
Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Performance Comparison of
Meshlet Generation Strategies

Mark Bo Jensen
Technical University of Denmark

Jeppe Revall Frisvad
Technical University of Denmark

J. Andreas Bærentzen
Technical University of Denmark

0.0950 ns/triangle 0.0917 ns/triangle

0.0899 ns/triangle 0.0915 ns/triangle

Figure 1. Different methods for organizing the triangles of the Stanford Bunny into meshlets.
Each colored patch is a meshlet. From top left to bottom right: NVIDIA [Kubisch 2018b]
with an optimized index buffer, k-medoids [Kaufman and Rousseeuw 1990], greedy (ours),
bounding sphere (ours), and Kapoulkine [2017]. We describe the details of the methods in
Section 3. Each image shows the render time in nanoseconds per triangle. The time is based
on a linear regression fitted to the render time of six meshes as a function of their triangle
count. Because k-medoids has too few data points, we omit its time.

1

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Abstract

Mesh shaders were recently introduced for faster rendering of triangle meshes. Instead of
pushing each individual triangle through the rasterization pipeline, we can create triangle
clusters called meshlets and perform per-cluster culling operations. This is a great opportunity
to efficiently render very large meshes. However, the performance of mesh shaders depends on
how we create the meshlets. We tested rendering performance, on NVIDIA hardware, after
the use of different methods for organizing triangle meshes into meshlets. To measure the
performance of a method, we rendered meshes of different complexity from many randomly
selected views and measured the render time per triangle. Based on our findings, we suggest
guidelines for creation of meshlets. Using our guidelines we propose two simple methods for
generating meshlets that result in good rendering performance, when combined with hardware
manufactures best practices. Our objective is to make it easier for the graphics practitioner to
organize a triangle mesh into high-performance meshlets. To support this we have uploaded
our code to https://github.com/Senbyo/meshletmaker.

1. Introduction

Rasterization is fast and highly parallelized on the graphics processing unit (GPU). In
extended reality (xR) applications, where too low a frame rate breaks the immersion
and potentially causes motion sickness [Rebenitsch and Owen 2016], rasterization
is the method of choice. Rasterization is however triangle bound, which means that
every triangle must be processed for every frame. This can be prohibitively expensive
if we want to visualize massive triangle meshes in xR applications. Equally, it is
especially in xR applications that we need massive triangle meshes, because the user
is free to closely inspect the geometry from arbitrary points of view.

To facilitate a higher triangle throughput, which helps uphold high frame rates
even for massive meshes, the rasterization pipeline was recently modified to enable
clustering of triangles into meshlets [Kubisch 2018a; Kubisch 2020]. Meshlets im-
prove performance by enabling us to process and cull geometry at a coarser level of
granularity than triangles [Jensen et al. 2021]. This relaxes the triangle boundedness,
because the pipeline no longer needs to process all the triangles that are submitted to
it. This modified pipeline is called the mesh shading pipeline.

Mesh shading is now directly exposed in Vulkan, DirectX 12, and OpenGL [Ku-
bisch 2018a]. This gives rise to the question of how to best create the meshlets, i.e.,
the triangle clusters. Some developers, notably Kapoulkine [2017] and NVIDIA [Ku-
bisch 2018b], have released code for organizing triangle meshes into meshlets, but
the question of how to form meshlets that deliver good rendering performance has
received limited attention. In this paper, we evaluate the rendering performance when
using different approaches for organizing triangle meshes into meshlets. Our tests
include six different meshes consisting of 70 thousand to 39 million triangles. We

2

http://jcgt.org
https://github.com/Senbyo/meshletmaker


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

evaluated performance by rendering the meshes from many randomly selected views
while measuring render time. The tests were carried out on NVIDIA hardware, using
NVIDIA’s best practices for meshlet sizes. These may differ between hardware man-
ufactures, which is important to keep in mind when generalizing our results to other
GPUs. To our surprise, we found that meshlet collections produce lower render times
when using local and greedy algorithms.

We also conducted a small explorative study into different meshlet descriptors in
order to investigate how they affect render times. A meshlet descriptor is a small
structure that keeps track of the meta data surrounding a meshlet. Apart from describ-
ing different algorithms for forming meshlet collections and reporting their rendering
times, our main contribution is to identify the most important metrics to consider
when assessing the quality of a meshlet collection.

1.1. Related Work

The GPU was originally introduced as special purpose hardware for triangle rasteri-
zation. Over the past few decades, GPUs have evolved into highly efficient and very
general architectures for parallel computation [Haines 2006; Dally et al. 2021]. The
GPU is connected to the rest of the computer via a PCI-express bus, which is used
for transferring data from main memory. The bandwidth of this bus can become a
bottleneck [Hoppe 1999] when working with large datasets, such as very big triangle
meshes. To mitigate this issue, one can use mesh representations that minimize the
data footprint such as triangle strips. A triangle strip is a sequence of triangles in
which adjacent triangles share an edge. Each triangle is represented by three points in
space, called vertices. As the GPU processes each vertex, it is kept in memory as long
as it is being used. This is exploited by the triangle strip since adjacent triangles share
two out of three vertices, meaning that rasterizing the next triangle in the strip only
requires processing one more vertex. Each vertex is generally used by more that two
triangles, which means that the vertices will have to be present at different places in
the triangle strip. Instead, an index buffer can be used to represent the triangle strip.
This is then filled with indices that can be used to offset into a vertex buffer, avoiding
vertex duplication.

To organize a mesh into triangle strips, we need a path through the mesh where
each triangle is only visited once. This is equivalent to finding a Hamiltonian circle
in the dual graph of the mesh, which is an NP-complete problem [Dillencourt 1996].
As a result, greedy approaches for creating triangle strips have been explored instead.
Arkin et al. [1996] generated triangle strips by greedily adding triangles with fewest
adjacent triangles to the strip. This approach avoids leaving behind isolated triangles
(triangle islands). The algorithm is made for a graphics API that predates OpenGL,
called Iris GL. Iris GL has a command that makes it possible to change the vertex
order of the last processed triangle, which makes it possible to change the direction

3

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

of a triangle strip. Since OpenGL does not have this command, degenerate triangles
are added to the triangle strip in order to stitch strips together, at the cost of one extra
vertex. Evans et al. [1996] sought to minimize this use of degenerate triangles by
generating triangle strips based on a global heuristic that looks for large patches that
can easily be converted into large strips.

The generalized triangle mesh introduced by Deering [1995] relies on a special-
purpose hardware-accelerated cache called the mesh buffer. This buffer stores vertices
through explicit commands. Using a mesh buffer makes it possible to exploit that
vertices are on average connected to six triangles, which is hard to fully utilize with
triangle strips [Deering and Nelson 1993]. Chow [1997] introduced an algorithm for
converting meshes into generalized triangle meshes.

Hoppe [1999] relied on the post transform and lighting cache (post-T&L cache).
The post-T&L cache is part of the vertex shading pipeline. The vertex shading
pipeline is the traditional rasterization pipeline that is used to process geometric data
and turn it into rasterized images. The post-T&L cache holds the most recently pro-
cessed vertices that have not yet been converted into primitives. Using this, Hoppe
optimized triangle strips by reusing the vertices in the cache as much as possible. Sev-
eral others have built on this principle to further improve rendering performance [Lin
and Yu 2006; Forsyth 2006; Sander et al. 2007]. In 2006, with the introduction of
the unified shader model [Lindholm et al. 2008], the GPU became massively parallel,
allowing for all shader stages to be run on all the generic processors on the GPU. This
led Kerbl et al. [2018] to question whether the post-T&L cache is still a part of the
GPU architecture. Based on empirical evidence obtained through vertex shader in-
vocations, they showed that modern GPUs turn the index buffer into smaller batches
and process these in parallel.

A new rasterization pipeline called the mesh shading pipeline was introduced with
NVIDIA’s Turing architecture [Kubisch 2018a]. This pipeline lets the GPU process
the mesh in small clusters of triangles, aptly named meshlets, instead of individual tri-
angles. The pipeline no longer has the fixed function batching that Kerbl et al. [2018]
found in the vertex shading pipeline. Instead, this is done by the programmer, provid-
ing the opportunity to make more-informed decisions on how the mesh is batched into
meshlets. Since each meshlet is processed in parallel, there is no longer a post-T&L
cache to hold processed vertices; instead each processor has a cache of shared mem-
ory that all the threads on that processor can access. Since the batching is done before
rendering, it does not need to take place again every time a new frame is rendered, re-
moving some overhead. The pipeline expects a local index buffer for each meshlet as
an output from the mesh shader stage, so this can either be precomputed or generated
in the mesh shader. An optional task shader stage can run before the mesh shader to
control culling, tessellation, and other things before it dispatches meshlets. The frag-
ment shader stage is unchanged. Kubisch [2018a] provided an excellent overview of

4

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

the hardware limits, built-in variables, and recommendations for the mesh shading
pipeline.

The mesh shading pipeline is an evolution of the vertex shading pipeline. The
implicit triangle batching in the vertex shading pipeline is made explicit. Instead of
the global post-T&L cache, each streaming multiprocessor can utilize shared memory
for vertex reuse. This means that both pipelines benefit from mesh optimizations that
increase spatial locality of triangles, and this could arguably be why the mesh shad-
ing pipeline has received surprisingly little academic attention. Instead, academic
attentions has focused on real-time ray tracing and methods based on machine learn-
ing. These have become hardware accelerated, leading to a more diverse set of viable
methods for efficient, high-quality graphics.

Wihlidal [2016] showed how the graphics pipeline can benefit from the cluster-
ing of triangles and compute-based culling of these clusters. Jensen et al. [2021]
showed that the mesh shading pipeline has great potential for visualizing large geo-
metric datasets, and Unterguggenberger et al. [2021] showed how the mesh shading
pipeline can be used for dynamic meshes. Mesh shaders work well for rendering
large terrain [Santerre et al. 2020] and can be used for continuous level of detail [En-
glert 2020]. In the gaming industry the mesh shading pipeline has been adopted and
is now part of Unreal 5’s virtualized geometry pipeline called Nanite [Karis et al.
2021]. It is also possible to find GitHub repositories with mesh processing tools for
the mesh shading pipeline [Walbourn 2014; Kapoulkine 2017; Lempiainen 2020].
Neff et al. [2022] investigated texture atlases to reduce meshlet overdraw. In this pa-
per, we explore different clustering strategies for meshlet generation and distill two
key principles that lead to better real-time rendering performance when generating
meshlets.

2. Meshlets Descriptors

The buffer setup that we use with the mesh shading pipeline has three buffers; see
Figure 2. A local index buffer is divided into one section for each meshlet, and the
local indices start from 0 in each section. The indices are all 8-bit because they refer
to the local indices within a single meshlet. The hardware limit for vertices in a
single meshlet is 256, so 8 bits suffice. The global index buffer is also divided into
sections, one for each meshlet. This buffer differs from the traditional index buffer
in the sense that index duplication is reduced. If one meshlet uses a vertex several
times, the local index that points to the same global index is duplicated instead. The
last buffer is simply the vertex buffer, which is the same as the one used for the vertex
shading pipeline. With these buffers, all we need is a small descriptor for each meshlet
providing information about it for the multiprocessor. NVIDIA suggests keeping the
size of the meshlet descriptors to 128 bits, which, on their hardware, is equivalent

5

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Submitted to the Journal of Computer Graphics Techniques December 6, 2023

1

Figure 2. The three buffers used by the GPU when processing meshlets: local index buffer,
global index buffer, and vertex buffer. The meshlet descriptor has offsets into these buffers.
Note that global indices (re)appear in all meshlets in which they are used.

to the minimum amount of data that is fetched on a GPU-side load instruction. The
meshlet descriptor is a small structure that keeps track of the meta data surrounding
a meshlet. It needs to at least hold offsets into the global and local index buffers, as
well as the number of primitives and vertices used in the meshlet. Other than this, the
descriptor can also store a bounding box, an average normal for the meshlet, or any
other information that the programmer wants to have associated with a meshlet.

The layouts of four different descriptors are in Tables 1 and 2. All descriptors use
at most 128 bits. All descriptors pack a bounding box into 48 bits, namely 8 bits for
the minimum and maximum coordinate on the x-, y- and z-axes. The bounding box
coordinates are relative to the extent of the mesh bounding box. They all use 8 bits
for describing the number of primitives and vertices in the meshlet. The normal cone
is represented by a normal and an angle packed into 24 bits. The normal and cone
angles are mapped into octants based on Cigolle et al. [2014]. All data in a descriptor
is packed into four 32-bit unsigned integers. The NVIDIA descriptor A packs the
8-bit cone angle partially into two 32-bit unsigned integers: the four upper bits in
one and the four lower bits in the other. The remaining three descriptors pack the
8-bit cone angle together, which saves some unpacking within the mesh shader. The
biggest point of divergence between the four descriptors lies in how they store the
offsets required for the global and local index buffers.

The NVIDIA descriptor A has 20 bits left for indexing into both the local and the
global index buffer. This means that meshes that require an offset that is larger than
220 will need to be broken into several draw calls.

The NVIDIA descriptor B takes these same 40 bits and uses 32 of them for off-
setting, which allows for much larger meshes. The downside of this is that the offsets

6

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

NVIDIA Descriptor A
Bits

Bounding box 48
No. vertices 8
No. primitives 8
Global idx offset 20
Local idx offset 20
Normal cone 24

NVIDIA Descriptor B
Bits

Bounding box 48
No. vertices 8
No. primitives 8
vertexPack 8
Index buffer offset 32
Normal cone 24

Table 1. The memory layout of two meshlet descriptors proposed by NVIDIA [Kubisch
2018b]. Meshlet descriptors are 128-bit data structures that are used in task and mesh shaders.

Task Shader Meshlet Descriptor
Bits

Bounding box 48
Normal cone 24

Mesh Shader Meshlet Descriptor
Bits

No. vertices 8
No. primitives 8
Global idx offset 32
Local idx offset 32

Table 2. A descriptor for the task shader stage (left) and another descriptor for the mesh
shader stage (right). Use of different descriptors for task and mesh shaders is an alternative to
using the same descriptor for both shaders.

into the global and local index buffers need to be aligned, as the same offset is used
in both buffers. The remaining 8 bits are used to describe how the global indices
are packed, i.e., if they are 16-bit or 32-bit numbers. This effectively means that the
global indices can be packed into 16 bits for meshlets that only use global indices
smaller than 216.

The third descriptor separates the task and meshlet descriptors, meaning that it
uses 256 bits for each meshlet instead of 128. But it only loads 128 bits per shader
stage. By doing that, we can get rid of the task shader–related data in the mesh shader
descriptor and vice versa. That way we can allow 32 bits for both the global and local
index buffer offsets. So here we require no alignment between the buffers. We refer
to this as the split descriptor.

Figure 3 shows an alternative buffer setup for a monolithic meshlet descriptor.
The monolithic descriptor is also divided into two descriptors, to allow for 2×32 bits
offsetting. One offsets into the local index buffer, and instead of using a global index
buffer, the second offsets directly into the vertex buffer, which is divided into sections
for each meshlet. On the one hand, the trade-off here is memory, since some vertices
will be duplicated and appear in several sections. On the other hand, no global index
buffer is needed. The duplication is required for all vertices that live on the border of a
meshlet. So, the four different descriptors all come with different memory footprints

7

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Submitted to the Journal of Computer Graphics Techniques December 6, 2023

1

Figure 3. A monolithic version of the buffer setup used by the GPU when processing mesh-
lets, using only two buffers: local index buffer and vertex buffer. The monolithic meshlet
descriptor has offsets into these. Note that vertices (re)appear in all meshlets in which they
are used.

as well as some variations in how much GPU-side unpacking they require.
Each meshlet can only contain a certain number of vertices and primitives. These

numbers dependent on the GPU hardware. In the case of NVIDIA’s 2000 RTX series,
the hardware limits are 256 vertices and 256 primitives. Lower values can be set as
well. NVIDIA suggests using either 32 or 64 vertices and 40, 84, or 126 primitives
for each meshlet. In this paper, we use 64 vertices and 126 primitives throughout,
which is the same as NVIDIA used in their meshlet sample [Kubisch 2018b].

We used NVIDIA descriptor B when comparing the rendering performance of
different meshlet generation methods because it allows us to process large meshes
with one draw call. For our descriptor comparison, we compared all four descriptors
while using the meshlet clustering method with best performance.

3. Meshlet Clustering Methods

The following paragraphs describe the different methods for organizing a mesh into
meshlet collections (clusters) that we compare. Figure 1 exemplifies the differences
between the meshlets generated by the different methods.

NVIDIA On behalf of NVIDIA, Kubisch [2018b] provided an example of organizing
a mesh into meshlets. The meshlets are created one at the time by going through the
index buffer. New primitives and vertices are added to the current meshlets as long
as there is room for more. When it is full, a new meshlet is created. This process
is repeated until the algorithm has gone through the entire index buffer. Every time
a primitive is added to a meshlet, it generates local 8-bit indices for the vertices, or
reuses existing local indices if the vertices are already in the meshlet. It de-duplicates
the global vertex indices, meaning that the global index of a vertex is only stored once,

8

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Figure 4. A visualization of the NVIDIA-generated meshlets without optimizing the index
buffer (left) and after optimizing the index buffer using the tipsify algorithm (right).

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA 0.13 0.23 0.83 1.35 3.88 3.81
NVIDIA+tipsify 0.12 0.22 0.72 1.20 3.62 3.33

Table 3. Average render times in milliseconds.

in each meshlet that uses the vertex, instead of being stored once for each triangle of
which it is a part. Instead, the local indices are stored for each triangle. Because the
local index buffer is 8-bit and the global index buffer is 16- or 32-bit, this saves space.
The approach has a dependency on the original connectivity of the index buffer, and
the resulting number of meshlets, as well as the vertex reuse within the meshlets, is
highly dependant on the structure of the index buffer. Figure 4 compares the resulting
meshlets for the Stanford Bunny when using an unoptimized index buffer versus an
index buffer that is optimized. We implemented the tipsify algorithm from Sander et
al. [2007] to optimize the locality in the index buffer. Table 3 shows the difference
in render time for the different meshes with and without optimization of the index
buffer before running NVIDIA’s meshlet clustering algorithm. The algorithm requires
tuning of the cache size as different cache sizes result in different index buffers, which
in turn affect the size of the meshlet collections. We explored different cache sizes
and achieved the best result using 25 for Bunny, 26 for Happy, 24 for Dragon and
Skull, and 20 for Nobby and Wing. Throughout the rest of the paper, we will be using
the NVIDIA algorithm with a tipsified index buffer and refer to it as NVIDIA+tipsify.

Kapoulkine Arseny Kapoulkine [2017] maintains a widely used and popular library
called meshOptimizer. The library has several functions that improve, pack, and op-

9

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

timize meshes for better render performance, and it includes a meshlet generation
strategy. First, the library creates a data structure based on triangle and vertex ad-
jacency. A centroid and a normal are then calculated for each triangle, and the area
of the mesh is also calculated. The area is used to create an expected meshlet area,
assuming square flat patches. In addition, a kd tree is created from the triangle struc-
ture. All this is used to create the meshlets. The kd tree is used to pick the starting
triangle for a meshlet, and the adjacency structure is then used to look up the nearest
triangles. Each triangle gets two ratings: one based on vertex reuse and another based
on how much it increases the area of the meshlet. Regarding triangle reuse, triangles
that already have vertices in the meshlet get a higher rating. Triangles islands also
get higher importance. Should it happen that there is room for more triangles in the
meshlet but none available on the border, the algorithm uses the kd tree to look up
the nearest available triangle. The meshlet generation algorithm allows one to set a
weight for the triangle normals, which will make it weigh these more when picking
the next triangle for the current meshlet. We set it to 0.0, 0.5, and 1.0, and we found
that 0.0 produced the best results for the large meshes while the difference between
the weights only had a very small impact on the small meshes. Because of this, we
report our results with the weight set to 0.0.

Greedy We have developed a greedy algorithm that uses a list of vertices, where
each vertex contains information about which triangles it is part of. The algorithm
takes the first vertex and then, from that, grows out the triangle cluster until a meshlet
is full. If a meshlet hits the vertex maximum before the primitive maximum, we look
at the border of the meshlet for triangles that already have all vertices in the meshlet,
and add these. A new meshlet is then started from a vertex on the border of the
meshlet that was just completed, and the process is repeated. If a meshlet runs out of
available triangles on its border, we go back to the list and pick the next available one.
Because of this, the algorithm is sensitive to the order of the vertex list. We therefore
use a heuristic to sort the list before running the algorithm. We find that half the time
sorting according to the biggest bounding box axis length gives the best result. In
particular, this is the case for the three biggest meshes. We also developed a version
using a triangle list instead of a vertex list, but found that the vertex-based algorithm
always outperformed the triangle-based one. This is most likely because the meshlet
border for vertices is based on all the triangles that the vertices in the meshlet touch,
while the border in the triangle version is based on all triangles that share an edge
with triangles that are already in the meshlet. This effectively means that the border
is “larger” for the vertex version, which results in fewer meshlets overall. Moving
forward we only report on the vertex-based algorithms and use the heuristic of sorting
the vertex list based on the longest bounding box axis of the mesh, from low to high.
The pseudo-code for our greedy algorithm is in Listing 1.

10

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Listing 1: Greedy algorithm.
input : Sorted VertexList, vertex, and triangle data structure
output : Meshlet collection
for vertex in vertexList do

if vertex is used then continue
queue.push(vertex)
while queue is not empty do

curVertex← queue.front()
queue.pop()
for triangle in curVertex.triangles do

if triangle is used then continue
for vert in triangle do

if vert is not used then queue.push(vert)
if Meshlet is full then

if Meshlet.triangles < 124 then
for triangle in Meshlet.border do

if triangle.vertices in Meshlet then Meshlet.add(triangle)
queue← {curVertex}
Meshlet← new Meshlet
break

Meshlet.add(triangle)

Bounding sphere Our more advanced strategy is similar to the greedy one, except
here we grow a bounding sphere around the starting vertex and use an algorithm
by Bærentzen and Rotenberg [2021] to add triangles that minimize the radius of this
bounding sphere. In addition to striving for a minimal bounding sphere radius, we also
(inspired by Kapoulkine) prioritize triangles with vertices already in the meshlet and
triangle islands. The pseudo-code for our bounding sphere algorithm is in Listing 2.
The vertexScore and newRadius variables decide which triangle on the meshlet border
to add next. The vertexScore for a triangle increases for each vertex that is already in
the meshlet and if it is considered a triangle island. The newRadius of the bounding
sphere is calculated for each triangle, and the triangle with the smallest increase is
picked given that its vertexScore is not less than another triangle. If the triangle only
has one vertex in the meshlet, it is not even considered.

k-medoids One way to create clusters of triangles is by turning a mesh into smaller
partitions using k-medoids [Kaufman and Rousseeuw 1990]. Though this is an al-
gorithm normally used for unsupervised learning, to investigate if and how many
clusters a dataset might have, we use it to obtain balanced clusters. We chose the k-
medoids approach because it works along the mesh surface, whereas the more com-
monly known k-means clustering would use a centroid, the cluster mean, to represent
a cluster. A centroid detached from the surface, one the one hand, easily results in
clusters with triangles that are not connected. A medoid, on the other hand, is an ac-
tual data point within the cluster that is most suited to represent that cluster. These can

11

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Listing 2: Bounding sphere algorithm.
input : Sorted vertexList, vertex, and triangle data structure
output : Meshlet collection
radius← 0

center← vec3(0)
for i← 0 to vertexList.size do

vertex = vertexList[i]
if vertex is used then continue
bestTriangle← null
newVertex← −1
newRadius← FLT MAX
BestNewRadius← FLT MAX - 1
vertexScore← 0

bestVertexScore← 0

for triangle in Meshlet.border do
if triangle is used then continue
for vert in triangle do

if vert is in Meshlet then vertexScore += 1
else newVertex← vert.index

if vertexScore equals 3 then newRadius← radius
else if vertexScore equals 1 then continue
else newRadius← 0.5 · (radius + ∥center− vertexList[newVertex]∥)
trianglesInMeshlet← 0

for tri in triangle.neighbours do
if tri is in Meshlet then trianglesInMeshlet += 1

if triangle.neighbours.size equals trianglesInMeshlet then vertexScore += 1
if vertexScore ≥ bestVertexScore or newRadius ≤ bestNewRadius then

bestVertexScore← vertexScore
bestNewRadius← newRadius
bestTriangle← triangle

if bestTriangle == null then
for triangle in vertex.neighbours do

if triangle is used then continue
bestTriangle← triangle
center← sum(bestTriangle.vertices)/3
bestNewRadius← max(∥center− bestTriangle.vertices[0]∥,max(∥center−

bestTriangle.vertices[1]∥, ∥center− bestTriangle.vertices[2]∥))
if bestTriangle equals null then

i += 1
continue

radius← bestNewRadius
center← vertexList[newVertex] + (radius/(ϵ+ ∥center− vertexList[newVertex]∥)) ·
(center− vertexList[newVertex])

if Meshlet is full then
if Meshlet.triangles < 124 then

for triangle in Meshlet.border do
if triangle.vertices are in Meshlet then Meshlet.add(triangle)

continue
Meshlet.add(triangle)

12

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

be found by minimizing the dissimilarity within a partition. The k-medoids method
partitions the mesh into k clusters and finds the medoid for each of these clusters.
The medoid is the triangle with the shortest distance to all other triangles in the clus-
ter. The algorithm runs in two steps after creating an initial clustering of the mesh.
First, the medoids of all clusters are found. All triangles are then compared to these
medoids and assigned to the cluster with the most similar medoid. These two steps
are repeated until convergence [Kaufman and Rousseeuw 1990]. The dissimilarity
can be expressed through a distance metric between triangles. We run the algorithm
on a triangle data structure, where the distance between two triangles is equal to the
number of adjacent triangles we have to walk through to get from one to the other.
The convergence criterion is to have an average distance close to zero between the
new and old cluster centers, meaning that cluster centers moved very little in the last
iteration. We start the algorithm with a number of clusters found by dividing the total
number of triangles by the maximum number of triangles in a meshlet. After conver-
gence we check if the clusters fit into meshlets. If not, then we add one new cluster
and repeat. By only adding one new cluster we minimize the total number of clusters
at the cost of longer processing times.

The five methods just mentioned vary quite a bit in implementation complexity.
NVIDIA’s algorithm is arguably the simplest to implement because it just directly
works on the index buffer. After this comes the greedy algorithm that uses a trian-
gle and vertex adjacency structure in a sorted list instead of the index buffer, with
the bounding sphere version adding a little complexity in terms of a triangle scoring
function. Then we have Kapoulkine’s method, which requires both a triangle and
vertex adjacency structure, a kd tree, and two scoring functions. Lastly, we have the
k-medoids algorithm, which requires not only a triangle adjacency structure but also
two iterative steps based on the breadth first algorithm and which, to even be appli-
cable, needs to be optimized and parallelized. The five methods also have different
processing times. The processing times for all the different methods across the dif-
ferent meshes can be seen in Table 4. The processing times are presented without the
time it takes to load the obj file. As is evident from the table, the processing times
of the k-medoids algorithm increase dramatically due to its runtime complexity being
O(n2 + k2) for n triangles and k clusters. Because of this, we decided to not use it
on the largest meshes. The processing times for the NVIDIA algorithm include the
preprocessing of the index buffer by the tipsify algorithm.

4. Experimental Setup

We compared the five different algorithms to see which one performs best, and why.
Our hope is that this comparison allows us to distil more general principles for meshlet

13

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA+tipsify 13.54 222.56 1372.17 2933.59 5283.1 7458.69
Kapoulkine 46.861 297.767 5000.53 10679.4 16926.2 28805.1
Greedy 133.603 2181.37 14503.9 33335.7 66351.3 93513
Bounding sphere 255.081 3842.83 25211.2 55720.4 100415 154677
k-medoids 50769.2 1.245e7 4.553e8 N/A N/A N/A

Table 4. Processing times in milliseconds.

Bunny Happy Dragon Skull Nobby Wing

V: 34 817 V: 543 652 V: 3 609 600 V: 7 252 445 V: 16 960 045 V: 19 473 581
T: 69 630 T: 1 087 716 T: 7 219 045 T: 14 504 882 T: 32 905 214 T: 38 629 758

Figure 5. The six meshes used in our experiment and their numbers of vertices (V) and
triangles (T).

generation that transcend the specific hardware and numbers used. To make sure that
no bias is introduced into the experimental process, we set up a Vulkan visualization
engine, using Vulkan 1.2.176.1 with four MSAA samples per pixel, that visualizes all
the objects from a new random point in space each frame. Our efforts to randomize the
view point are to average out the effect of overdraw. By setting the random seed, we
made sure that all algorithms were tested with the same sequence of view points; we
did this for a total of 100,000 frames and recorded different statistics for each method.
The frames were rendered at a resolution of 1280×720 pixels. Because the first frame
includes data transfer to the GPU, it was discarded. The analysis was carried out
on the subsequent 99,999 frames. All experiments were run on a desktop computer
with an Intel Core i9-9900k, 64GB of DDR4-2666 RAM, and one NVIDIA GeForce
RTX 2080 Ti Turbo OC with 11GB of GDDR6 RAM. The shader code used to pro-
cess the meshlet is based on the NVIDIA GitHub repository showcasing the use of
mesh shaders in Vulkan (https://github.com/nvprosamples/gl vk meshlet cadscene).
For our experiments, we turned off triangle culling in the mesh shader and only did
frustum and backface culling in the task shader. We report our results in average
render time per frame in milliseconds, while also exploring other metrics surround-
ing the meshlets that impact the render times. We used six different models for our
tests in this paper. The vertex and triangle counts of each model are listed in Fig-
ure 5. The Stanford Bunny, Happy Buddha, and Asian Dragon are from the Stanford
3D Scanning Repository (https://graphics.stanford.edu/data/3Dscanrep/). The Seal
Skull was 3D scanned into a point cloud and digitally reconstructed as a triangle
mesh (https://www.morphosource.org/projects/000355763). The topology-optimized
airplane wing [Aage et al. 2017; Aage et al. 2020] is the largest model in our com-

14

http://jcgt.org
https://github.com/nvpro-samples/gl_vk_meshlet_cadscene
https://graphics.stanford.edu/data/3Dscanrep/
https://www.morphosource.org/projects/000355763


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Submitted to the Journal of Computer Graphics Techniques December 6, 2023

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
No. Triangles 1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
ve

ra
ge

R
en

de
rT

im
e

in
m

s

NVIDIA+Tipsify
Kapoulkine
Greedy
Bounding Sphere
k-medoids

Without Culling
With Culling

1Figure 6. Average render time as a result of triangles based on the six meshes. Render times
with meshlet culling are presented with a dashed line, and render times without culling are
presented with an solid line.

parisons. The last mesh was created with PrusaSlicer (https://www.prusa3d.com/) us-
ing a model called Nobby (https://www.prusaprinters.org/prints/35338-nobby-octo-
pus-sculpt). We used the same experimental setup when testing the different meshlet
descriptors, using the best-performing meshlet generation algorithm.

5. Results

We are interested in finding a good clustering algorithm for meshlet generation. To
investigate this, we plot the render times of the different algorithms as a function of
triangle count in Figure 6. We see a fairly linear trend. The solid lines show render
times without meshlet culling, while the dashed lines include meshlet culling. Fig-

15

http://jcgt.org
https://www.prusa3d.com/
https://www.prusaprinters.org/prints/35338-nobby-octopus-sculpt
https://www.prusaprinters.org/prints/35338-nobby-octopus-sculpt


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Submitted to the Journal of Computer Graphics Techniques December 6, 2023

Bunny Happy Dragon Skull Nobby Wing
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

Pe
rc

en
to

fM
es

hl
et

s
C

ul
le

d
E

ac
h

Fr
am

e

NVIDIA+Tipsify
Kapoulkine
Greedy
Bounding Sphere
k-medoids

Frustum Culling
Backface Culling

1

Figure 7. The average percent of meshlets that are culled for each frame when using the
five different clustering algorithms. The culled meshlets are divided into two, the backface-
culled meshlets are represented by the fully opaque bars, while the frustum-culled meshlets
are represented by the semitransparent bars.

ure 7 shows what percentage of the meshlets were culled on average, each frame.
The vertical axis shows the percentage of meshlets culled, and the opaque bars rep-
resent the number of meshlets that were backface-culled, while the semitransparent
bars show the frustum-culled meshlets. The two bars are stacked on top of each other.
From this plot, we see that for Nobby and Happy we had no backface culling at all.
This is because the meshlets generated for these two meshes did not have well-defined
average normals, and without a well-defined average normal, the meshlets cannot be
backface-culled. For the Happy Buddha model, the reason is the roughness of the
mesh surface—see Figure 8 (right)—and for Nobby, the reason is the tube structure
used to mimic how a 3D print of the model would look—see Figure 8 (left).

The actual render times are listed in Table 5. Here, it is evident that the three
smallest meshes exhibit no real difference in performance between the best-performing
algorithms, but for the larger models, we see a clear difference in performance. Given
the linear trend, we also fit a regression line to each algorithm and report the result-
ing slope in Table 6. The slopes are reported in nanoseconds per triangle, with and
without culling, and we consider these slopes an overall measure of the performance
of the different methods. The k-medoids method is omitted in this table due to too
few data points. The smaller the slope, the less an algorithm grows in render time

16

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Figure 8. Visualizations of the long cylindrical meshlets of Nobby (left) and the normals of
Happy Buddha illustrating its surface roughness (right).

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA+tipsify 0.12 0.22 0.72 1.20 3.62 3.33
Kapoulkine 0.12 0.21 0.73 1.27 3.43 3.39
Greedy 0.12 0.20 0.73 1.22 3.57 3.29
Bounding sphere 0.12 0.20 0.72 1.18 3.50 3.23
k-medoids 0.13 0.26 0.76 N/A N/A N/A

Table 5. Render times.

as more triangles are rendered. The bounding sphere algorithm achieves the smallest
slope, meaning that when applied to our six meshes, it increased the least in render
time as the number of triangles grew. Since the difference between the algorithms is
evident both with and without culling of meshlets, it means that the clustering within
the meshlets themselves also contributes to the difference in render times. The slope
from the linear fit is only based on six meshes. These six meshes however are all
quite different, and as such do a good job of covering the input space of different
models. This results in a fairly decent fit, especially when looking at the trend for the
algorithms without culling, but it should also be noted that with six meshes it is hard
to extrapolate to new meshes that might not follow the trends presented here. When
we compare the render times to the implementation complexity of the algorithm, we
have that NVIDIA’s algorithm is the simplest to implement, but this comes with a
performance hit. Alternatively we have Kapoulkine’s algorithm that achieved good
render times but is rather complicated to implement. Right in the middle we have the
greedy algorithm. This has the second smallest slope while also being quite simple to
implement.

Each meshlet has a maximum number of vertices and a maximum number of
primitives that it can contain. We found that all methods (except k-medoids) have a
very high average vertex count. For each meshlet collection, we found the average
vertex fill (ratio of vertices in a meshlet to the maximum number it can hold). All other
collections have an average above 0.99 (except for k-medoids with Bunny: 0.812,

17

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Method Without Culling With Culling

NVIDIA+tipsify 0.0967 0.0930

Kapoulkine 0.0953 0.0915

Greedy 0.0929 0.0917

Bounding sphere 0.0974 0.0899

Table 6. The slope of a linear regression fitted to the six mesh render times based on the
four different algorithms with and without culling. The slope shows how much an algorithm
increases in render time as more triangles are rendered. The time is given in nanoseconds.

Submitted to the Journal of Computer Graphics Techniques December 6, 2023

20 40 60
0

20

40

60

80

100

Pe
rc

en
t

NVIDIA+Tipsify

20 40 60

Kapoulkine

20 40 60

Bounding Sphere

20 40 60

k-medoids

50 100
0

5

10

15

20

Pe
rc

en
t

50 100 50 100 50 100

No. Vertices in a Meshlet

No. Primitives in a Meshlet

1

Figure 9. The distribution of the number of vertices and the number of triangles in each
meshlet across four meshlet generation algorithms. The top row shows the vertices and bottom
row is triangles. The meshlet collections are based on the Stanford Bunny mesh.

Happy: 0.770, and Dragon: 0.811). With all algorithms achieving close to vertex-
complete meshlets, i.e., meshlets that are filled with vertices to the limit, the vertex
completeness does not help us explain the differences in render times.

To see why k-medoids generates meshlet collections with a lower average vertex
completeness, we compare its distributions to the other algorithms in Figure 9. Since
the nature of the k-medoids algorithm is to balance out the clusters, we get a distribu-
tion of the number of vertices with two fat tails. This means that we will always be
below capacity, and when we compare it to NVIDIA’s, and especially Kapoulkine’s,
method, we see high peaks and only a tail to one side. Kapoulkine’s algorithm per-
forms better than both NVIDIA’s and the k-medoids, and produces quite few meshlets
when compared to the other two. The numbers of meshlets produced by the different
methods for the different meshes are listed in Table 7. Since the k-medoids algorithm

18

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA+tipsify 762 12 419 77 998 163 565 287 171 429 192
Kapoulkine 740 11 257 76 127 152 261 288 230 438 582
Greedy 756 12 231 77 538 160 436 286 956 424 325
Bounding sphere 731 11 605 75 457 152 501 286 767 408 302
k-medoids 921 15 210 96 111 N/A N/A N/A

Table 7. Number of meshlets.

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA+tipsify 0.725 0.695 0.735 0.704 0.909 0.714
Kapoulkine 0.747 0.767 0.753 0.756 0.906 0.699
Greedy 0.731 0.706 0.739 0.718 0.910 0.723
Bounding sphere 0.756 0.744 0.759 0.755 0.911 0.751
k-medoids 0.600 0.568 0.596 N/A N/A N/A

Table 8. The average primitive fill for meshlet collections.

is trying to distribute the triangles and not the vertices, the distribution of the number
of triangles shows the same two-tailed distribution. NVIDIA’s and Kapoulkine’s dis-
tributions are more interesting. Kapoulkine’s has a peak at a high number of triangles
and a tail that falls off toward smaller numbers, while NVIDIA’s is the opposite. This
is most likely because of the index buffer and how it does not promote locality as well
as Kapoulkine’s adjacency-based method, resulting in less locality and more unique
vertices. These results informed us that greedy strategies ensure more vertex- and
triangle-complete meshlets.

Since vertex completeness did not help differentiate the algorithms, we instead
inspected triangle completeness. Table 8 shows the average primitive fill (ratio of
primitives to the maximum number of primitives). Unlike the vertex count, the prim-
itive count varies quite a bit more across the different algorithms and meshes. If we
compare this to Table 5, we see a correlation between the methods that perform the
best and their primitive fill being high (although not as simple as saying that the high-
est primitive fill yields the best render time). The primitive fill number also explains
the variance in the meshlet collection sizes. If we look at NVIDIA’s algorithm for in-
stance, it produces more meshlets than the other algorithms. Since each meshlet holds
fewer primitives, we need more meshlets to represent the meshes. The k-medoids al-
gorithm does not achieve a high primitive fill for any of its three meshes. Since it fails
to produce high vertex fill, it becomes even more difficult to achieve a high primitive
fill. NVIDIA’s algorithm has the lowest primitive fill and also performs the worst,
which indicates that it is difficult to build meshlets directly from the index buffer.

The NVIDIA and k-medoids algorithms both generate meshlet collections with a
somewhat wide distribution of vertices and primitives (Figure 9). To investigate how

19

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Submitted to the Journal of Computer Graphics Techniques December 6, 2023

Bunny Happy Dragon Skull Nobby Wing
0

1

2

3

4

5

A
ve

ra
ge

R
en

de
rT

im
e

in
m

s

Sorted After Vertex Count
Sorted After Primitive Count
Default

1

Figure 10. The average render times for the NVIDIA+tipsify meshlet collections for each
mesh as a result of sorting the meshlet list that is send to the GPU. The list is sorted based
on number of vertices and primitives. The resulting render times are compared to sending the
meshlet list as is. The hatched bar for each mesh show the best performing ordering.

this impacts the performance of meshlet collections, we sort the meshlets with respect
to the number of vertices and number of primitives. We only do this for the NVIDIA-
based meshlet collections. As seen in Figure 10, the order of the meshlets does play a
role. We clearly see that sorting after primitive fill yields the best results. This is most
likely due to the fact that the average vertex completeness of the meshlet collections
is above 0.9, and so sorting after primitives results in a more uniform load across the
GPU. The reason why the render times are affected is that the GPU resources are
used better. Meshlets are dispatched in groups to be processed in parallel, and if these
groups are done processing at the same time, a new group can be dispatched without
idle time. If the meshlets are of varying sizes, some will finish before others and will
end up having to wait for the biggest meshlet to finish processing before a new group
can be dispatched.

Since cullability increases performance of the meshlet collections, we find it in-
teresting to explore the importance of the cullability of the meshlets. To test this we
tweaked our bounding sphere technique for generating meshlets. When a meshlet
runs out of new triangles to add from its border, we finish the meshlet instead of go-
ing back to the vertex list to look for new candidates. This enforces spatially coherent
meshlets. By doing this we created more compact meshlets, making them more likely
to be frustum-culled. This also reduces the chance of adding a triangle with a normal
that deviates too much from the meshlet normal. The increased cullability comes at

20

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Submitted to the Journal of Computer Graphics Techniques December 6, 2023

0 100000 200000 300000 400000
No. Meshlets

0

1

2

3

4

A
vg

.R
en

de
rT

im
e

in
m

s Spatially Coherent Bounding Sphere
Bounding Sphere

Bunny Happy Dragon Skull Nobby Wing
0

10

20

30

40

A
vg

.P
er

ce
nt

of
M

es
hl

et
s

C
ul

le
d

Frustum Culling
Backface Culling

1

Figure 11. Comparison between the bounding sphere vertex meshlet collections with and
without spatially coherent meshlets.The top plot shows the average render time, as a function
of the size of the meshlet collections. The bottom plot shows the average percent of meshlets
that are being culled per frame for each method.

the cost of a larger meshlet collection. In Figure 11, we see that the more-cullable
spatially coherent meshlet collections are offset to the right of the normal meshlet
collection because they contain more meshlets. For smaller meshes, the spatially co-
herent meshlet collections show better performance, despite having more meshlets.
The increased number of meshlets seems to be offset by the larger amount of culling.
The increased culling is however not sufficient to hide the larger loading and process-
ing times for the big meshes. Here, the difference in render times between the two
meshlet collections is small.

Meshlet Descriptor Comparison We used our bounding sphere algorithm to test the
four different meshlet descriptors described in Section 2. The results are shown in
Figure 12. The type of descriptor that hasd the best performance varies from mesh to
mesh. We see the biggest difference in render times for Nobby. Here, the monolithic
meshlet descriptor setup outperforms the other descriptors. The Nobby model is a
representation of a 3D print; because of this, it consists of tubes. These tubes will
have normals that point in all directions, making it impossible to form meshlets with
well-defined normal cones, meaning that no or very little backface culling is taking
place. Because of this, all visible meshlets are processed, which gives an interesting
insight into how much the meshlet culling affects performance. The high average
render time for the NVIDIA descriptor A is most likely a result of overdraw, because
the mesh has almost no cullable meshlets.

21

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

Submitted to the Journal of Computer Graphics Techniques December 6, 2023

Bunny Happy Dragon Skull Nobby Wing
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
vg

.R
en

de
rT

im
e

in
m

s

NVIDA Descriptor A
NVIDA Descriptor B
Split Descriptors
Monolithic Descriptor

1

Figure 12. Performance comparison across the six meshes for the four different meshlet
descriptors described in Section 2. For each mesh, the hatched bars highlight the descriptor
with best performance.

6. Discussion

Most of our experiments show that vertex completeness is important. Exploring the
meshlets generated from k-medoids displays this the best. The distributions from Fig-
ure 9 and render times from Table 5 express that one should prioritize vertex-complete
meshlets over balanced meshlets. Our investigation into spatially coherent meshlets
shows the same, albeit with a weaker signal. Spatially coherent meshlets result in
better-cullable meshlets at the cost of generating more meshlets. Generating more
meshlets means having a bigger distribution of vertices and primitives. The differ-
ences here are small when compared to the k-medoids results because the portion of
meshlets with lower vertex completeness is small, but for bigger meshes it starts to
affect performance more. More vertex-complete meshlets also mean more uniform
meshlets, and more uniform meshlets reduce render times. We saw this when sorting
the NVIDIA meshlet collections in Figure 10.

Inspecting Table 5 in conjunction with Table 8 reveals the correlation between
high primitive fill and better performance. It is interesting to explore the interaction
between average primitive fill and vertex completeness by inspecting the k-medoids
and the NVIDIA meshlet collections. For the Bunny mesh, we see an example where
the average primitive fill on the NVIDIA meshlet collection is so low that the high
average vertex fill cannot compensate for it. This demonstrates that one should not
only optimize around one heuristic but take both into account. For the Happy mesh,
the NVIDIA collection performs better than k-medoids, showing that vertex com-
pleteness is more important. For the Dragon mesh, the tables have turned, and the
k-medoids collection, with a better balance between the two, preforms best. This in-
teraction tells us that it is important to prioritize both vertex completeness and prim-

22

http://jcgt.org


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

itive fill. We also observe that it is hard to have a high primitive fill without having
nearly vertex-complete meshlets.

Striving for cullable meshlets is the third heuristic. Our experiments show that
cullable meshlets can help balance out larger meshlet collections. Figure 11 exempli-
fies how meshlet collections slightly enlarged to increase cullability can indeed result
in better performance. It does however not seem to affect performance as much as
vertex completeness or maximizing the primitive fill.

The Skull and Nobby meshes produced some surprising results for some of the
meshlet generation strategies. It is surprising that Kapoulkine’s algorithm did not
perform best on the Skull, as the data shows more culling and less meshlets. Perhaps
the difference is that our method builds meshlets along the z-axis of the skull as
opposed to from the middle and out, which could affect vertex loading, overdraw, and
cache misses on the GPU.

Nobby shows that some meshes will be exceptions to the rule. It will be possible
to find meshes where these heuristics and metrics break down. In fact, tuning one
aspect of meshlet generation affects all the other aspects. The metrics, and indeed
most of the factors we explore in this paper, are highly correlated, and this can make it
hard to isolate different aspects as they affect each other. Two collections of meshlets
might differ in efficiency even if almost all meshlets are packed to capacity in both
collections. Because of this, it becomes even more desirable to have an algorithm that
is simple to implement. The greedy algorithm proves to be quite useful in practice as
it achieves good render times across the meshes while also being simple to implement.

Lastly, we conducted a small exploratory experiment that compared different
ways of packing the meshlet descriptor data. Interestingly, we find that the mono-
lithic descriptor performs quite well. This is certainly interesting. The monolithic
descriptor uses a simpler buffer setup, and by using one descriptor per shader stage,
it becomes possible to add more meta data if desired.

7. Conclusion

We find, quite simply, that, on the NVIDIA hardware, meshlet collections that mini-
mize the number of meshlets and maximize the triangles in each meshlet perform best.
Meshlets have vertex and primitive limits; in this paper we used the suggested 64 ver-
tices and 126 triangles. These limits can differ between GPUs, so it is important to
look up the manufacturer-suggested limits. However, our approach is not dependent
on these limits but simply fills up meshlets until the limits are met. It could be an inter-
esting extension of this work to test the algorithms on other GPU architectures. To fa-
cilitate this, we have uploaded our code to https://github.com/Senbyo/meshletmaker.

Because the triangle limit is greater than the vertex limit, we need to build the
meshlets with a large emphasis on vertex reuse. Even when doing this, it is hard to not

23

http://jcgt.org
https://github.com/Senbyo/meshletmaker


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

hit the vertex limit before the triangle limit. So if we want to achieve both a high vertex
and triangle fill, it becomes absolutely paramount that a meshlet collection achieves a
high average vertex fill. With a high vertex fill we can better take advantage of vertex
reuse to also achieve a high average primitive fill. Because of this, we recommend
the following strategy for optimizing meshlet generation: make the meshlets vertex-
complete first and then maximize the primitive fill. The combination of these two
will create meshlets with large vertex reuse and locality, while also minimizing the
total number of meshlets that are required to represent a mesh. Finally, we of course
recommend to strive for cullable meshlets, but not at the cost of a too big increase
in meshlet collection size. We found that performance rather quickly drops when the
meshlet collections grow in size. Lastly, sorting the meshlet collection to promote
more uniform workloads across the GPU can also increase performance.

We also explored other properties of both the mesh shading pipeline and the mesh-
let collections. We found that high uniformity in the meshlet collections promotes
even workload across processors on the GPU, which yields better render times. Dif-
ferent meshlet descriptors do not have the biggest impact on render times, so working
with monolithic meshlets could prove to be a good choice for scientific visualization
where rendering is done on distributed systems. As an interesting topic for future
work, descriptors that require less data unpacking in the mesh shader could yield im-
proved render performance, and since dividing descriptors into two also did not affect
performance too much, it could be interesting to explore whether new useful meta
data could be added.

Acknowledgements

We would like to thank Rasmus Emil Christensen and Emil Toftegaard Gæde for
the initial investigation into k-medoids–based clustering of triangle meshes. This
research was funded by Advokat Bent Thorbergs Fond (award no. 66.531).

References

AAGE, N., ANDREASSEN, E., LAZAROV, B. S., AND SIGMUND, O. 2017. Giga-voxel
computational morphogenesis for structural design. Nature 550, 7674, 84–86. URL:
https://doi.org/10.1038/nature23911. 14

AAGE, N., SIGMUND, O., LAZAROV, B. B., AND ANDREASSEN, E., 2020. TopWingData.
DTU Data. URL: https://doi.org/10.11583/dtu.12581615.v1. 14

ARKIN, E. M., HELD, M., MITCHELL, J. S., AND SKIENA, S. S. 1996. Hamiltonian
triangulations for fast rendering. The Visual Computer 12, 9, 429–444. URL: https:
//doi.org/10.1007/BF01782475. 3

24

http://jcgt.org
https://doi.org/10.1038/nature23911
https://doi.org/10.11583/dtu.12581615.v1
https://doi.org/10.1007/BF01782475
https://doi.org/10.1007/BF01782475


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

BÆRENTZEN, A., AND ROTENBERG, E. 2021. Skeletonization via local separators. ACM
Transactions on Graphics 40, 5, 187:1–187:18. URL: https://doi.org/10.1145/
3459233. 11

CHOW, M. 1997. Optimized geometry compression for real-time rendering. In Proceed-
ings of Visualization ’97. IEEE Press, 347–354. URL: https://doi.org/10.1109/
VISUAL.1997.663902. 4

CIGOLLE, Z. H., DONOW, S., EVANGELAKOS, D., MARA, M., MCGUIRE, M., AND

MEYER, Q. 2014. A survey of efficient representations for independent unit vec-
tors. Journal of Computer Graphics Techniques 3, 2 (April), 1–30. URL: http:
//jcgt.org/published/0003/02/01/. 6

DALLY, W. J., KECKLER, S. W., AND KIRK, D. B. 2021. Evolution of the graphics pro-
cessing unit (GPU). IEEE Micro 41, 6, 42–51. URL: https://doi.org/10.1109/
MM.2021.3113475. 3

DEERING, M. F., AND NELSON, S. R. 1993. Leo: A system for cost effective 3D shaded
graphics. In SIGGRAPH ’93, ACM, 101–108. URL: https://doi.org/10.1145/
166117.166130. 4

DEERING, M. 1995. Geometry compression. In SIGGRAPH ’95, ACM, 13–20. URL:
https://doi.org/10.1145/218380.218391. 4

DILLENCOURT, M. B. 1996. Finding Hamiltonian cycles in Delaunay triangulations is NP-
complete. Discrete Applied Mathematics 64, 3, 207–217. URL: https://doi.org/
10.1016/0166-218X(94)00125-W. 3

ENGLERT, M. 2020. Using mesh shaders for continuous level-of-detail terrain rendering.
In ACM SIGGRAPH 2020 Talks, ACM, 44:1–44:2. URL: https://doi.org/10.
1145/3388767.3407391. 5

EVANS, F., SKIENA, S., AND VARSHNEY, A. 1996. Optimizing triangle strips for fast
rendering. In Proceedings of Seventh Annual IEEE Conference on Visualization, IEEE
Press, 319–326. URL: https://doi.org/10.1109/VISUAL.1996.568125. 4

FORSYTH, T., 2006. Linear-speed vertex cache optimisation. Tom Forsyth’s Starkly
Functional Web Page, September 28. Accessed April 4, 2022. URL: https://
tomforsyth1000.github.io/papers/fast_vert_cache_opt.html. 4

HAINES, E. 2006. An introductory tour of interactive rendering. IEEE Computer Graphics
and Applications 26, 1, 76–87. URL: https://doi.org/10.1109/MCG.2006.9.
3

HOPPE, H. 1999. Optimization of mesh locality for transparent vertex caching. In SIG-
GRAPH ’99, ACM/Addison-Wesley, 269–276. URL: https://doi.org/10.1145/
311535.311565. 3, 4

JENSEN, M. B., JACOBSEN, E. I., FRISVAD, J. R., AND BÆRENTZEN, J. A. 2021. Tools
for virtual reality visualization of highly detailed meshes. In VisGap—The Gap between
Visualization Research and Visualization Software, The Eurographics Association, 19–26.
URL: https://doi.org/10.2312/visgap.20211088. 2, 5

25

http://jcgt.org
https://doi.org/10.1145/3459233
https://doi.org/10.1145/3459233
https://doi.org/10.1109/VISUAL.1997.663902
https://doi.org/10.1109/VISUAL.1997.663902
http://jcgt.org/published/0003/02/01/
http://jcgt.org/published/0003/02/01/
https://doi.org/10.1109/MM.2021.3113475
https://doi.org/10.1109/MM.2021.3113475
https://doi.org/10.1145/166117.166130
https://doi.org/10.1145/166117.166130
https://doi.org/10.1145/218380.218391
https://doi.org/10.1016/0166-218X(94)00125-W
https://doi.org/10.1016/0166-218X(94)00125-W
https://doi.org/10.1145/3388767.3407391
https://doi.org/10.1145/3388767.3407391
https://doi.org/10.1109/VISUAL.1996.568125
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html
https://doi.org/10.1109/MCG.2006.9
https://doi.org/10.1145/311535.311565
https://doi.org/10.1145/311535.311565
https://doi.org/10.2312/visgap.20211088


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

KAPOULKINE, A., 2017. meshoptimizer. GitHub. Accessed April 4, 2022. URL: https:
//github.com/zeux/meshoptimizer. 1, 2, 5, 9

KARIS, B., STUBBE, R., AND WIHLIDAL, G. 2021. A deep dive into nanite virtual-
ized geometry. In Advances in Real-Time Rendering in Games: Part I, N. Tatarchuk,
Ed., ACM SIGGRAPH 2021 Courses. ACM. Accessed April 4, 2022. URL: https:
//advances.realtimerendering.com/s2021/index.html. 5

KAUFMAN, L., AND ROUSSEEUW, P. J. 1990. Finding Groups in Data: An Introduc-
tion to Cluster Analysis. John Wiley & Sons. URL: https://doi.org/10.1002/
9780470316801. 1, 11, 13

KERBL, B., KENZEL, M., IVANCHENKO, E., SCHMALSTIEG, D., AND STEINBERGER, M.
2018. Revisiting the vertex cache: Understanding and optimizing vertex processing on the
modern GPU. Proceedings of the ACM on Computer Graphics and Interactive Techniques
1, 2 (August), 29:1–29:16. URL: https://doi.org/10.1145/3233302. 4

KUBISCH, C., 2018. Introduction to Turing mesh shaders. NVIDIA Developer Tech-
nical Blog, September 17. URL: https://developer.nvidia.com/blog/

introduction-turing-mesh-shaders/. 2, 4

KUBISCH, C., 2018. Vulkan & OpenGL CAD mesh shader sample. GitHub. Ac-
cessed April 4, 2022. URL: https://github.com/nvpro-samples/gl_vk_
meshlet_cadscene. 1, 2, 7, 8

KUBISCH, C., 2020. Using mesh shaders for professional graphics. NVIDIA Developer
Technical Blog, December 8. URL: https://developer.nvidia.com/blog/
using-mesh-shaders-for-professional-graphics/. 2

LEMPIAINEN, J., 2020. Meshlete: Chop 3D objects to meshlets. GitHub. Accessed April 4,
2022. URL: https://github.com/JarkkoPFC/meshlete. 5

LIN, G., AND YU, T. P.-Y. 2006. An improved vertex caching scheme for 3D mesh render-
ing. IEEE Transactions on Visualization and Computer Graphics 12, 4, 640–648. URL:
https://doi.org/10.1109/TVCG.2006.59. 4

LINDHOLM, E., NICKOLLS, J., OBERMAN, S., AND MONTRYM, J. 2008. NVIDIA Tesla:
A unified graphics and computing architecture. IEEE Micro 28, 2, 39–55. URL: https:
//doi.org/10.1109/MM.2008.31. 4

NEFF, T., MUELLER, J. H., STEINBERGER, M., AND SCHMALSTIEG, D. 2022. Meshlets
and how to shade them: A study on texture-space shading. Computer Graphics Forum 41,
2, 277–287. URL: https://doi.org/10.1111/cgf.14474. 5

REBENITSCH, L., AND OWEN, C. 2016. Review on cybersickness in applications and
visual displays. Virtual Reality 20, 2, 101–125. URL: https://doi.org/10.1007/
s10055-016-0285-9. 2

SANDER, P. V., NEHAB, D., AND BARCZAK, J. 2007. Fast triangle reordering for vertex
locality and reduced overdraw. ACM Transactions on Graphics 26, 3, 89:1–89:10. URL:
https://doi.org/10.1145/1276377.1276489. 4, 9

26

http://jcgt.org
https://github.com/zeux/meshoptimizer
https://github.com/zeux/meshoptimizer
https://advances.realtimerendering.com/s2021/index.html
https://advances.realtimerendering.com/s2021/index.html
https://doi.org/10.1002/9780470316801
https://doi.org/10.1002/9780470316801
https://doi.org/10.1145/3233302
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://github.com/nvpro-samples/gl_vk_meshlet_cadscene
https://github.com/nvpro-samples/gl_vk_meshlet_cadscene
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://github.com/JarkkoPFC/meshlete
https://doi.org/10.1109/TVCG.2006.59
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1111/cgf.14474
https://doi.org/10.1007/s10055-016-0285-9
https://doi.org/10.1007/s10055-016-0285-9
https://doi.org/10.1145/1276377.1276489


Journal of Computer Graphics Techniques
Performance Comparison of Meshlet Generation Strategies

Vol. 12, No. 2, 2023
http://jcgt.org

SANTERRE, B., ABE, M., AND WATANABE, T. 2020. Improving GPU real-time wide ter-
rain tessellation using the new mesh shader pipeline. In Nicograph International (NicoInt
2020), IEEE Press, 86–89. URL: https://doi.org/10.1109/NicoInt50878.
2020.00025. 5

UNTERGUGGENBERGER, J., KERBL, B., PERNSTEINER, J., AND WIMMER, M. 2021.
Conservative meshlet bounds for robust culling of skinned meshes. Computer Graphics
Forum 40, 7, 57–69. URL: https://doi.org/10.1111/cgf.14401. 5

WALBOURN, C., 2014. DirectXMesh geometry processing library. GitHub. Accessed April
4, 2022. URL: https://github.com/microsoft/DirectXMesh. 5

WIHLIDAL, G., 2016. Optimizing the graphics pipeline with compute. Game Developer
Conference 2016. Accessed April 4, 2022. URL: https://www.gdcvault.com/
play/1023463/Optimizing-the-Graphics-Pipeline-With. 5

Author Contact Information
Mark Bo Jensen
Technical University
of Denmark
Richard Petersens Plads
324, 180
Lyngby, DK-2800, Denmark
mboje@dtu.dk
https://senbyo.github.io

Jeppe Revall Frisvad
Technical University
of Denmark
Richard Petersens Plads
324, 160
Lyngby, DK-2800, Denmark
jerf@dtu.dk
https://people.compute.dtu.dk
/jerf/

J. Andreas Bærentzen
Technical University
of Denmark
Richard Petersens Plads
324, 160
Lyngby, DK-2800, Denmark
janba@dtu.dk
https://people.compute.dtu.dk
/janba/

M. B. Jensen et al., Performance Comparison of Meshlet Generation Strategies, Journal of
Computer Graphics Techniques (JCGT), vol. 12, no. 2, 1–1, 2023
http://jcgt.org/published/0012/02/01/

Received: 2022-07-13
Recommended: 2022-12-13 Corresponding Editor: Natalya Tatarchuk
Published: 2023-12-08 Editor-in-Chief: Marc Olano

© 2023 M. B. Jensen et al. (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

27

http://jcgt.org
https://doi.org/10.1109/NicoInt50878.2020.00025
https://doi.org/10.1109/NicoInt50878.2020.00025
https://doi.org/10.1111/cgf.14401
https://github.com/microsoft/DirectXMesh
https://www.gdcvault.com/play/1023463/Optimizing-the-Graphics-Pipeline-With
https://www.gdcvault.com/play/1023463/Optimizing-the-Graphics-Pipeline-With
mailto:mboje@dtu.dk
https://senbyo.github.io
mailto:jerf@dtu.dk
https://people.compute.dtu.dk/jerf/
https://people.compute.dtu.dk/jerf/
mailto:janba@dtu.dk
https://people.compute.dtu.dk/janba/
https://people.compute.dtu.dk/janba/
http://jcgt.org/published/0012/02/01/
http://creativecommons.org/licenses/by-nd/3.0/

