from the regular radius search. To guarantee that each AABB from
Figure 2(c) is only called once, a flag needs to be set in the geometry description
during the acceleration structure generation, telling the API not to invoke the any-hit
shader multiple times.

3.2. Overview

To optimize the progressive photon mapping algorithm [Hachisuka et al. 2008; Knaus
and Zwicker 2011; Hachisuka and Jensen 2009] for ray tracing hardware, we reorga-
nized the algorithm and adjusted some parts to be more fitting for the hardware. A
general overview of the algorithm can be seen in Figure 3.

Using the camera viewpoints instead of photons for the search operation is not
practical for a GPU implementation. This is mainly because of data race, as multiple
photons could want to contribute to the same camera point at the same time. This
could be resolved with locks, but the number of blocking threads would hurt perfor-
mance immensely. By inverting the search operation, it remains lock-free as photons
are only read on collection. To still get the benefit of culling photons outside of the
camera pixels, we introduced our novel technique Photon Culling, which is presented
in Section 3.7.
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Figure 3. Overview for RTPM. The Camera Tracing pass (Section 3.3) generates information
about the first diffuse surface hit. In the Photon Generation pass (Section 3.4) the photons are
traced from the light sources through the scene. Upon hitting a diffuse surface, photons are
stored in multiple buffers (Section 3.5). The information of both passes is used in the Photon
Collection pass (Section 3.6) to approximate the global illumination for the scene. When
using our novel technique Photon Culling (Section 3.7), a dependency between the Camera
Tracing and Photon Generation passes is created. The camera position is used to create a hash
grid, which is used to cull all photons that would not be collected in this iteration.

The radius reduction (Equation (2)) by Knaus and Zwicker [2011] optimizes per-
formance for the inverted search as the radius of the photon is now independent of the
hit surfaces. It would still be possible to perform the inverse radius search with the
radius reduction from stochastic progressive photon mapping. However, the photon
radius would need to be set to the global maximum for that to work.

Other than in stochastic progressive photon mapping, the tracing of camera rays
and the collection step are split into two separate passes, resulting in three passes.
This increases shader performance because it is not determined when the first diffuse
surface is hit. This can lead to many threads waiting before the collection rays can be
used. Additionally, this split is needed for the Photon Culling (Section 3.7).

3.3. Camera Tracing

We need information about the first diffuse surface hit from the camera perspective
to collect the photons. A modified G-buffer [Hargreaves 2004] or V-buffer [Burns
and Hunt 2013] can be used. In our implementation, we used a V-buffer as it has a
lower bandwidth than the G-buffer. Suppose that the scene contains highly specular
or transparent materials. A standard G- or V-buffer that stops on the first hit is in-
sufficient, as photons are only collected on diffuse surfaces. To get the information
needed in the Photon Collection pass, all paths must be traced until they hit a diffuse
surface (or reach the recursion limit, in which case they are invalid). To determine if
a diffuse surface was hit, on every valid hit point, a new direction is sampled with the
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Field Format Bytes
V-Buffer RGBA32Uint 16

View Direction RGB[A]32F 16
Throughput RGB[A]32F 16

Table 1. Outputs for the Camera Tracing pass. We store all components with full precision as
it is only generated once per frame. The V-buffer needs 16 bytes. For a triangle hit, 8 bytes are
header (instanceID, primitiveID) and 8 bytes are barycentric coordinates with 4 bytes each.

1 void rayGeneration(){
2 Ray ray = getCameraRay(); //Initialize the ray.
3 rayPayload.throughput = float3(1.0,1.0,1.0); //Initialize throughput with 1.
4 for(uint i = 0; i< MaxRecursion; i++){
5 //Trace the ray through the scene. The hit is handled in closestHit(...) function.
6 TraceRay(sceneAS, ray, rayPayload); //sceneAS is the acceleration structure for the scene.
7 if(rayPayload.terminate) return; //Terminate on miss or diffuse surface hit.
8 ray = rayPayload.ray; //Update ray information for next ray tracing operation.
9 }

10 }
11 //Gets called for the closest hit from the TraceRay function
12 void closestHit(RayPayload rayPayload, Attributes hitAttributes){
13 //Get the hit attributes from build in functions/variables.
14 HitInfo hitInfo = getHitInfo(InstanceIndex(), PrimitiveIndex(), hitAttributes);
15 Sample bsdfSample = sampleBSDFNewDirection(hitInfo); //Sample a new direction with BSDF.
16 //On diffuse surface hit, write viewDirection, throughput, and hitinfo
17 //into the G- or V-buffer at the current pixel.
18 if(bsdfSample.isDiffuseReflection()){
19 writeHit(DispatchRaysIndex().xy, WorldRayDirection(), rayPayload.throughput, hitInfo);
20 rayPayload.terminate = true;
21 }
22 //Update info for next iteration.
23 rayPayload.throughput *= bsdfSample.throughput;
24 rayPayload.ray = Ray(hitInfo.getPosition(), bsdfSample.direction);
25 }

Listing 1. HLSL pseudocode for the Camera Tracing pass. The camera path is traced until
a diffuse surface is hit. On non-diffuse reflection or refraction, the throughput and view
direction are updated. If the ray misses the scene, it is terminated. The cyan-colored functions
are built-in HLSL functions.

BSDF. We stop if the sampled direction results from a diffuse reflection. For a specu-
lar reflection, we trace the path further. In addition to the hit data of a diffuse surface,
the incoming view direction of the surface and throughput are needed because they
cannot be reconstructed from camera data alone. This results in a total of 48 bytes
needed, as can be seen in Table 1. The pseudocode for the Camera Tracing pass is
shown in Listing 1.
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3.4. Photon Generation

The photon tracing pass is similar to the original photon mapping [Jensen 2001]. A
number N of photons are generated from light sources and are traced through the
scene. Photons should only be stored if they hit diffuse surfaces. On specular or
transparent surfaces, most photons would contribute nothing to the exitant radiance
because specular and transparent surfaces only have small reflection lobes. The prob-
ability of photons coming from the direction of the small lobes is very small (and
zero for perfectly specular materials). Therefore, it is better to store photons only for
diffuse surfaces and trace the specular photon paths.

After storing a photon, Russian roulette is used before tracing the next bounce to
terminate photon paths with a low contribution beforehand. The average throughput
of the photon is used as the probability for Russian roulette.

Because the photon map uses the same radius for the whole scene, caustics can
appear blurred if the radius is too large. To get sharp caustics, the photon map can be
split into two: a caustic photon map for the LS+D path photons and a global photon
map for all other photon paths that end on diffuse surfaces. A smaller radius should
be used for the caustic map because caustic photons often land close to each other.
Both photon maps use a different initial radius that is reduced after every iteration
separately with Equation (2).

3.5. Storing Photons

On a diffuse surface hit, a photon is stored in either the caustic or global photon map,
depending on the surface that was hit beforehand. Caustic photons are always stored,
whereas a rejection step is used for global photons to reduce the number of photons
stored. In the rejection step, a photon is rejected with a user-defined probability.
Photons that pass the test are weighted up by the rejection probability. Even when
not passing the test, the photon path is traced further. With the rejection step, we can
trace more photons to get more caustic photons while retaining similar acceleration
structure building and collect times by not storing all global photons. We used a
rejection probability of 70% for all of our tests.

For every photon, information about the position, radiant flux, and photon direc-
tion is required for collection and shading. The structure of a photon can be seen
in Table 2. The radiant flux and direction are both stored individually in a texture.
A 16-bit-per-channel texture has enough accuracy for this information. The position
is stored in an AABB buffer to build the acceleration structure photon map. This is
necessary to use an inverse radius search [Evangelou et al. 2021]. Additionally, the
face normal can be stored to handle problems on corners and thin geometry. The face
normal can be converted from the Cartesian coordinates system to the spherical coor-
dinate system to be stored in the alpha channel of the flux and direction textures. An
atomic counter is used to determine the photon index.
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Field Format Bytes
Position AABB 24

Flux RGB[A]16F 8
Direction RGB[A]16F 8

Face Normal RG16F 0 [4]

Table 2. Structure of a photon. Forty bytes are needed in total. Every field has its own
buffer. Flux and direction are stored as a texture while the position is stored as a buffer. The
face normal can be encoded to two channels and stored in the alpha channels of the direction
and flux.

As GPU buffers cannot be dynamically resized, a maximum size of the photon
buffers needs to be set beforehand. If the buffer is too small, photons will be lost.
A large buffer will cost more memory and will increase acceleration structure build
time, because empty AABBs take building time. Using the number of photons from
the Photon Generation pass is not a good option due to the cost of GPU-to-CPU
synchronization, as the building size for the acceleration structure needs to be set on
the CPU. Our results show that the number of stored photons stays around the same.
To reduce the impact on acceleration structure time, we take the number of photons
from the last iteration, plus a small percentile offset, as the input size for acceleration
structure building. The first iteration will use the maximum buffer size as the input
size for the acceleration structure, however the same method for approximating the
acceleration structure building size can be used to approximate a good maximum
buffer size for the current camera perspective in the scene.

The acceleration structure needs to be rebuilt for every iteration with the photon
position AABB buffer as input. Updating after every iteration instead of rebuilding
leads to worse performance because photons at the same index will move a lot. Each
photon map will be built as a bottom-level acceleration structure (BLAS) with a dif-
ferent instance mask for separate collecting. Both BLASes will be used to build the
top-level acceleration structure (TLAS).

3.6. Collect Photons

A pseudocode version of the Photon Collection pass can be seen in Listing 2. The
collection step is based on an inverse radius search [Evangelou et al. 2021].

For every pixel, an infinitely small ray is shot to collect all the photons. As for
photon mapping [Jensen 2001], the radiance estimate (Equation (1)) is used to ap-
proximate the radiance for the pixel. To compute the sum, the any-hit shader of the
ray tracing API is used. The any-hit shader is called for any successful intersection
with a photon (see Figure 2). Additionally, information about the geometry, material,
and view vector for the pixel is needed, which are obtained from the Camera Tracing
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1 float3 rayGenerationShader(){
2 //Initialize the rayPayload.
3 rayPayload.vBufferHitInfo = VBuffer[DispatchRayIndex()];
4 rayPayload.radiance = float3(0.0);
5 //Collect caustic photons with the Photon Acceleration structure.
6 TraceRay(photonAS, causticInstanceMask, surfacePosition , viewDirection , rayPayload, tMax=0.001);
7 float3 L = rayPayload.radiance / (PI * causticRadius2);
8 //Collect global photons with the Photon Acceleration structure.
9 rayPayload.radiance = float3(0.0); //Reset radiance in rayPayload.

10 TraceRay(photonAS, globalInstanceMask, surfacePosition , viewDirection , rayPayload, tMax=0.001);
11 L += rayPayload.radiance / (PI * globalRadius2);
12 return L;
13 }
14
15 //Is called for any AABB intersection in TraceRay()
16 void intersectionShader(){
17 //Get the AABB from the buffer. InstanceIndex() → photonMap ID. PrimitiveIndex → photon ID.
18 AABB aabb = photonAABB[InstanceIndex()][PrimitiveIndex()];
19 if(hitSphere(aabb, RayOrigin())) //Check if the origin is inside the sphere.
20 ReportHit(RayTCurrent());
21 }
22
23 //Is called for any successful intersection
24 void anyHitShader(inout RayPayload rayPayload){
25 //InstanceIndex() → photonMap ID. PrimitiveIndex → photon ID.
26 Photon p = photonBuffer[InstanceIndex()][PrimitiveIndex()];
27 BSDF bsdf = getBSDF(rayPayload.vBufferHitInfo);
28 //View Direction is stored in WorldRayDirection().
29 float3 f r = bsdf.eval(WorldRayDirection(), p.direction);
30 rayPayload.radiance += f r * p.flux; //Radiance estimate
31 }

Listing 2. Pseudocode for the Photon Collection pass. For both TraceRay() functions, an
infinitely small distance is used, e.g., (tMin → 0, tMax → 0.001). The closestHit and miss
shaders can be skipped or left empty. The cyan-colored functions are built-in HLSL functions,
and the purple-colored variables are buffers.

pass (see Figure 3). The required shading information, in the form of a V-buffer and
view vector, is stored in the ray tracing payload for fast access from the any-hit shader.

To separate the photon map into global and caustic photon maps, the ray tracing
step can be repeated. It is faster to separate both photon maps because it is more
consistent, as there is no case distinction for the radius and photon map buffer. The
instance mask of the API is a fast way to separate both photon maps. The instance
index, which is available in the any-hit shader, can be used to differentiate between
the caustic and global photon maps.

The intersection shader always needs to report a valid hit to call the any-hit shader,
which is a distance between the maximum (TMax) and minimum (TMin) ray dis-
tances. The closest-hit shader can be skipped with a flag, and the miss shaders can be
left empty, as both are not needed for the collection step.
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Figure 4. Photon culling in the Bistro scene. At the top are the camera perspective used (left)
and an overview of the scene (right). On the bottom are visualizations of the stored photons
for the camera perspective with culling (left) and without culling (right). Photon sizes were
adjusted for the photon visualizations. The global photons are colored green, and the caustic
photons are colored pink.

On thin geometry, photons may be collected from the other side of an object (see
Figure 9(b)). This can happen on corners because photons that land on the other side
of the corner can be valid for both sides. The effect is most noticeable if the invisible
side is directly illuminated while the visible side is only indirectly illuminated. With
a shrinking radius, this effect will disappear over time as fewer photons from the
corner wall are collected, but extreme brightness differences can take a long time.
The optionally stored photon face normal can reject photons from other surfaces. The
photon face normal is compared against the face normal from the camera hit. If they
deviate too much, the photon is rejected. This step is performed in the any-hit shader
before the BSDF is evaluated.

3.7. Photon Culling

Photon Culling is our first novel addition, where we want to exclude all non-visible
photons using the first diffuse surface hit from the camera. Acceleration structure
build times are reduced by Photon Culling, especially in larger and more complex
scenes where many photons are not visible to the camera (Figure 4). Naive frustum
culling cannot be used because we collect on the first diffuse surface hit and can-
not guarantee that all of these hit points are within the camera frustum. Similar to
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Figure 5. An example of Photon Culling in 2D space. The green-bordered cells are grid cells
marked by the positions where the photons should be collected (c1, c2). We need to mark
only the nearest four grid cells because a cell has the same size as a photon. A photon is only
stored if the corresponding grid cell is marked. Therefore, only p2, p3, and p5 are stored in
the photon map. Only p2 and p5 will be collected in the end; p3 is in a marked grid cell but is
too far away from c1 to be collected. In the 3D case, we need to mark four additional cells to
cover the z-axis.

SPPM [Hachisuka and Jensen 2009], we can use a hash grid to store where the first
diffuse surface hit took place. In contrast to SPPM, we do not need the complete hit
information because we only want to know if a photon should be stored.

Therefore, we can use a binary mask and mark the hash cells corresponding to
the first diffuse surface hits from the camera perspective. In the Photon Generation
pass, we can then calculate the hash cell corresponding to the photon’s position to
determine if the photon should be stored in the photon map.

We implemented the hash map as an 8-bit single-channel unsigned integer texture.
The information about the first diffuse hit from the camera’s perspective is taken from
the Camera Tracing pass. The position, taken from the V-buffer of that pass, is used to
mark the corresponding hash cells in a compute shader. The information of one hash
grid cell cannot be used alone to determine if a photon should be stored because hash
grid cells are fixed spatially. Because we want to keep the number of texture lookups
in the Photon Generation pass as small as possible, we need to mark multiple grid
cells. We also want to keep the number of marked cells as small as possible because
a texture write is used for each marked cell. Therefore, we use the diameter (radius ×
2) from the global photon map as the cell size because it guarantees that we only need
to mark the nearest eight cells to guarantee that we collect all photons. A 2D example
is shown in Figure 5 where the nearest four grid cells are marked. To determine if
a photon should be stored in the Photon Generation pass, we look up the hash cell
corresponding to the photon position. If the cell is marked, we store that photon.

Because multiple 3D positions can correspond to the same 1D hash (hash colli-
sion), photons may be stored in the photon map, even though they are not visible.
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1 //Write into the culling mask. In the compute shader the function is called once per screen pixel.
2 //The cullingHashMap should be cleared to 0 before calling the compute shader.
3 void writeCullingMask(float3 position, float photonRadius){
4 int3 cells[8] = posToNeighboringCells(position, 2 * photonRadius); //Get all 8 neighboring hash grid cells.
5 for(uint i=0; i< 8; i++){ //Loop over all cells.
6 uint hashIdx = calcHash(cells[i]) & (GRID SIZE − 1)}; //Get 1D hash from 3D cell
7 cullingHashMap[hashIdx] = 1; //Mark the cell.
8 }
9 }

10
11 //Called in the PhotonGeneration pass to check if a photon should be stored
12 bool checkCullingMask(Photon p, float photonRadius){
13 int3 photonCell = posToCell(p.position, photonRadius);
14 uint hashIdx = calcHash(cells[i]) & (GRID SIZE − 1);
15 return cullingHashMap[hashIdx] == 1;
16 }

Listing 3. Pseudocode for the Photon Culling technique. The writeCullingMask() function
is called once for every screen pixel in a compute shader to mark the cells in the binary hash
grid mask. The checkCullingMask() function is called in the Photon Generation pass before
storing a photon. We only use the first x-bits from the hash because otherwise the hash grid
buffer would be too big (232 elements for a 32-bit hash). GRID SIZE is always 2x, so the
upper bits can be omitted with an AND operation, and the hash is still valid.

The detection of hash collisions would take more time than it would take to build the
acceleration structure with all the false-positive photons. Therefore, this problem is
not treated further. The false-positive photons are the source of most of the scattered
photons outside of the camera view seen in Figure 4, with some of them being real
reflections.

The pseudocode for Photon Culling can be seen in Listing 3. The hash function
by Wang [2007] was used in our implementation.

3.8. Stochastic Evaluation

Stochastic Evaluation is our second novel technique to speed up RTPM in areas with
high photon density. We want to reduce the impact of the high photon density area by
only evaluating the BSDF for a small number of photons stochastically. However, we
still need to collect all photons via ray tracing to correctly weigh the exitant radiance
in the end.

The pseudocode for Stochastic Evaluation is in Listing 4. We set a fixed number
of photons that are evaluated at the end of the collection process. Additionally, we
need a counter to track the total number of photons collected for this pixel. The photon
list and the counter are stored in the ray tracing payload because we need access in
the any-hit shader to store the photon indices in that list. The any-hit shader is only
used to store a photon into the list after it passes the sphere intersection test in the
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1 struct RayPayload{
2 uint photonList[LIST SIZE];
3 uint n = 0; //Numbers of photons collected
4 SampleGenerator rng; //Random number generator state
5 }
6
7 float3 rayGenerationShader(){
8 //Collect photons with ray tracing and fill the photon list in payload. Only one photon map is used here.
9 TraceRay(photonAS, ... , rayPayload);

10 //Calculate the radiance estimate for the photon list.
11 float3 L = float3(0.0);
12 for(uint i=0; i<LIST SIZE; i++)
13 L += bsdf * photonBuffer[rayPayload.photonList[i]].flux;
14 return L / (PI * photonRadius2);
15 }
16
17 //Is called for any successful sphere intersection
18 void anyHitShader(inout RayPayload rayPayload){
19 uint insertIndex = rayTracingPayload.n;
20 rayPayload.n++;
21 //When the list is full, get a random index between 0 and n (reservoir sampling).
22 if(insertIndex >= LIST SIZE)
23 insertIndex = random(rayPayload.rng) * rayPayload.n //random() returns a float between 0 and 1.
24 if(insertIndex < LIST SIZE)
25 rayPayload.photonList[insertIndex] = PrimitiveIndex(); //Photon ID
26 }

Listing 4. Pseudocode for Stochastic Evaluation with one photon map. To use a caustic and
a global photon map, lines 9–13 need to be repeated. Similar to Listing 2, the respective
InstanceMask and photon radius must be used for the TraceRay() function and radiance
estimate.

intersection shader. We want to keep the list as small as possible because a too-big
ray tracing payload can harm performance due to register rearrangement. For all of
our tests, we used a list size of 3.

When the photon list is full, multiple strategies could be used. Similar to parallel
progressive photon mapping [Hachisuka and Jensen 2010], where only the last photon
is stored in the hash map, we could only store the last photons in the list. Depending
on how the ray tracing API handles the intersections with the spheres, this could lead
to bias. To guarantee that we remain bias-free, we choose reservoir sampling [Vitter
1985] to handle the case where the list is full. On a full list, a photon is inserted
stochastically with the probability of listSize

n , with listSize being the fixed size of the
photon list in the ray payload and n the current number of photons collected. Because
the list is full, n > listSize is guaranteed.

After collecting all the photons, they need to be evaluated with the radiance es-
timate. For that, we iterate through the photon list. At the evaluation, every photon
is additionally weighted with n

min(n,listSize) , which is the inverse insert probability for
n > listSize photons collected and else 1.
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Stochastic Evaluation replaces the Photon Collection pass, but uses the same in-
puts and outputs and is therefore easily interchangeable.

Thin geometry that is illuminated by both sides can be a problem for Stochastic
Evaluation because photons from both sides of the wall can end up in the photon list
as they are only evaluated after. The photons from the invisible side will contribute
nothing to the radiance, which leads to visible noise on lower iteration counts because
we have less valid samples (see Figure 9(b)). The photon face normal can be used to
reject the photons from the other side of the thin geometry before they are stored in
the list. For Stochastic Evaluation, we implemented the face normal rejection in the
intersection shader. This leads to two additional texture read operations to get the
encoded face normal (see the photon structure in Listing 2). The face normal from
the camera hit point can be stored in the ray direction, which is not needed in any
other way.

The performance of Stochastic Evaluation depends on the scene and the initial
radius. When the photon list is not filled, Stochastic Evaluation performs slightly
worse than the full Photon Collection from Section 3.6. This is due to the additional
overhead of storing the photon hits in the payload before evaluating and thread diver-
gence when the list is full to different degrees. However, the shaders can be swapped
after a certain number of iterations to allow optimal performance. The performance
of Stochastic Evaluation is further explored in Section 4.5.

4. Performance Analysis

We implemented our RTPM in the Falcor framework [Kallweit et al. 2022] with avail-
able source code (see Supplemental Materials). Hash grids or k-d trees are often cho-
sen as acceleration structures for photon mappers. We chose to compare our RTPM
against state-of-the-art hash-based photon mappers because in our experience hash-
based photon mappers work better on the GPU than k-d tree-based photon mappers.
Additionally, a comparison against k-d trees was already done in the fast radius search
paper [Evangelou et al. 2021], where the ray tracing accelerated collection performed
better than collection with a k-d tree. We chose a hash grid algorithm (Hash-PPM)
based on Mara et al. [2013] and parallel progressive photon mapping (Stoch-PPM)
[Hachisuka and Jensen 2010] to compete against our RTPM. For a fair comparison,
these two algorithms were also implemented in Falcor, with source code available
in our GitHub repository. In Section 4.1 we give implementation details for the
hash progressive photon mappers. Sections 4.2 to 4.4 cover the quality and perfor-
mance comparisons between our RTPM and both hash progressive photon mappers.
In Section 4.5 we present a performance analysis of Photon Culling and Stochastic
Evaluation.
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4.1. Hash Photon Mappers Implementation

The implementations of the other techniques are as close as possible to our RTPM. As
such they only differentiate in the storing of photons and the collection step, which
means that the Camera Tracing pass and most of the Photon Generation pass stay the
same. The format of a photon, which can be seen in Table 2, changes in the position
field as we now can use an RGBA32F texture instead of an AABB buffer. This lowers
the byte count to 32 bytes, as an RGBA32F texture needs 16 bytes compared to the
24 for the AABB.

For Stoch-PPM, we create a hash buffer of fixed size, which stores the number of
photons and three textures of the same size, corresponding to the photon format. The
size of a hash cell corresponds to the radius of a photon. In parallel progressive photon
mapping [Hachisuka and Jensen 2010], the last photon is always inserted. This can
lead to bias, as Davidovič et al. [2014] showed. They also proposed a rectified version
based on reservoir sampling [Vitter 1985], which we used for our implementation. For
photons that should be stored, the counter for the hash cell gets increased by one, and
the photon is inserted with the probability of 1

n , where n is the current number of
photons for this hash cell. In the collection step, the hash cell of the hit point for the
current pixel is determined. A sphere intersection test is performed on the hash cell
and its neighbors. All neighbor cells must be examined to guarantee that all photons
are collected. This results in a total of 27 lookups. If a photon passes the sphere
intersection test, it is weighted with the number n of photons for the hash cell and
added to the radiance for the pixel.

For Hash-PPM [Mara et al. 2013], we use a fixed-size hash grid buffer with a
list of photon indices for each cell. Additionally, each cell stores the number of pho-
tons per cell. The size of the photon indices list is a user parameter, as the buffer is
fixed. On a full list, the photon is inserted with reservoir sampling [Vitter 1985], as
we did for Stochastic Evaluation (Section 3.8). As each hash can only contain one
cell, quadratic probing is used to resolve conflicts. For the collection, the hash cell
corresponding to the hit and all neighbor cells are tested for photons inside the search
radius. If the photon passes the sphere intersection test, the BSDF is calculated and
the photon is weighted with n

min(n,maxPerCell) , with n being the number of photons per
cell and maxPerCell being the fixed maximum number of candidates for a cell. The
stochastic collection from Mara et al. [2013], with a Bernoulli random variable as the
index offset, is also implemented as an option and was used for all tests.

Both algorithms use the integer hash function by Wang [2007], which was also
used by Mara et al. [2013].

We used a buffer with the size of 2x elements for both hash techniques, with x

being the number of hash bits used. Using fewer bits from the hash will result in
more collisions but better cache performance. We used the first 20 bits from the hash
for Hash-PPM throughout all of our test scenarios. For our system, this was the best
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trade-off performance-wise between the cache performance and the additional time
needed to resolve the hash collisions. For Stoch-PPM, we used 16 to 18 bits of the
hash, depending on the number of photons and the scene’s size. We reached this
number in Stoch-PPM by comparing the structural similarity index measure (SSIM)
[Wang et al. 2004] to a reference image after a constant amount of time and choosing
the hash size with the best result.

4.2. Test Scenes

Since the efficiency of photon mapping depends on the given scene, multiple scenes
were used to evaluate the quality and performance of our photon mapper. The scenes
range from smaller scenes with a single light source to huge scenes with hundreds
of different light sources. We dispatched a different count of photons for each scene,
depending on scene size and number of light sources for the scene. The caustic and
global initial radius was chosen to be a good fit for our photon mapper, as large pho-
ton radii result in a huge performance drop, which is further explored in Section 4.3.
Quality and performance were evaluated by comparing the runtime and resulting im-
age quality. To measure image quality, SSIM [Wang et al. 2004] was used to compare
the three photon mappers with a reference image. We used the following test scenes:

• Bistro (Interior): The bistro is a complex scene that contains a high number
of transmissive objects for caustics as well as a high number of emissive tri-
angles to dispatch photons [Amazon Lumberyard 2017]. Perspective used for
performance tests: Figures 1 and 7.

• Veach-Bidir: A commonly used scene that shows caustics generated by indi-
rect light [Bitterli 2016]. Perspective used for performance tests: Figure 9.

• Living Room: A medium-sized scene with well-visible caustics and indirect
light. A single big sphere with many emissive triangles is used to illuminate
the scene [Bitterli 2016; Wig42 2014]. Perspective used for performance tests:
Figure 7.

• Caustic Water: A smaller scene with a very high number of caustic and global
photons in a tight space [Bitterli 2016]. Perspective used for performance tests:
Figure 7.

• Caustic Glass: A small scene that contains a high number of caustic photons
that are distributed over a bigger surface. From pbrt-v3 scenes [Pharr et al.
2016]. Perspective used for performance tests: Figure 1.

• Bistro Full: The interior and exterior of the bistro were combined to create
a big scene with a high number of lights [Amazon Lumberyard 2017]. To get
good results, a high number of photons is needed per iteration. Perspective used
for performance tests: Figure 9.
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Scene
Number of
Triangles

Number of
Emissive
Triangles

Dispatched
Photons

Stored
Photons∗

Bistro 1308k 3576 2 mil
15k / 243k

[29k / 654k]

Veach-Bidir 11k 4 1 mil
10k / 328k

[10k / 434k]

Living Room 787k 960 2 mil
40k / 610k

[66k / 1305k]
Caustic Water 103k 0∗∗ 1 mil [735k / 167k]
Caustic Glass 88k 0∗∗ 1 mil [68k / 110k]

Bistro Full 4140k 24k 4 mil
14k / 139k

[40k / 1212k]
* Format is “caustic / global.” Numbers in brackets are stored photons without culling.
** Both scenes use one analytic light.

Table 3. Additional information on the complexity and dispatched photons for the scenes
used for the performance comparison (Figures 7 and 8). Note that the number of photons
stored is significantly lower than the photons dispatched due to the rejection step for global
photons (see Section 3.5).

All results were rendered with a resolution of 1920 × 1080 on an NVIDIA RTX
2080 SUPER. Additional information for each scene is in Table 3. We used different
hash grid resolutions for the hash-based photon mappers. For Hash-PPM, we used
a hash grid with 220 cells, and for Stoch-PPM, a hash grid with 216 to 218 cells,
depending on scene size and the number of photons dispatched. For all of our ray
tracing operations, we used a maximum path length of 10. As mentioned, we do not
store 70% of the global photons (rejection step) to allow for more caustic photons.
The hash grid mask used for Photon Culling used 222 cells.

4.3. Performance

In Figure 6(b) we observed the SSIM [Wang et al. 2004] over time for the three
photon mappers in the Living Room scene. The graph shows that RTPM approaches
the quality of the reference image the fastest, while Stoch-PPM approaches it the
slowest. The same pattern can be observed in the Bistro and Caustic Water scenes in
Figure 7 and the rest of the scenes.

RTPM and Hash-PPM have the same quality per iteration. Both have a similar
SSIM after the same number of iterations. Figure 8 shows that RTPM has a 2× or
more speedup per iteration on average compared to Hash-PPM. This is supported by
Hash-PPM having a slower increasing SSIM, as seen in Figure 6(b), and worse image
quality after the same time, as seen in Figure 7.
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Figure 6. Both graphs are from the Living Room scene. (a) Render times per iteration for
5000 iterations. Render times increase with smaller radii for Hash-PPM and Stoch-PPM while
decreasing for RTPM. (b) Changes in SSIM over time. RTPM approaches the reference image
the fastest, while Stoch-PPM approaches it the slowest.

Figure 7. A quality comparison of the three photon mapping techniques. Images for the
same scene were rendered at the same time for all three techniques. The images for the Bistro
scene were rendered in 5 s, while Living Room and Caustic Water were rendered in 10 s. The
reference image was created with our RTPM using 100,000 iterations.

RTPM is faster than Stoch-PPM on all scenes. The gap between both photon
mappers is the smallest on the smaller scenes (Veach-Bidir, Caustic Water, and Caus-
tic Glass), as seen in Figure 8. It is possible to achieve better iteration times for
Stoch-PPM by lowering the hash resolution. This, however, worsens the quality over
time for all scenes. The quality per iteration is lower than RTPM and Hash-PPM.
This is supported by the SSIM in Figure 6(b) and the quality comparison in Figure 7.
Stoch-PPM has faster render times than Hash-PPM but produces worse results in the
same time frame.
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Figure 8. Average iteration times in ms. We used 5000 iterations per scene. Information
about dispatched photons, stored photons, and scene size is in Table 3.

When comparing the render times for the individual render passes, it can be ob-
served that RTPM is the fastest for all of the Photon Generation and Photon Collection
passes. Hash-PPM is the slowest on the Photon Generation pass because hash colli-
sions need to be handled in addition to inserting photons into the photon buffers. For
Stoch-PPM, handling of hash collisions is not needed, which is why it is faster than
Hash-PPM for most Photon Generation passes. RTPM is the fastest for most of the
Photon Generation passes because the photons only need to be inserted into an array.
This has a better cache performance than insertion into a hash grid. For the Photon
Collection pass the results show that the RTPM with the inverse radius search [Evan-
gelou et al. 2021] is much faster than Hash-PPM and Stoch-PPM. For both, multiple
hash cells need to be searched. Hash-PPM is further slowed down by hash collisions
which can occur on each cell. In addition to the Photon Generation and Photon Col-
lection passes, RTPM needs to build the acceleration structure which takes between
1 to 4 ms, depending on the count of photons for the scene. The stored photons for
each scene used are in Table 3. The culling pass takes between 0.2 ms and 0.4 ms and
mostly affects the acceleration structure build time; the impact will be elaborated in
Section 4.5.

The radius reduction impacts the RTPM and both hash techniques differently.
The impact that a decreasing radius has on the render time for the three techniques
is depicted in Figure 6(a). The increase and decrease in time are mainly from the
Photon Collection pass. The times for the other passes remain almost constant with
a shrinking radius. For RTPM, the render times get better with a shrinking radius,
while the render time increases for both hash techniques. That is because the run-
time for the RTPM is dependent on the number of hit photons for one pixel. With a
lower radius, the number of hit photons per pixel is reduced, reducing the time for
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Figure 9. Both images were rendered with 2000 iterations. (a) Bistro Full scene with notice-
able noise on metallic objects. (b) Veach-Bidir scene with errors introduced by the thin wall
of the lamp. The bright halo on the left side is present in both collection versions. The noise
on the lamp is only present for Stochastic Evaluation. Face normal rejection fixes both the
halo and the noise.

the Photon Collection because the any-hit shader is called less. The hash grid will
increase in resolution for both hash techniques as the hash cells shrink. This leads to
more hash collisions and worse cache performance, as neighboring pixels now have
different hash cells. In turn, this means that a too-big radius hurts runtime for the
RTPM, though it positively impacts runtime for the hash techniques. We have chosen
our initial radius so that the RTPM does not need many iterations to reach optimal
performance, which corresponds to a good initial radius for image quality.

4.4. Quality

Figures 6(b) and 7 show that the image quality of RTPM is close to the reference
after a few seconds. Well-illuminated objects converge in seconds, whereas objects
only illuminated by indirect light take longer to converge as only a small number
of photons can be collected per iteration. The number of light sources also has a
significant impact on image convergence. Scenes with a smaller number of light
sources converge faster as most photons are concentrated in one spot.

Objects with rougher metallic materials take longer to converge, as seen in Fig-
ure 9(a). This emerges from the modified V-buffer because most rough metallic sur-
faces scatter the paths over a bigger lobe, which leads to noise. The resulting noise is
identical to path tracing noise and could be reduced with the use of a denoiser.

Thin geometry in combination with corners can lead to problems. Photons could
be collected from the other side of the corner through an object. This is depicted
in Figure 9(b). The bright photons from the inside of the lamp are collected on the
outside, resulting in a bright halo. A small halo stays even after over 100k iterations
due to the difference in luminosity. The problem can be fixed by using the additional
normal rejection. Depending on the scene, this can lead to a small performance gain
or loss.
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Scene
Without

Both
Photon
Culling

Speedup
Stoch.

Collect.
Speedup Both Speedup

Bistro
15.43 ms
[30.86 s]

14.21 ms
[28.41 s]

1.09
14.14 ms
[28.29 s]

1.09
12.86 ms
[25.72 s]

1.20

Veach-
Bidir

13.75 ms
[27.49 s]

13.18 ms
[26.36 s]

1.04
10.64 ms
[21.27 s]

1.29
10.14 ms
[20.28 s]

1.35

Living
Room

17.24 ms
[34.48 s]

15.01 ms
[30.02 s]

1.15
15.76 ms
[31.51 s]

1.09
13.51 ms
[27.01 s]

1.27

Caustic
Water

10.86 ms
[21.72 s]

11.14 ms
[22.28 s]

0.97
10.90 ms
[21.80 s]

1.00
11.16 ms
[22.32 s]

0.97

Caustic
Glass

5.81 ms
[11.61 s]

6.20 ms
[12.40 s]

0.94
6.04 ms
[12.07 s]

0.96
6.40 ms
[12.80 s]

0.90

Bistro
Full

26.96 ms
[53.91 s]

21.25 ms
[42.50 s]

1.27
26.12 ms
[52.23 s]

1.03
20.91 ms
[41.81 s]

1.29

Table 4. Runtime comparison of both optimizations for RTPM. Both are compared indi-
vidually and together against the runtime without both optimizations. Time is shown as the
average render time over 2000 iterations. The total render time is shown in brackets below.

4.5. Stochastic Evaluation and Photon Culling

Photon Culling is recommended for all scenes where large regions of the scene are
not visible from the perspective of the camera. The time savings in acceleration build
times make up for the extra cost of generating the culling hash for all bigger scenes.
This is also supported by Table 4, where the culling provides a 10% to 20% speedup
on bigger scenes. In smaller scenes like Caustic Water or Caustic Glass, Photon
Culling is slower than without as there is only a small number of photons that get
culled. The acceleration time benefit does in this case not outweigh the around 0.25–
0.4 ms culling hash build time (see Figure 8). The Veach-Bidir scene shows that
Photon Culling can also be faster for smaller scenes if enough photons are obscured.
For this scene, many photons are inside the two lamps and so are not visible to the
camera (see Figure 9(b) for the scene).

The performance of Photon Culling is also dependent on the size and resolution
of the hash grid. The resolution is dependent on the diameter of the photons. Similar
to the hash-based photon mappers, the performance will drop with smaller photon
radii. Because we use a low-bandwidth mask, the performance drop is minimal, even
for a bigger mask. The size of the hash grid influences the write performance and the
number of false positives. If the size is too big, the performance for marking the cells
will drop drastically, while acceleration structure build time decreases. If the size
is too small, marking the cells will be fast but instead will store many false-positive
photons due to the increasing number of collisions. In the end, this is a balancing
act. For our hardware, a hash grid size around 222 performed the best for all scenes.
However, the performance for hash grid sizes of 221 to 225 was similar and could
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be better depending on the scene or viewport resolution. A higher resolution of the
viewport means that more hash grid cells are marked, and therefore there are more
false-positive photons. The size of the hash grid can be increased accordingly to
counteract this.

The number of photons stored in the scene can also impact the performance of
Photon Culling. Generally, the more photons that can be rejected, the better Photon
Culling performs. So, lowering the percentage of rejected photons in the rejection step
or increasing the number of photons dispatched positively affects the performance
difference for Photon Culling. For example, we can take the Bistro scene with the
viewport from Figure 7 and compare the total render time for 3000 iterations with and
without the rejection step for Photon Culling enabled and disabled. For 70% rejected
global photons, we need 40.9 s without Photon Culling and 36.8 s with it (speedup of
1.11). Without the rejection step, we needed 68.14 s without and 51.0 s with Photon
Culling (speedup of 1.34). We observed the same for other scenes. Additionally, it
can be worthwhile to increase the size of the hash grid because the time gained for
culling more false-positive photons can make up for the additional mask write time.

Stochastic Evaluation works well if there is a high photon density with many pho-
tons overlapping. As Table 4 shows, it is faster or as fast as Full Evaluation with
one exception. It performs worst on the Caustic Water and Caustic Glass scenes. For
both scenes, a single analytic light is used. A smaller initial radius can be chosen
for scenes with analytic light, which leads to worse performance for Stochastic Eval-
uation. Render times with Full and Stochastic Evaluation for different radii can be
seen in Figure 10. Full Evaluation is faster at a radius of 0.024 or smaller for the
Bistro scene because fewer photons overlap (Figure 10(a)). That means that Stochas-
tic Evaluation performs worse if the photon list (in our test, the list size was 3) is not
filled for most pixels. With the radius reduction by Knaus and Zwicker [2011], the
radius is not reduced linearly as in Figure 10(a) but exponentially. Depending on the
initial radius, the point where Stochastic Evaluation is slower than Full Evaluation
is reached either very quickly or after a long time. In Figure 10(b) we compare the
performance of both photon evaluation techniques in the Bistro scene. For the Bistro
scene, the second case occurred. Full Evaluation is only faster after around 11,000
iterations, with both techniques having the same render time for the range between
8500 to 11,000. At that point, the collection strategy could be changed from Stochas-
tic Evaluation to Full Evaluation. For the scenes where Stochastic Evaluation does
not perform well (Caustic Water, Caustic Glass, and Bistro Full), we recommend a
swap at 100 to 500 iterations. At early iterations Stochastic Evaluation is very likely
better than Full Evaluation, as Figure 10(a) shows. The swap point needs to be ap-
proximated for scenes where Stochastic Evaluation is faster after 1000 iterations. A
swap point at around 10,000 iterations provided good results in our tests. Overall,
Stochastic Evaluation allows for a lower render time penalty when using higher radii.
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Figure 10. Comparison of Stochastic Evaluation and Full Evaluation in the Bistro scene.
(a) Render times for different global radii. Culling and caustic photon collection were dis-
abled. (b) Render times over iterations. The radius for the performance tests (Figures 7 and 8)
were used. Global radius starts at 0.07 and caustic radius at 0.012. The radius is reduced with
the formula by Knaus and Zwicker [2011] (Equation (2)). This leads to a fast reduction of the
radius at the start that quickly decreases.

This can lead to better results in the same render time for most scenes if used at the
correct point.

Figure 9(b) shows an error that introduces extra noise that can only happen for the
Stochastic Evaluation. This can happen on thin surfaces where photons hit both sides
of the surface. During collection, only photons from the other side of the surface may
be collected, which in turn are shaded black due to the BSDF. This is only really a
problem if there are more photons on the invisible side of the surface, as it is more
likely that they are collected instead of the photons from the correct side. Enabling
the photon rejection via the photon face normal fixes this problem completely. This
introduces a slight additional cost but lowers the noise in affected areas significantly.

5. Conclusions and Future Work

We presented an implementation for a progressive photon mapper that takes advan-
tage of the current ray tracing hardware. In addition, we introduced two smaller novel
techniques that improve ray tracing–based progressive photon mappers further. With
this, we demonstrated that ray tracing–based collection outperforms state-of-the-art
hash-based GPU photon mapping algorithms.

The basis of this ray tracing–based photon mapper could be used for further im-
provements. The number of photons stored and built per iteration could be lowered
further as acceleration structure building time can be very time-consuming for RTPM.
With Photon Culling, we presented a fast way to reduce the number of photons stored
per iteration, but we think that this can be reduced even further.
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We can also imagine that Photon Culling can be combined with other existing
techniques to gain performance boosts. Vertex connection and merging [Georgiev
et al. 2012] could be one of them because photon mapping is not needed for all pixels,
and a sizable number of photons could be culled. It could also be used for caustic-
only photon mapping techniques similar to Yang and Ouyang [2021] or other global
illumination algorithms similar to photon mapping that use spatial queries.

The generation time could also be lowered significantly as, currently, we distribute
photons from all light sources of the scene, which results in many photon paths that
do not contribute to the image. Photon guiding techniques similar to Grittmann et
al. [2018] could be used to reduce the number of unused photon paths to speed up
the photon distribution and raise the quality for each iteration as more photons would
land within the camera frustum. Additionally, this could work well in combination
with Photon Culling because the culling mask could be used as a feedback buffer.

The global photon map could also be evaluated via final gathering to produce
images better suited for denoising because this will produce a noise similar to path
tracing. The photon map noise is hard to denoise due to its blurry nature. An addi-
tional camera ray would be necessary to evaluate the global photon map at the second
diffuse surface hit as well as the evaluation of direct lighting at the first diffuse sur-
face hit.

As the rendering time for each iteration is within the real-time constraint of 16.6 ms,
it could be possible to use photon mapping for real-time global illumination with caus-
tics. Direct lighting could be calculated with other methods while the photon mapper
is used for caustics and indirect illumination only. Some kind of temporal filtering
would have to be used because one iteration is not enough to produce good results.

Index of Supplemental Materials

The full source code can be found at
https://github.com/SirKero/RTProgressivePhotonMapper.
A publication snapshot is available at
https://jcgt.org/published/0012/01/01/RTProgressivePhotonMapper.zip.
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GRITTMANN, P., PÉRARD-GAYOT, A., SLUSALLEK, P., AND KŘIVÁNEK, J. 2018. Effi-
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