
Journal of Computer Graphics Techniques Vol. 14, No. 1, 2025 http://jcgt.org

GPU-Friendly Laplacian Texture Blending

Bartlomiej Wronski
NVIDIA, USA

* *

+

=

Texture Laplacian pyramids

Mask Gaussian pyramids

Collapsed pyramidBlended Laplacians

Figure 1. Overview: Instead of blending material textures with a fixed blending radius, we

propose to blend different Laplacian pyramid levels with different mask sharpness proportional

to Laplacian feature size. This ensures contrast and detail preservation as well as smooth per-

ceptual transition. Laplacian levels are constructed in place from traditional texture mipmaps.

Abstract

Texture and material blending is one of the leading methods for adding variety to rendered
virtual worlds, creating composite materials, and generating procedural content. When done
naively, it can introduce either visible seams or contrast loss, leading to an unnatural look not
representative of blended textures. Earlier work proposed addressing this problem through
careful manual parameter tuning, lengthy per-texture statistics precomputation, look-up ta-
bles, or training deep neural networks. In this work, we propose an alternative approach based
on insights from image processing and Laplacian pyramid blending. Our approach does not

21 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

require any precomputation or increased memory usage (other than the presence of a regu-
lar, non-Laplacian, texture mipmap chain), does not produce ghosting, preserves sharp local
features, and can run in real time on the GPU at the cost of a few additional lower mipmap
texture taps.

1. Introduction

Texture and material creation is one of the most time-consuming aspects of 3D con-
tent creation and defines the final appearance of the rendered objects. In physically
based shading, the artist defines the surface reflectance and other physical proper-
ties of the BRDF [Burley 2012]. To help artists author physically based materials, a
common industry practice is creating a hierarchy of progressively more complex ma-
terials that get blended through masking [Neubelt and Pettineo 2013]. Masking is typ-
ically manually tweaked by artists but can be extended to the procedural generation
of infinite materials. To reduce visible repetitiveness and material tiling, Heitz and
Neyret [2018] proposed hexagonal macro-tiling of random rotations of material tex-
tures. They analyzed a common problem of naively blending textures—either sharp,
unnatural transitions or contrast loss and ghosting—and proposed a solution based on
local histogram correction based on precomputation. We propose a different solution
to the problem of texture and material blending that can also be applied to interpolate
different textures. Our solution blends local Laplacians to reduce variance loss and
provide a perceptually natural transition of differently sized features. Laplacian pyra-
mid construction is approximated inline in the final shader using traditional texture
mipmaps (used for regular trilinear filtering) and requires no costly precomputation.
Our approach is designed to run in real time on the GPU and requires defining only a
single parameter: the number of the Laplacian levels that affect the maximum size of
the features that get blended.

2. Related Work

Texture blending is common in practice and is part of texture and material creation,
but relatively little of it has been explored by the literature. Artists are assumed to
tweak blending masks and source materials until the desired look is achieved. The
state-of-the-art procedural texturing tool Adobe Substance Designer uses various sim-
ple pointwise blending modes to facilitate that process [Adobe 2023]. Mikkelsen
[2022] proposed to use simple pointwise blending with a manually designed, content-
dependent weight curve for natural-looking transitions.

While artists can manually adjust masks and the appearance of materials in tra-
ditional workflows, procedural texture synthesis aims to automate this process. Pure
pointwise operations often fail to produce reliable and consistent procedural blending
results, as a single pixel does not inform about neighbors, image patterns, or struc-

22

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

tures. Most procedural texture synthesis publications rely on global or local neigh-
borhood approaches during runtime or as a precomputation step.

One of the earliest practical works was noise by example [Galerne et al. 2012].
Those early methods were costly and required offline optimization procedures, such
as basis pursuit. Subsequent works targeted performance optimizations and reduc-
tion of the precomputation needed. Yu et al. [2010] proposed global variance-based
normalization for blending fluid textures. Heitz and Neyret [2018] identified this ap-
proach’s quality shortcomings and instead proposed adjusting the local texture values
based on offline precomputation of optimal transport of histograms. In later work,
Burley [2019] proposed simplifying that process through 1D precomputation along
with improvements to reduce visual artifacts by taking clipping into account. Re-
cently, Fournier and Sauvage [2024] introduced a novel pointwise operator combined
with fast precomputation techniques that guarantee consistent minification, antialias-
ing upon magnification, and stationarity of the resulting blended textures.

3. Laplacian Pyramid Blending

Blending natural and photographic images is a common operation in image process-
ing literature, focusing significantly on perceptual effects on image color, details, and
discontinuities. Pérez et al. [2003] have approached the problem of blending images
in the gradient domain by swapping image gradients and solving a screened Pois-
son equation. One of the key insights of their method is that local image gradient
discontinuities don’t lead to a perceived image discontinuity.

In parallel and in a similar manner, Brown and Lowe [2003] proposed to blend
panorama photographs using a simple, two-level frequency decomposition of the
image—a detail layer with high frequencies that are blended locally, and a global
layer that is blended with a large radius to prevent visible seams or discontinuity.
Efros [2005] expanded this idea to a multi-level Laplacian decomposition and the
blending of images using Laplacian pyramids in his influential course on image pro-
cessing.

This technique is commonly used in perceptual image processing: for example,
in the Exposure Fusion [Mertens et al. 2007] algorithm used for high-dynamic-range
(HDR) fusion of multiple low-dynamic-range images or to locally tone-map an HDR
image in the HDR+ pipeline [Hasinoff et al. 2016]. Earlier HDR fusion approaches
would, for example, apply the tone mapping only to the bilaterally filtered image
while adding the non-tone-mapped detail layer back later, which often resulted in an
unnatural, exaggerated, and over-detailed look. Exposure Fusion solved this prob-
lem with a much smoother, layer-dependent blending radius from Gaussian-blurring
blending masks. We analyze why this method preserves contrast from the image
statistics and signal-processing perspectives and propose blending materials and their
textures using Laplacian pyramids.

23

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

Figure 2. Different blending radii can affect the visual look of blended tiled textures. We

can observe either unnatural, harsh transitions (left) or significant blurriness and contrast loss

(middle). Furthermore, the rightmost example shows significant ghosting and overlap of dis-

tinct details.

4. Method

When directly linearly blending different textures, the transition radius and mask
smoothness affect the final image look (Figure 2). The rightmost example shows
the smoothest transition but has less contrast and detail than the two others, with
smaller blending radii. Furthermore, various small visual features overlap, producing
an unnatural ghosting effect. Addressing the shortcomings of such blending was one
of the contributions of the method of Heitz and Neyret [2018], which was one of the
inspirations for our work.

We propose a different and straightforward method, based on the ideas present
in the image processing work: blending Laplacians with different radii [Brown and
Lowe 2003; Efros 2005; Mertens et al. 2007]. We take images x and y and decompose
them with Laplacian operators:

x = lx0 + Lx1 + Lx2 + · · ·+Gxn, (1)

y = Ly0 + Ly1 + Ly2 + · · ·+Gyn, (2)

where Lxm is a Laplacian pyramid level of the image x and Gxn is the final Gaussian
level of the signal. Similarly, we create multiple Gaussian levels of the mask image
m: Gm0, . . . , Gmn. The radii of Gaussian blurring of the consequent Gaussian levels
are assumed (but not required) to be the same as the radii of Gaussian blurs during
the construction of Laplacian pyramids for images x and y.

Given this notation, the proposed blending operation is as follows:

Blend(x, y,m) = Gxn ·Gmn+Gyn ·(1−Gmn)+
n−1∑
i=0

Lxi ·Gmi+Lyi ·(1−Gmi). (3)

A visual example of our method’s appearance is presented in Figure 3.
This method preserves sharpness and contrast in the transition area while blend-

ing the textures over a large area. This operation generalizes to blending more than
just two textures. In such cases, we replace the m and (1 −m) with different masks
m0, . . . ,mk and add the weighted Laplacians linearly. The number of added Lapla-
cian levels defines the sharpness of the transition. Before showing the impact of the

24

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

Figure 3. Left: Direct texture blending with a small radius. Middle: Direct texture blending

with a large radius. Right: Laplacian texture blending using three Laplacian levels with a wide

radius blending low-frequency details and a narrow radius blending high-frequency details.

Laplacian count, the pyramid construction filters, and presenting a practical imple-
mentation, we analyze why the method works well for preserving the visual appear-
ance and contrast of the blended textures.

4.1. Perceptual Impact of Frequency-Dependent Blending Radius

Efros [2005] noted in his course how differently sized features require different blend-
ing radii to look natural. We demonstrate this effect on noise textures in Figure 4.
When the transition radius is mismatched with the frequency content of the noise
texture, it results in a discontinuous look or a visible blurry stripe between the two
textures. A perceptually optimal blending radius is wide for low-frequency noise
and medium for medium-frequency noise, and there is almost no transition for high-
frequency noise.

The reason for visible discontinuities when using a small blending radius to blend
low-frequency features can be analyzed from a signal-processing perspective. Multi-
plying a texture by a mask in pixel space is the same as the convolution of two signals

Figure 4. Top to bottom: Noise textures with a different frequency content, from low to high

frequencies. Left to right: Different blending radii between two textures. Different frequencies

of noise require different transition radii for the most natural appearance. A small blending

radius produces visible discontinuities on low-frequency content, while a wide radius causes

contrast and detail loss on high-frequency textures.

25

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

in the frequency space. A harsh transition ramp has rich frequency content and, af-
ter multiplication, causes new, high frequencies not present in either of the original
images to appear.

It would seem that a wide radius—with a smooth falloff—would be preferred, but
it’s not the case for medium and high frequencies. We look at those cases from the
perspective of variance loss.

4.2. Analysis: Variance Loss

We use the variance of the color variation in the texture as a simple-to-analyze proxy
for the contrast. We look at the texels of blended textures x and y as random variables
X and Y and analyze their blended variance Var(a · X + (1 − a) · Y ) after linear
blending:

Var(a·X+(1−a)·Y ) = a2·Var(X)+(1−a)2·Var(X)+a·(1−a)·Cov(X,Y ). (4)

The effect on variance is zero on the edges of the transition and the largest in the
middle of the transition:

Var

(
X

2
+

Y

2

)
=

Var(X)

4
+

Var(X)

4
+

Cov(X,Y )

2
. (5)

In the case of uncorrelated blended textures, blending reduces the variance by half,
reducing visual contrast. If the textures are anti-correlated (which can happen when
blending the same periodic texture with different phase offsets), it can lead to the
complete zeroing of the texture variation and detail.

The blending radius defines the size of the area with a lowered variance, which
for uncorrelated variables with the same variance on average is equal to∫ 1

0
a2 ·Var(X) + (1− a)2 ·Var(X)da =

2

3
Var(X). (6)

Outside of the blending area, there is no variance loss. The wider the transition area,
the more variance and contrast are reduced. While looking at variance only and restor-
ing it is insufficient [Heitz and Neyret 2018], and better methods operate on full his-
tograms, it leads naturally to the analysis of benefits of the Laplacian decomposition.

4.3. Laplacian Decomposition of Variance Loss

If the Laplacian levels are uncorrelated, we can write

Var(X) ≈ Var(LX0) +Var(LX1) +Var(LX2) + · · ·+Var(GXn). (7)

In the case of a perfect Fourier decomposition, this equality is strict from Parseval’s
theorem.

26

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

Figure 5. A toy 1D example demonstrating how, with Laplacian blending, regions of variance

loss are distributed between different levels.

In practice, the correlation of the Laplacian levels depends on the quality of the
used filters and the specific signals (for example, due to insufficient filtering and alias-
ing). We analyze the impact of the used filters in Section 5.2, but for now, we assume
that the correlation is small:

Cov(LXk, LXm) ≈ 0, (8)

Cov(LXk, GXn) ≈ 0. (9)

Blending Laplacian pyramid levels with different radii, we distribute the variance
reduction between different Laplacian levels and over different area sizes. We show a
toy 1D linear blending example in Figure 5. Two different 1D signals are blended, and
a sharp linear transition region causes a visible discontinuous “jump,” while a smooth

27

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

linear transition reduces sharpness and the original signal features. Conversely, Lapla-
cian blending distributes blending across different frequency content levels and region
sizes. For instance, the highest signal frequencies get attenuated only over very small
regions.

The exact variance and contrast loss depends on the spectral content of the blended
images and is always between the sharpest (single texel) and the widest blending radii.
This causes a smaller contrast or high-frequency detail loss than a wide blending ra-
dius while preserving its natural perceptual smoothness and lack of visible disconti-
nuities.

5. Controlling the Behavior

The proposed method does not require per-texture parameter tuning for robust behav-
ior, but a few parameters and the filtering kernel choice impact its visual appearance.

5.1. Laplacian Pyramid Level Count

The Laplacian pyramid level count is the most important parameter we propose to
expose for artistic appearance control. It defines the effective radius of the transition.
We suggest three to four levels as a practical default value. Above five levels, the high
transition radius causes average colors of different textures to blend and some of their
unique appearance identity to be lost (Figure 6). We note, however, that even such
wide radius blending still doesn’t show visible ghosting, and while the color contrast
gets lower, the local contrast and high-frequency features are intact.

While we propose to use by default the same level of the mask Gaussian pyramid
as the levels of the blended Laplacian pyramid, 0, . . . , n, it is possible to use biased
further levels k, . . . , (n+k) for more aggressive blending with fewer levels. However,
this can lead to minor ghosting, as it becomes similar to direct linear blending with a
larger radius.

Figure 6. From left to right: Blending with three to seven Laplacian levels. A higher level

count increases the smoothness and perceived continuity of the transition, but all preserve

sharp contrast and high-frequency features without visible ghosting. The transitions above five

Laplacian levels are very smooth, losing some of the distinct identity of the source textures.

This can be both an advantage or undesirable from an artistic perspective depending on the

use case.

28

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

5.2. Prefiltering and Upsampling Kernel

There are many ways to construct a Laplacian pyramid. For example, it can be ei-
ther decimated (where each next level is a lower resolution and often constructed
through subtracting progressively more low-pass-filtered and decimated images) or
undecimated using bandpass filters. We focus on the decimated case, as it allows
for an efficient, practical, and low-memory-use implementation. Decimated Lapla-
cian pyramid behavior and each level’s contents depend on both the filter used before
decimation and the level upsampling filter:

Lxk = Gxk − Fup ((Fdown(Gxk) ↓) ↑) , (10)

where Fdown is a downsampling filter, Fup is an upsampling filter, ↓ symbolizes a
decimation operation (decreasing the resolution by dropping every other pixel in each
dimension), and ↑ symbolizes the resolution increase operation by a factor of two
by zero-insertion in each dimension prior to application of an upsampling Fup filter.
Later in this text we will use the notation ↑k for a resolution increase by a 2k factor.

Recommending a good and efficient filter is beyond the scope of this work, but
we will analyze two commonly used downsampling filters in computer graphics. The
first is a box filter, often used for mipmap chain construction due to implementa-
tion simplicity, similar behavior to trilinear filtering, and the lowest possible cost—a
single texture tap when using bilinear hardware samples. The second one is the Lanc-
zos2 filter [Duchon 1979], a sinc windowed sinc filter with a very sharp frequency
response given a relatively small spatial support (4 × 4 in the case of Lanczos2 2D
downsampling). The Lanczos2 filter demonstrates good low-pass filtering but tends
to produce perceptual sharpening and some ringing. Similarly to the downsampling
filter, the upsampling filter choice can impact the visual results, but we focus on the
most common bilinear upsampling filter due to its very small computational cost and
hardware filtering support on the GPU.

Those two downsampling filters produce different Laplacian decompositions (Fig-
ure 7). The Lanczos filter separates filtered levels better, and thus, each Laplacian dif-
ference has more energy. The filter also improves the sharpness of the final Gaussian
level but creates some over- and undershoots.

This difference contributes to different visual outcomes of Laplacian pyramid
blending (Figure 8). Lanczos2 Laplacian pyramid blending is sharper but produces
over-darkening and overshoots in some regions. While noting the difference and that
one filter might be subjectively preferred over the other, we conclude that the pro-
posed method works well with either method.

29

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

(a) Box-filter Laplacian Pyramid

(b) Lanczos4-filter Laplacian Pyramid

Figure 7. The impact of used downsampling filters on Laplacian pyramid contents. The Lanc-

zos filter preserves more high-frequency contents in lower levels, including the final Gaussian

level.

(a) Box-filter Laplacian Pyramid blending (b) Lanczos4-filter Laplacian Pyramid blending

Figure 8. Different downsampling filters and Laplacian pyramid creation methods produce

a different visual outcome. Lanczos2 results are sharper but produce over-darkening and

overshoots in some regions: an example in the right image is marked with a yellow oval.

6. Practical GPU Implementation

Creating, blending, and filtering multiple image pyramids might seem costly, but we
propose an efficient, GPU-friendly implementation through two simple modifications
of the core algorithm. Instead of constructing a Gaussian pyramid, we use an existing
texture mipmap chain. Instead of explicitly constructing a Laplacian pyramid, we pro-
pose an approximation using difference of Gaussians. We construct the full-resolution
Laplacian level in place from two existing low-resolution texture mip levels:

Lxk ≈ Fup ((Gxk) ↑k)− Fup ((Gxk+1) ↑k+1) . (11)

This approximation allows for the in-place construction of Laplacian levels in the final
shader when a blended texture is read. Listing 1 presents an example application with

30

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

#define NUM_LEVELS 4

vec4 tex0_levels[NUM_LEVELS+1];

vec4 tex1_levels[NUM_LEVELS+1];

vec4 mask_levels[NUM_LEVELS+1];

for (int i = 0; i < NUM_LEVELS+1; i += 1) {

tex0_levels[i] = texture2D(tex0, uv, float(i));

tex1_levels[i] = texture2D(tex1, uv, float(i));

mask_levels[i] = texture2D(mask, uv, float(i));

}

vec4 blended = vec4(0.0);

for (int i = 0; i < NUM_LEVELS; i += 1) {

vec4 tex0_laplace = tex0_levels[i] - tex0_levels[i+1];

vec4 tex1_laplace = tex1_levels[i] - tex1_levels[i+1];

blended += tex0_laplace * (1.0 - mask_levels[i]) +

tex1_laplace * mask_levels[i];

}

// Gaussian level.

vec4 tex0_gauss = tex0_levels[NUM_LEVELS];

vec4 tex1_gauss = tex1_levels[NUM_LEVELS];

blended += tex0_gauss * (1.0 - mask_levels[NUM_LEVELS]) +

tex1_gauss * mask_levels[NUM_LEVELS];

Listing 1. Example implementation.

four levels. With the proposed implementation, there is no memory storage overhead
or precomputation— assuming that textures already have mipmaps. This code scales
to regular, pointwise linear blends—when NUM_LEVELS is zero.

To sample n Laplacian levels and an additional Gaussian level, we take just n+1

samples—where all the additional samples come from lower mipmaps (with a neg-
ligible bandwidth/cache cost). Other than mipmap sampling, the arithmetic cost of
our method is just multiply-adds and multiplies: the same as regular blending, but
multiplying it n+ 1 times and accumulating all of the blended levels.

The whole cost of the method is n+1 times more samples for a given desired level
and n blends and adds. In practice, the cost of additional samples doesn’t need to scale
linearly and depends on the hardware architecture. The final GPU performance cost
depends on various factors: the utilization of the texture unit, memory bandwidth,
cache sizes, register usage, and arithmetic operations. Even when computing the
Laplacian pyramid from all the mip levels, the maximum used memory bandwidth is
133% of the original cost (total mipchain pixel count).

The whole method is presented in Listing 1. It is worth noting that in GLSL the
third parameter of the texture2D method is the level-of-detail bias, which we will
use in Section 6.1.

31

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

Levels 1–3 4 5 6 7

Overhead (ms) Not observed 0.087 0.113 0.125 0.134

Table 1. Performance overhead of the presented method in 4K resolution.

We report example timings in Table 1, measured by rendering in 3840 × 2160

pixels resolution, blending two textures on an NVIDIA RTX 4090 GPU, and repeating
the blending 1000 times with changing UVs and averaging the overhead. The typical
Laplacian level count that produces smooth but sharp blends is three to five, for which
the proposed method has a minimal runtime performance impact.

6.1. Minification and Mipmapping

The description of our method so far assumes that texture blending happens at the full
resolution of the textures (the finest mip level). This is sufficient for applications such
as caching blending using virtual texturing, but would pose a problem on perspective-
projected 3D assets requiring varying minification levels.

We can address this limitation with a simple modification of our algorithm. We
begin by observing that the spectral contents of a mip level k are low-pass filtered
image frequencies from the original full-resolution texture higher than its Nyquist
levels. From Equations (10) and (11) we see that this is also equivalent to zeroing out
the Laplacian levels 0, . . . , k − 1 while keeping the further and coarser Laplacian/-
Gaussian pyramid levels.

This translates to two straightforward modifications of the code in Listing 1. First,
the desired mip level k has to be queried using the textureQueryLod method and the
fetched levels start at k instead of zero. Second, the number of blended Laplacian
levels and the index of the selected Gaussian level (lines 12 and 20) are set to be
equal to max(NUM_LEVELS - k, 0). This is functionally equivalent to the code in
Listing 1 when no minification is present, drops the Laplacian level blending when the
texture is minified beyond the coarsest blending level, and partially blends Laplacians
in between.

However, we note that the results of alpha-blending minified textures are not the
same as those of minifying alpha-blended textures, irrespective of the use of our
method. This is caused by the nonlinear nature of alpha mask multiplication and
shading applied to material textures described by Pharr et al. [2024], and our method
is compatible with their family of stochastic filtering techniques.

6.2. Optimization: Level Skipping

If the cost of the proposed method is too high (for instance, when blending multiple
textures per material, or on mobile devices), one can use a further approximation for

32

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

Figure 9. Left: Original algorithm, four levels. Middle: Level skipping (two levels computed).

Right: Absolute difference amplified 5×.

Laplacian creation by skipping the mip levels: for example,

L̂xk ≈ Gxk − Fup((Gxk+2) ↑k+2). (12)

Using such a modified definition, only Laplacians and Gaussian L̂x0, L̂x2, L̂x4, . . .

need to be computed and blended. This reduces the cost overhead to N
2 + 1 more

samples and evaluations. It’s worth noting, however, that this changes the visual
appearance and leads to some minor quality loss (less preservation of sharp features
and more ghosting) presented in Figure 9.

6.3. Dynamic Blend Mask Levels

We propose a second modification to our technique that eliminates the need to create
a Gaussian pyramid of the mask texture. This modification can efficiently create
dynamic and changing masks or remove the need to sample multiple mask texture
mip levels. In this technique variation, we use smooth masks resembling alpha maps
or distance fields—they can be either procedural or stored in textures. We obtain an
approximation of the Gaussian level n through clamped remapping, such as rescaled

(a) Linear mask (b) Approx. blend
mask level 0

(c) Approx. blend
mask level 1

(d) Approx. blend
mask level 2

(e) Approx. blend
mask level 3

Figure 10. An example of creating different approximate Gaussian levels of blend masks

dynamically from a source linear texture (a).

33

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

thresholding:

Gmn ≈ clamp
(
Gm0 − t

s2n
+ 0.5, 0, 1

)
, (13)

where t is the threshold of the transition center and s is a scale that depends on the
values stored in the texture (for instance, texture resolution if the values are stored in
the normalized [0, 1] range). See the example in Figure 10.

7. Applications

The proposed method of Laplacian texture blending can be applied in different appli-
cations requiring smooth transitions between multiple textures in a real-time render-
ing context. We discuss two main applications.

7.1. Material Layering

The material authoring process often involves layering and blending multiple different
textures of base materials [Neubelt and Pettineo 2013; Adobe 2023]. The proposed
method can be included in the material creation toolset as one of the blend modes.

The material authoring process can either create dynamic, real-time materials or
bake them into textures, and our method is compatible with both workflows. The lack
of precomputations makes it especially attractive for so-called uber materials, where
a single material can use different parameters and texture sets, sometimes changed
in real time. An example of dynamic adjustments can be a dynamic weather or sea-
son system in a rendering engine, when an animated mask progressively changes,
revealing or covering a different material.

Typically, materials comprise multiple textures of different BRDF properties and
not just color information. Our method aims to preserve gradients present in the
image. It makes no other assumptions about the color, its distribution, perceptual
space, or the map semantics and thus works on any other type of property map. For
example, harsh transitions of blended normal maps can produce visible surface and

Figure 11. Blending two unrelated normal maps. Left: A narrow linear blend results in visible

seams (red oval). Middle: A wide linear blend attenuates and blurs the blended normal map

details toward the normal pointing up (yellow circle). Right: A Laplacian pyramid blend pre-

serves normal map details while not producing surface discontinuities.

34

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

Figure 12. Extreme blending of unrelated content. Left: Narrow linear blend. Middle: Wide

linear blend. Right: Laplacian pyramid blend, which creates color blends as wide as the wide

linear blend while preserving contrast and avoiding feature overlap and ghosting.

lighting discontinuities. We show an example of normal map blending in Figure 11,
where our method demonstrates the same perceptual smoothness of wide blends while
preserving the fine details and edges.

As an additional experiment to showcase the strength of our method in this sce-
nario, we demonstrate blending two completely unrelated textures in Figure 12. Our
method blends colors similarly to wide blends while preserving local features without
visible ghosting.

7.2. Procedural Texture Generation and Texture Tiling

Texture synthesis and hexagonal tiling literature [Burley 2019; Heitz and Neyret 2018;
Mikkelsen 2022] inspired our work, and our method is designed to work in such a
scenario. With hex tiling, every evaluated pixel blends three textures based on their
distance from hexagon edges. Our method is compatible with such a setup and, simi-
larly to the original hexagonal tiling work, doesn’t require sampling hexagonal masks,
as the blending weights can be determined analytically for every level. We present an
example in Figure 13. The advantages of our method are high-quality results, no need
for precomputations, and no need for empirical tuning. The biggest disadvantage is
the increased cost. The base hex tiling method requires three samples for each mate-
rial texture in the blended region; our method increases it by a level-count-dependent
factor.

8. Limitations

8.1. Performance Cost

The main limitation of the proposed method is the increased runtime cost: additional
samples from lower mipmaps and arithmetic operations. While additional samples

35

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

use lower mipmaps and are more likely to be localized in the L1/L2 cache without us-
ing more memory bandwidth, it is possible to saturate the texture unit with too many
requests. We recommend profiling and evaluating the proposed method’s cost, espe-
cially when blending multi-channel physically based rendering materials and more
than two materials per pixel. For particularly complex but common scenarios like
terrain material blending, an alternative can be using the proposed method to blend
into a cached virtual texture [Chen 2015].

8.2. Possibility of Overshooting and Haloing

Blending Laplacians independently and at different rates can produce halos or over-
shooting (Gibbs phenomenon) and negative values. This was reported as a problem in
HDR exposure fusion literature with proposed heuristics and workarounds [Hasinoff
et al. 2016]. We have not observed those problems using a bilinear upsampling fil-
ter in the evaluated examples. Furthermore, using only a few Laplacian levels limits
the maximum potential halo size. However, we recommend clamping the blended
textures to the original texture value range [0, 1].

8.3. Possibility of Visible Aliasing on Animated Content

If the material blending mask or blended textures are animated, imperfect filtering
during the Laplacian construction can lead to aliasing. While high-quality filters
would minimize this problem, it can occur when using a typical box filter and bilinear
upsampling (Section 5.2). We note that it is similar to any dynamic mipmap creation,
like for the bloom effect, and real-time rendering literature proposes using stronger
low-pass filters while keeping the low-cost upsampling filters [Jimenez 2014].

Figure 13. Left: Hard tiling without transition reveals an obvious tile structure. Middle: Soft

blending causes ghosting and contrast loss. Right: Laplacian blending retains most contrast

and appearance while not producing visible tiles.

36

http://jcgt.org


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

9. Conclusion

In this work, we proposed an efficient, GPU-friendly adaptation of Laplacian image
blending for real-time rendering applications—semi-procedural materials, material
texture layering, and example-based synthesis like hex tiling. The proposed method
can be used both in a fully automated setting and presented to the artists as an addi-
tional tool for creating and blending textures and materials.

Perceptual characteristics of Laplacian pyramids have been used in image pro-
cessing and computational photography literature for many years. Meanwhile, real-
time graphics use image pyramids almost exclusively for performance acceleration
and processing some effects at lower resolutions.

While different performance and memory storage requirements between different
computer science domains require re-designing and approximating key components
of any adapted algorithm, we believe that computer graphics can benefit from further
adoption of computational photography techniques such as multi-level signal decom-
position and nonlinear blending and filtering.

References

ADOBE. Substance 3D Designer: Blending modes description, 2023. URL:
https://substance3d.adobe.com/documentation/sddoc/blending-

modes-description-132120605.html. 22, 34

BROWN, M. AND LOWE, D. Recognising panoramas. In Proceedings of the Ninth IEEE In-
ternational Conference on Computer Vision, volume 2, pages 1218–1225. IEEE Computer
Society, 2003. URL: https://doi.org/https://doi.org/10.1109/ICCV.
2003.1238630. 23, 24

BURLEY, B. Physically-based shading at disney. ACM SIGGRAPH course, 2012. URL:
https://disneyanimation.com/publications/physically-based-

shading-at-disney/. 22

BURLEY, B. On histogram-preserving blending for randomized texture tiling. Journal of
Computer Graphics Techniques (JCGT), 8(4):31–53, 2019. URL: https://jcgt.
org/published/0008/04/02/. 23, 35

CHEN, K. Adaptive virtual texture rendering in Far Cry 4. Presented at Game Developers
Conference, 2015. URL: https://gdcvault.com/play/1021761/Adaptive-
Virtual-Texture-Rendering-in. 36

DUCHON, C. E. Lanczos filtering in one and two dimensions. Journal of Applied Meteorol-
ogy and Climatology, 18(8):1016–1022, 1979. URL: https://doi.org/10.1175/
1520-0450(1979)018<1016:LFIOAT>2.0.CO;2. 29

EFROS, A. Image pyramids and blending. Lecture from Computational Photography
course, Carnegie Mellon University, 2005. URL: http://graphics.cs.cmu.edu/
courses/15-463/2005_fall/www/Lectures/Pyramids.pdf. 23, 24, 25

37

http://jcgt.org
https://substance3d.adobe.com/documentation/sddoc/blending-modes-description-132120605.html
https://substance3d.adobe.com/documentation/sddoc/blending-modes-description-132120605.html
https://doi.org/https://doi.org/10.1109/ICCV.2003.1238630
https://doi.org/https://doi.org/10.1109/ICCV.2003.1238630
https://disneyanimation.com/publications/physically-based-shading-at-disney/
https://disneyanimation.com/publications/physically-based-shading-at-disney/
https://jcgt.org/published/0008/04/02/
https://jcgt.org/published/0008/04/02/
https://gdcvault.com/play/1021761/Adaptive-Virtual-Texture-Rendering-in
https://gdcvault.com/play/1021761/Adaptive-Virtual-Texture-Rendering-in
https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
http://graphics.cs.cmu.edu/courses/15-463/2005_fall/www/Lectures/Pyramids.pdf
http://graphics.cs.cmu.edu/courses/15-463/2005_fall/www/Lectures/Pyramids.pdf


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

FOURNIER, R. AND SAUVAGE, B. Mix-max: A content-aware operator for real-time
texture transitions. Computer Graphics Forum, 43(6):e15193, 2024. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.15193. 23

GALERNE, B., LAGAE, A., LEFEBVRE, S., AND DRETTAKIS, G. Gabor noise by example.
ACM Transactions on Graphics, 31(4):73:1–73:9, 2012. URL: https://doi.org/
https://doi.org/10.1145/2185520.2185569. 23

HASINOFF, S. W., SHARLET, D., GEISS, R., ADAMS, A., BARRON, J. T., KAINZ, F.,
CHEN, J., AND LEVOY, M. Burst photography for high dynamic range and low-light imag-
ing on mobile cameras. ACM Transactions on Graphics, 35(6):192:1–192:12, 2016. URL:
https://doi.org/https://doi.org/10.1145/2980179.2980254. 23, 36

HEITZ, E. AND NEYRET, F. High-performance by-example noise using a histogram-
preserving blending operator. Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 1(2):31:1–31:25, 2018. URL: https://doi.org/https:
//doi.org/10.1145/3233304. 22, 23, 24, 26, 35

JIMENEZ, J. Next generation post-processing in Call of Duty: Advanced War-
fare. SIGGRAPH course: Advances in Real-Time Rendering in Games, 2014.
URL: https://www.iryoku.com/next-generation-post-processing-

in-call-of-duty-advanced-warfare/. 36

MERTENS, T., KAUTZ, J., AND VAN REETH, F. Exposure fusion. In 15th Pacific Conference
on Computer Graphics and Applications (PG’07), pages 382–390. IEEE, 2007. URL:
https://doi.org/https://doi.org/10.1109/PG.2007.17. 23, 24

MIKKELSEN, M. S. Practical real-time hex-tiling. Journal of Computer Graphics Tech-
niques (JCGT), 11(3):77–94, August 2022. ISSN 2331-7418. URL: http://jcgt.
org/published/0011/03/05/. 22, 35

NEUBELT, D. AND PETTINEO, M. Crafting a next-gen material pipeline for The Order:
1886, 2013. URL: https://blog.selfshadow.com/publications/s2013-
shading-course/. 22, 34

PÉREZ, P., GANGNET, M., AND BLAKE, A. Poisson image editing. In ACM SIG-
GRAPH 2003 Papers, pages 313–318. ACM, 2003. URL: https://doi.org/https:
//doi.org/10.1145/1201775.882269. 23

PHARR, M., WRONSKI, B., SALVI, M., AND FAJARDO, M. Filtering after shading with
stochastic texture filtering. Proceedings of the ACM on Computer Graphics and Interactive
Techniques, 7(1):14:1–14:20, 2024. URL: https://doi.org/https://doi.org/
10.1145/3651293. 32

YU, Q., NEYRET, F., BRUNETON, E., AND HOLZSCHUCH, N. Lagrangian texture ad-
vection: Preserving both spectrum and velocity field. IEEE Transactions on Visualization
and Computer Graphics, 17(11):1612–1623, 2010. URL: https://doi.org/https:
//doi.org/10.1109/TVCG.2010.263. 23

38

http://jcgt.org
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.15193
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.15193
https://doi.org/https://doi.org/10.1145/2185520.2185569
https://doi.org/https://doi.org/10.1145/2185520.2185569
https://doi.org/https://doi.org/10.1145/2980179.2980254
https://doi.org/https://doi.org/10.1145/3233304
https://doi.org/https://doi.org/10.1145/3233304
https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare/
https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare/
https://doi.org/https://doi.org/10.1109/PG.2007.17
http://jcgt.org/published/0011/03/05/
http://jcgt.org/published/0011/03/05/
https://blog.selfshadow.com/publications/s2013-shading-course/
https://blog.selfshadow.com/publications/s2013-shading-course/
https://doi.org/https://doi.org/10.1145/1201775.882269
https://doi.org/https://doi.org/10.1145/1201775.882269
https://doi.org/https://doi.org/10.1145/3651293
https://doi.org/https://doi.org/10.1145/3651293
https://doi.org/https://doi.org/10.1109/TVCG.2010.263
https://doi.org/https://doi.org/10.1109/TVCG.2010.263


Journal of Computer Graphics Techniques
GPU-Friendly Laplacian Texture Blending

Vol. 14, No. 1, 2025
http://jcgt.org

Index of Supplemental Materials

A WebGL demo is provided as supplementary material.
Download:

• https://jcgt.org/published/0014/01/02/supplement_demo.zip

Run live:
• https://jcgt.org/published/0014/01/02/supplement_demo

Author Contact Information
Barlomiej Wronski
NVIDIA, USA
bwronski@nvidia.com

Bartlomiej Wronski, GPU-Friendly Laplacian Texture Blending, Journal of Computer Graph-
ics Techniques (JCGT), vol. 14, no. 1, 21–39, 2025
http://jcgt.org/published/0014/01/02/

Received: 2023-03-28
Recommended: 2025-01-09 Corresponding Editor: Angelo Pesce
Published: 2025-02-19 Editor-in-Chief: Marc Olano

© 2025 Bartlomiej Wronski (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

39

http://jcgt.org
https://jcgt.org/published/0014/01/02/supplement_demo.zip
https://jcgt.org/published/0014/01/02/supplement_demo
mailto:bwronski@nvidia.com
http://jcgt.org/published/0014/01/02/
http://creativecommons.org/licenses/by-nd/3.0/

