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Figure 1. Spectral images have a significant memory footprint because they store a large

number of spectral bands. In this paper, we propose a lossy compression scheme that signif-

icantly reduces their file size with a negligible loss in quality. We use a cosine transform and

separate overall brightness from the shape of the spectrum. The resulting channels are stored

using JPEG XL, which provides state-of-the-art lossy compression.

Abstract

The advantages of spectral rendering are increasingly well known, and corresponding ren-
dering algorithms have matured. In this context, spectral images are used as input (e.g., re-
flectance and emission textures) and output of a renderer. Their large memory footprint is one
of the big remaining issues with spectral rendering. Our method applies a cosine transform in
the wavelength domain. We then reduce the dynamic range of higher-frequency Fourier co-
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efficients by dividing them by the mean brightness, i.e., the Fourier coefficient for frequency
zero. Then we store all coefficient images using JPEG XL. The mean brightness is perceptu-
ally most important and we store it with high quality. At higher frequencies, we use higher
compression ratios and optionally lower resolutions. Our format supports the full feature set
of spectral OpenEXR, but compared to this lossless compression, we achieve file sizes that
are 10 to 60 times smaller than their ZIP compressed counterparts.

1. Introduction

Spectral rendering is key to accurate color rendition. It describes colors by contin-
uous spectra, which provide a brightness for each wavelength. For any given RGB
color, there are many different matching spectra. These are called metamers, and in
a renderer it makes a difference which metamer is used. For example, when differ-
ent metameric light sources illuminate the same surface, the reflected color may be
perceived differently because the metameric spectra get multiplied by the spectrum
for the albedo of the surface. RGB renderers typically pretend that all light con-
sists of only three different wavelengths and cannot account for metamers correctly.
Thus, spectral rendering offers a tangible advantage. The wavelength domain be-
comes yet another dimension for integration, which can be handled with fairly low
overhead using techniques such as hero wavelength spectral sampling [Wilkie et al.
2014]. Therefore, it is gaining traction in production rendering.

However, the transition to spectral rendering has a big impact on storage require-
ments because RGB triples are replaced by more expressive spectral representations.
Renderers use several different kinds of spectral data, and all of these may need to be
stored in high-resolution images with a spectrum per pixel. Emission spectra describe
colors of light sources. They typically have high dynamic range and may have a large
number of sharp peaks, which calls for dense sampling. Reflectance spectra describe
how the albedo of a surface depends on the wavelength. These are bounded between
zero and one to satisfy energy conservation, and measured data show that they are
rather smooth. Fluorescent surfaces absorb light at one wavelength and immediately
reemit it at another wavelength. That calls for bispectral data, i.e., for functions that
depend on two wavelength parameters. Finally, the rendered image can be stored
in a spectral fashion, which makes it agnostic to particular color spaces or camera
response curves. These images essentially behave like emission spectra.

Fichet et al. [2021] store these data using samples at many wavelengths. They
established conventions for how to name channels in OpenEXR files to ease the ex-
change of all sorts of spectral data between applications. However, OpenEXR only
supports basic lossless or lossy compression of its floating-point channels, and the
number of channels in these spectral images tends to be large. Therefore, spectral
EXR files are generally much larger than their RGB counterparts.
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As remedy for this situation, we propose a simple scheme for lossy compression
of spectral images. To exploit redundancy across different spectral channels, we take
a cosine transform in the wavelength domain.All higher-order Fourier coefficients get
divided by the DC component (i.e., the mean) to squash their dynamic range. These
channels are then stored using JPEG XL, which provides state-of-the-art lossy im-
age compression. Optionally, the resolution may be reduced for higher-order Fourier
coefficients, which essentially performs chroma subsampling. We provide a com-
pression and decompression utility that converts between spectral OpenEXR and our
spectral JPEG XL, retaining all channels and metadata. Our evaluation on a variety of
spectral images shows that we typically reach compression ratios compared to spec-
tral OpenEXR with ZIP compression ranging from 10× to 60× without introducing
noticeable error.

2. Related Work

Until recently, there were no clearly standardized formats for spectral images in ren-
dering. A common practice is to store one RGB image per spectral channel [Yasuma
et al. 2010]. Domain-specific formats such as ENVI for satellite data are clearly stan-
dardized but lack features that are relevant for rendering such as support for bispectral
data or polarization [ENVI]. Therefore, it has been difficult to exchange spectral data
between different renderers.

Spectral OpenEXR [Fichet et al. 2021] establishes a standard to alleviate this
problem. The basic approach is to store continuous spectra by providing samples for
sufficiently many wavelengths. All these samples are stored in a single OpenEXR
file using one channel per wavelength sample. The channel names are standardized
to organize them across different layers, providing the wavelength and some meta
data. In this manner, the format supports spectral data, bispectral data, emission,
reflectance, polarization, and stereoscopic images. It also includes RGB channels to
offer a meaningful preview in standard EXR viewers.

The format inherits its compression methods from OpenEXR. There are three
approaches for lossless compression [OpenEXR]: PIZ applies a wavelet transform
and Huffman coding, ZIP applies zlib to differences of adjacent pixels, and RLE uses
run-length encoding on such differences. Additionally, there are two simple lossy
compression schemes [OpenEXR]: PXR24 discards the least significant 8 mantissa
bits of 32-bit floats before applying ZIP, and B44 achieves a fixed compression rate
by packing blocks of 4 × 4 half-precision floats into 14 bytes. All of these methods
roughly halve the file size in common use cases [OpenEXR].

For low dynamic range RGB images, lossy compression methods achieve much
higher compression ratios. Early image compression formats (e.g., GIF) use color
palette reduction, both because of the limitation of the display devices of the time and
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for storage efficiency. Later, JPEG [ITU 1992] offered lossy compression using the
discrete cosine transform of 8×8 tiles and separation of luminance and chrominance.
A quantization matrix diminishes the accuracy of the resulting coefficients, usually
saving more on higher frequencies, before run-length encoding and entropy coding
are applied. The used color space enables additional lossy compression by means of
downsampling of chrominance channels, a practice known as chroma subsampling.
This practice works well since human observers are less sensitive to spatial variations
in chrominance. JPEG XL is an evolution of JPEG [ISO 2024]. It improves compres-
sion ratios, adds the option for lossless compression, and supports high dynamic range
images. We use it as the foundation of our spectral format with lossy compression.

Spectral upsampling makes these image formats applicable for spectral render-
ing. The goal is to convert RGB triples into plausible reflectance spectra, which
match the RGB triple. An option for sRGB is to combine hard-coded spectra in a
piecewise-linear fashion [Smits 1999]. Alternatively, a lookup table can turn RGB
triples into coefficients of a suitable three-dimensional family of smooth functions
[Jakob and Hanika 2019]. It is also possible to characterize spectra by their Fourier
coefficients. A nonlinear reconstruction method known as bounded MESE (maximum
entropy spectral estimate) turns these Fourier coefficients into valid reflectance spec-
tra with values in [0, 1] [Peters et al. 2019]. RGB triples can be converted to three
Fourier coefficients, but unlike other representations, this method also scales to more
accurate spectral representations with more than three coefficients.

Satellite imagery also uses spectral images extensively. Due to the large size of
the raw data, lossy spectral compression is a powerful asset, reducing traffic from
the satellite to a ground station on a constrained downlink bandwidth. Previous work
on lossy spectral image compression mostly targeted this application. Kaarna [2007]
gave a summary of different lossy compression techniques. Our spectral decompo-
sition is similar in spirit to the discrete cosine transform (DCT)-based approach of
Abousleman et al. [1995]. The authors proposed a 3D DCT encoding on 8 × 8 × 8

blocks or a 2D DCT combined with predictive coding (DPCM, or differential pulse-
code modulation) on the spatial and spectral domain.

Our work rather focuses on spectral images for computer graphics. This allows us
to reuse lossy compression techniques designed for RGB image compression, such as
lowering chrominance resolution found in AC components and allocating a varying
compression ratio depending on the signal frequency. Our work does not propose a
new lossy compression scheme for single-channel images. Instead, we fully rely on
JPEG XL for the lossy compression. Taking inspiration from Peters et al. [2019],
we utilize a cosine transform of spectra to feed JPEG XL with framebuffers for lossy
compression and control the compression quality of each framebuffer.
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3. Spectral JPEG XL

We now introduce our spectral JPEG XL format. The goal is to cover the full feature
set of spectral OpenEXR while offering much higher compression ratios at the cost
of some loss in quality. To benefit from the fact that spectra are often low-frequency
functions, we compute Fourier coefficients of spectra. When there are large brightness
variations in the image, the resulting coefficients will all have high dynamic range.
We diminish this dynamic range for all but one coefficient by dividing all higher-
order coefficients by the coefficient for frequency zero (Section 3.1). Then we store
each individual coefficient using JPEG XL (Section 3.2). We have an automated
method to determine how to trade quality against file size for different coefficients
in an automated fashion (Section 3.3). Our format supports chroma subsampling
(Section 3.4), supports bispectral images (Section 3.6), and preserves the metadata of
spectral OpenEXR (Section 3.7). Our reference implementation converts back and
forth between spectral OpenEXR and spectral JPEG XL (Section 3.8).

3.1. Computing Quantized Fourier Coefficients

Consider a spectral image with samples at the sorted wavelengths λ0, . . . , λn−1 ∈ R.
For a single pixel, we have values g0, . . . , gn−1 ∈ R. For reflectance spectra as well as
many emission spectra, this signal will be rather low frequency. We compute Fourier
coefficients to be able to exploit this redundancy in the samples. A common discrete
cosine transform treats each sample like a Dirac-δ pulse at its wavelength. This notion
does not reflect the smooth nature of most real spectra and is incompatible with exist-
ing reconstructions of spectra from Fourier coefficients [Peters et al. 2019]. Instead,
we compute a cosine transform for the signal that arises from linear interpolation.

To keep our exposition self-contained, we reproduce the corresponding formulas
here [Peters et al. 2019]. First, we have to map wavelengths to phases for all l ∈
{0, . . . , n− 1}:

φl := π
λl − λ0

λn−1 − λ0
− π ∈ [−π, 0].

Note that we only use one half of the domain [−π, π] since the signal is implicitly
mirrored on the x-axis. That means that we are using a cosine transform instead of
a periodic Fourier transform. That is equivalent to computing Fourier coefficients
for a signal on [−π, 0] that has been mirrored with regards to the y-axis to make it
even. The interpolated signal on the interval [φl, φl+1] has the following gradient and
y-intercept:

al :=
gl+1 − gl
φl+1 − φl

, bl := gl − alφl. (1)

We get Fourier coefficients by solving an integral in closed form. The result for
frequency zero is

c0 :=
1

π

n−2∑
l=0

[al
2
φ2 + blφ

]φl+1

φl

∈ R. (2)
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The Fourier coefficient for frequency j ∈ {1, . . . , n− 1} is

cj :=
1

π
ℜ

n−2∑
l=0

[(
al
1 + ijφ

j2
+ bl

i

j

)
exp(−ijφ)

]φl+1

φl

∈ R, (3)

where ℜ denotes taking the real part of a complex number.
Note that we compute a total of n real Fourier coefficients. Our reasoning is

that we want to be able to get an exact reconstruction of all spectral bands out of
the Fourier coefficients as long as they are stored without error. We could use the
(bounded) MESE [Peters et al. 2019], but that would reconstruct a continuous spec-
trum with slightly mismatching values at λ0, . . . , λn−1. This source of error is eas-
ily avoided. Equations (1), (2), and (3) map g := (g0, . . . , gn−1) ∈ Rn to c :=

(c0, . . . , cn−1) ∈ Rn in a linear fashion. We can feed this transform with the canoni-
cal basis vectors e0, . . . , en−1 ∈ Rn to get the column vectors of a matrix A ∈ Rn×n

such that c = Ag. Then it is easy to reconstruct the sample values from exact Fourier
coefficients: g = A−1c. We use this formula for decompression. Note that the in-
verse matrix A−1 only needs to be computed once per spectral image. The cost is
negligible.

In images with large brightness variation, all Fourier coefficients will exhibit a
similar spatial pattern with high dynamic range. Naturally, that makes them difficult
to compress on their own. To alleviate this problem, we divide c1, . . . , cn−1 by c0.
Since spectra are expected to be positive, c0 = 0 also implies c1, . . . , cn−1 = 0;
therefore, it is easy to avoid division by zero with a branch:

dj :=


cj
c0

if c0 ̸= 0,

0 otherwise.

In any case, cj = djc0. The Fourier coefficient c0 is the average value across the
whole spectrum, which is a natural way to define overall brightness (cf. Figure 3).
It does not correspond directly to human perception of brightness, but at least it be-
haves in a similar fashion. Thus, the division essentially normalizes spectra for equal
brightness, which should reduce the dynamic range in the coefficients considerably.

From this point onward, we treat d1, . . . , dn−1 as low dynamic range data. For
each frequency j ∈ {1, . . . , n− 1}, we compute the minimal and maximal values of
dj across the whole image, dj,min, dj,max. Then we turn the Fourier coefficients into
values between zero and one:

fj =
dj − dj,min

dj,max − dj,min
∈ [0, 1].

For decompression, we undo this transform using dj = fj(dj,max − dj,min) + dj,min.
If it is beneficial to the compression, we can quantize these normalized values to a
fixed bitrate.

54

http://jcgt.org


Journal of Computer Graphics Techniques
Compression of Spectral Images Using Spectral JPEG XL

Vol. 14, No. 1, 2025
http://jcgt.org

3.2. Compressing Image Data Using JPEG XL

Thus far, we have only transformed spectra. The next step is to store them in a way
that achieves lossy compression with good compression ratios and quality. Once
per image, we have to store dj,min, dj,max for j ∈ {1, . . . , n − 1}. Additionally,
for each pixel we store c0 ∈ R (which might have high dynamic range) as well as
f1, . . . , fn−1 ∈ [0, 1]. The file also has to hold some metadata such as λ0, . . . , λn−1;
see Section 3.7.

We store these data using the royalty-free JPEG XL image format [ISO 2024].
Its state-of-the-art lossy and lossless image compression techniques can handle many
framebuffers with different scalar types (e.g., float, half, or fixed-point with varying
bit counts) within the same file. It also enables us to store metadata in so-called
boxes. However, the reference implementation libjxl has not reached a stable version
yet. Some features are missing and others have issues. We discuss our workarounds
throughout this paper but hope that they will eventually become superfluous through
a better libjxl.

In principle, JPEG XL supports having one main image and up to 255 sub-images,
which sounds like a good match for c0 and f1, . . . , fn−1. Unfortunately, the current
implementation in libjxl does not allow us to tweak the compression ratio and sub-
sampling on a per-sub-image basis. Due to these limitations, we currently use one
JPEG XL file per channel so that we have full control over the compression param-
eters. The main file stores c0 and all metadata. This file provides a natural way to
preview spectral images in any software with JPEG XL support, since it shows the
overall brightness. Our implementation uses 32-bit floats for c0 when the spectral
OpenEXR file uses them and 16-bit floats otherwise. The remaining n− 1 files store
f1, . . . , fn−1 ∈ [0, 1] as low dynamic range images. We always set the parameter for
the compression effort of JPEG XL to 7, which is the default value in libjxl.

3.3. Optimal Compression Curves

The main parameter to trade between quality and file size in JPEG XL is the distance
level. It controls the psychovisual error metric Butteraugli, which is used by JPEG XL
to assess compression error. Exposing this parameter to the user for each frequency
j ∈ {1, . . . , n−1} would be nonintuitive. At the same time, it is not reasonable to use
the same value across all frequencies. For smooth spectra, high-frequency coefficients
have lower variation prior to renormalization, and in rendering they usually have less
impact on final colors. To provide a more intuitive control, we propose to expose two
quality parameters, one for the high dynamic range DC component (i.e., frequency
zero) and another for the AC components (higher frequencies). We determine all
other distance levels in an automated fashion.

The distance level for f1 is controlled by the user directly. We compress f1 using
this distance level. Then we decompress and compute the root-mean-square error
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Figure 2. The average of the compression curves across each of our two databases of spectral

images. Dynamic curves are produced by our optimization procedure; deterministic curves use

Equation (5). Curves for individual images can be found in the supplemental materials. The

legend states the used subsampling ratios and distance levels.

(RMSE) that we get when all Fourier coefficients except for f1 are stored exactly (see
Equation (6)). We can also evaluate this RMSE for a compressed version of fj with
j ∈ {2, . . . , n − 1} (using exact versions of all other coefficients). Our goal is to
achieve a similar contribution to the error from each frequency, while using greater
distance levels for higher frequencies. We compress and decompress each coefficient
image fj repeatedly inside a binary search to find distance levels that come close to
this goal. The resulting distance level for each frequency is our compression curve.

The repeated compression and decompression in this procedure is costly. For
images of size 512 × 512 × 31, we observe computation times between 20 and 75
seconds. The resulting compression curves are fairly diverse (see Figure 2). A simple
alternative is to use a flat compression curve across all AC components, but that is
suboptimal. As a middle ground between these two extremes, we propose a hard-
coded compression curve. It is a shifted sigmoid function S(x) starting at the user-
provided value L1 and ending at the maximal allowed distance level Ln−1 = 15:

S(x) :=
1

1 + exp(−x)
, (4)

Lj := L1 +
S
(
102j−n

n − 1
)
− S

(
102−n

n − 1
)

S
(
102(n−1)−n

n − 1
)
− S

(
102−n

n − 1
)(Ln−1 − L1). (5)

Our optimization of compression curves is inspired by the quantization of Fourier
coefficients in related work [Rapp et al. 2022]. We also tried using the method pro-
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(a) Spectral image converted
to RGB.

(b) DC component c0. (c) Normalized AC compo-
nents dj converted to RGB.

Figure 3. We normalize the AC components of the signal by dividing out the DC component.

The DC component (b) is the mean across wavelengths and roughly corresponds to overall

brightness. The normalized AC components (c) correspond to the chrominance.

posed in this work for quantization of our Fourier coefficients. However, lossy JPEG
XL compression does not seem to benefit from more aggressive quantization. For this
reason, we use a fixed high number of bits for quantization.

3.4. Chroma Subsampling

The human visual system is far more sensitive to spatial variation in luminance than
in chrominance. Thanks to the division by the DC component c0, our spectral repre-
sentation has a separation of luminance (or more precisely, mean energy across the
spectrum) and chrominance built in (Figure 3). In addition to the methods presented
thus far, we can bring down the storage cost for the AC components f1, . . . , fn−1 by
simply reducing their resolution. For our experiments, we halve the horizontal and
vertical resolution using the up- and downscaling provided by libjxl. With our param-
eters, this implementation uses a 12 × 12 kernel for downsampling. It also reduces
ringing through clamping based on original image values, and it is designed to work
well with the upsampling method in libjxl. This method gives an appreciable file size
reduction. Error metrics like the RMSE go up significantly, but perceptually the errors
are more acceptable.

3.5. RGB Channels

Spectral OpenEXR supports storing RGB channels so that any software with EXR
support will display a meaningful preview of the spectral data. These channels have
a high dynamic range, and storing them explicitly in spectral JPEG XL would incur a
large cost. Instead, we argue that the image holding c0 has to be enough as a preview.
Upon compression, we discard RGB channels but store whether they were present
as metadata. If they were present, they are recreated from the decompressed spectra
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using the definition of the color space indicated in the metadata. Then the spectral
OpenEXR file coming out of the decompression procedure can be previewed just like
the original file.

3.6. Bispectral Images

Bispectral images are still seldomly found, but since spectral OpenEXR supports
them, we also want to cover this use case in a simple fashion. Like spectral OpenEXR,
we treat a bispectral image as a stack of spectral images. The first one of those holds
the diagonal of the reradiation matrix, where both wavelengths are equal. It corre-
sponds to reflectance without fluorescence, and therefore it is stored in a reflective
layer (“T”). Then there is one layer per incoming wavelength λi providing reradiation
spectra for a monochromatic illuminant (“T.λinm”).

3.7. Metadata

We use the JPEG XL box mechanism to hold all metadata of the original spectral
OpenEXR file in our Spectral Graphics Extended Group (SGEG) box. It holds infor-
mation about the scene, capture, photographic metadata, or render presets. Additional
spectral OpenEXR metadata can characterize the spectral data in terms of radiometric
units or spectral response curves. Some metadata about our spectral JPEG XL format
come on top of that. Overall, the SGEG box stores the following information:

• The revision tag of the file format to allow future improvements,

• The number of JPEG XL files needed to store all framebuffers,

• Information for each spectral image,

• Information for each additional OpenEXR framebuffer,

• A bitstream containing the original OpenEXR attributes.

Since the OpenEXR layout for spectral data allows storing multiple spectral im-
ages, e.g., stereo images, we can have multiple spectral images represented by a single
spectral JPEG XL file collection. Spectral OpenEXR images may also contain addi-
tional non-spectral framebuffers, although we remove the RGB buffers to save space.
Each spectral image has the following metadata:

• The root name, e.g., “left.S0” for the left image of an emissive image,

• The indices of the relevant framebuffers,

• The sampled wavelengths λ0, . . . , λn−1,

• The minimal and maximal values for each frequency dj,min, dj,max.
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For standard OpenEXR framebuffers, we store:

• The corresponding layer name in the original OpenEXR file,

• The framebuffer index in the JPEG XL file.

3.8. Reference Implementation

We provide an open source C++ implementation of our compression method as sup-
plemental using OpenEXR 3.3.2 and libjxl 0.11.1. It provides two executables:

• compress converts a spectral OpenEXR image into a compressed spectral
JPEG XL, potentially with multiple views and additional framebuffers treated
as gray images.

• decompress allows for the decompression of a spectral JPEG XL image into
an OpenEXR image, including additional framebuffers and original metadata.

The compression utility takes command-line parameters for the distance level for
c0 and the quantization, distance level, and subsampling for f1. Additional arguments
determine whether the compression curve is flat, deterministic (Equation (5)), or dy-
namically optimized. Since lossy JPEG XL does not benefit from quantization, we
recommend keeping the quantization flat at a high bitrate. The two distance levels are
the main parameters to control the file size (bigger values mean smaller files). We rec-
ommend keeping the DC component c0 lossless (distance level 0) or nearly lossless
(distance level 0.5). Reasonable values of the distance level for f1 are between 0 and
3, and the deterministic compression curve gives fast compression with a reasonable
tradeoff between quality and file size. Compression times can be long, especially with
optimization of compression curves, but decompression is fast and the computation
time barely depends on the chosen parameters.

4. Results

To evaluate our methods, we use two databases of measured spectral images (Sec-
tion 4.1). We systematically analyze the impact of different parameter choices on
the quality of our results (Section 4.2). Then we compare our method to a simple
approach where JPEG XL is applied to each spectral band directly (Section 4.3).
We also provide statistics on the quality and compression ratio for all images in our
database (Section 4.4) and detailed results in the supplemental material. Finally, we
discuss the run time of our compression and decompression method (Section 4.5).

4.1. Databases of Spectral Images

We evaluate our compression method using two databases of spectral images. The
CAVE database [Yasuma et al. 2010] consists of 32 still photographs of various ob-
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jects with controlled indoor lighting divided into five sections: “stuff,” “skin and hair,”
“paints,” “food and drinks,” and “real and fake.” The authors provide them as PNGs
with 16-bit unsigned integers per band. watercolors_ms is an exception with 8
bits, and therefore we discard it. The resolution is 512× 512.

The Bonn database [Merzbach et al. 2019] contains 13 material samples measured
using an X-Rite Tac7. We use the spectral albedo and specular maps out of these
measurements, providing a set of 26 spectral images. These have been generated
from RGB maps that come out of the svBRDF fitting procedure, but the spectral
upsampling method is overfitted to the measured spectra for each individual material
[Peters et al. 2019]. The resolution varies from 512× 512 to 2048× 2048.

With these two databases, we have emission spectra in the CAVE database as well
as reflectance spectra in the Bonn database. For both of them, the wavelengths range
from 400 to 700 nm with 10 nm increment (31 bands). We have converted all of
these images to spectral OpenEXR with 32-bit floats. Additionally, we use a rendered
spectral image with a fluorescent illuminant and 81 bands (Figure 1).

4.2. Impact of Compression Parameters

Our method exposes three parameters to control the quality: the distance level for
the DC component, the distance level for the first AC component, and the chroma
subsampling ratio. We will now investigate the impact of these parameters on com-
pression ratios and quality one by one to arrive at recommended configurations used
in the remainder of our evaluation.

The distance level for the DC component c0 has a strong perceptual impact. The
DC component captures the mean brightness of the spectrum and thus is closely re-
lated to luminance. Figure 4 shows that even moderately high values lead to a clear
degradation in quality. We recommend keeping the DC component lossless (distance
level 0) or using a small distance level of 0.5.

The distance level for the first AC component has a weaker impact on the quality.
Figure 5 shows that artifacts only become visible in RGB images at extreme values.
Figure 6 shows corresponding spectra for select pixels. We observe that spectra for
flat image regions are preserved well (red and blue graphs). The green pixel is in a re-
gion with high-frequency spatial variation, and therefore the higher-frequency Fourier
coefficients also have greater error, which manifests as high-frequency noise (green
graphs). These results use our deterministic compression curve (Equation (5)). Since
these curves always reach the maximal distance level of 15 eventually, we recommend
using moderate values as the starting point. In our experiments we use a distance level
of 1 or 2.

Chroma subsampling brings the file size of AC components further down by
reducing their resolution. Figure 7 shows the impact for different subsampling ra-
tios. The quality degradation for a ratio of 1:2 is perceivable in magnified insets but
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Figure 4. Increasing the distance level for the DC component leads to perceivable artifacts

quickly. We use deterministic compression curves starting at L1 = 1 and no chroma subsam-

pling.
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Figure 5. High distance levels are acceptable for the first AC component. The compression

curve is deterministic (Equation (5)), DC is lossless, and we do not use chroma subsampling.
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Figure 6. Spectra for three highlighted pixels from the decompressed spectral images in Fig-

ure 5. In flat image regions, spectra are preserved well, but high-frequency image regions

incur high-frequency noise in the wavelength domain.
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Figure 7. Comparison of different subsampling ratios. The DC component is lossless and we

use a deterministic compression curve with L1 = 1.
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should be unproblematic in many cases. At higher ratios, the fidelity of color tran-
sitions diminishes noticeably. For most cases, we recommend sticking to 1:1 or 1:2.
Whether 1:2 subsampling is acceptable depends on the use case. For example, the
Bonn database has many sharp color transitions, and our error metrics increase sub-
stantially when enabling chroma subsampling (see Section 4.4).

In summary, the distance level for DC should be 0 or 0.5, reasonable distance
levels for the first AC component are 1 or 2 combined with deterministic or dynamic
compression curves, and 1:2 chroma subsampling may be used when that quality
degradation is acceptable.

4.3. Comparison to Simple JPEG XL Compression

A simpler approach compared to our method is to store each spectral band as a JPEG
XL file directly. The number of files will be the same, and while there is no pre-
view of overall brightness, the spectral bands themselves also provide a reasonable
preview. Figure 8 compares this simple method to our approach. Unsurprisingly,
the simple method introduces greater error to the overall brightness and contrast of
images, which manifests as excessive blur and blocky ringing artifacts. With our
method, we have explicit control over the compression ratio of the mean brightness
and can preserve this important quantity more faithfully.

4.4. Quality Statistics

Our supplemental document provides an extensive collection of results and statistics
for all images in our database. Here we provide a summary of these results. For this
purpose, we need a scalar-valued image error metric. In general, perceptual metrics
are preferable, but for spectral images there are no agreed-upon standards for such
metrics and what is meaningful depends on the use case. Therefore, we use a simple
RMSE:

RMSE(g, g′) :=

√√√√∑w−1
x=0

∑h−1
y=0

∑n−1
l=0

(
g′x,y,l − gx,y,l

)2

whn
, (6)

where gx,y,l and g′x,y,l provide images of width w, of height h, and with n spectral
bands.

Figure 9 provides averaged statistics and scatter plots for all images in the two
databases and for different techniques and configurations. The reported compression
ratios are relative to spectral OpenEXR with lossless ZIP compression and without
RGB channels. We observe that the simple method performs relatively well in terms
of RMSEs, which is unsurprising since the RMSE rewards low errors on each channel
individually. Still, our method achieves similar RMSEs at similar compression ratios
but also scales to higher compression ratios. Chroma subsampling increases compres-
sion ratios considerably, especially in combination with lossy compression of the DC
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Figure 8. Comparison of our compression method to a simple method, which stores each

spectral band as a JPEG XL file. We show 50 × 50 crops to illustrate common artifacts. The

used distance levels and chroma subsampling ratios are stated below each image. Our method

uses deterministic compression curves here (Equation (5)). File sizes refer to the full image.

The simple scheme shows typical JPEG compression artifacts in the luminance. Our method

compresses the mean brightness less aggressively and thus preserves such features more

faithfully.
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Figure 9. Statistics on errors and compression ratios for our two databases. Bar plots show

average values across all images; scatter plots show results for each image individually. The

legend lists parameter values for the various distance levels and the subsampling ratio.
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(d) CAVE decompression.

Figure 10. Average computation times per pixel for our two databases.

component (red bars/markers). Even without chroma subsampling, our more aggres-
sive configuration (orange bars/markers) achieves average compression ratios of 7.22
on the Bonn database and 29.02 on the CAVE database compared to OpenEXR 32-bit
float framebuffers with ZIP compression.

4.5. Run Time

We measure timings on an Intel Core i7-13700K CPU and 32 GB of RAM with a
Samsung SSD 990 PRO 2TB NVMe SSD. Figure 10 shows average timings, and the
supplemental materials provide timings for each individual image. For compression,
our method with flat or deterministic compression curves and no chroma subsampling
is slower than the simple method, but compression only takes about twice as long as
decompression. Chroma subsampling has a surprisingly high cost during compres-
sion, presumably due to the sophisticated implementation of downsampling in libjxl.
The overhead for the optimization of compression curves is substantial. In many
cases, it could be hard to justify because deterministic curves also work well. During
decompression, the overhead of our method is low and timings for all techniques are
similar.
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5. Conclusion

Large file sizes are one of the major remaining drawbacks when transitioning from
an RGB renderer to a spectral renderer. Our work is the first to address this problem
directly but probably not the last. By separating mean brightness and chrominance,
our format achieves good compression ratios. However, limitations of the latest libjxl
keep us from storing complete spectral images in a single file, which makes it less
convenient to handle our spectral JPEG XL. There is further potential for compression
by exploiting redundancies across different channels more effectively. In production
rendering, there may also be a strong desire to have lossless compression with better
compression ratios compared to spectral OpenEXR. We hope that our work helps to
put the problem of spectral image compression on the map and that it will motivate
improvements to libjxl.

Desirable features for future versions of libjxl would be:

• Handling RGB framebuffers and scalar-valued framebuffers in the same file
(for RGB previews),

• Supporting an arbitrary number of framebuffers (currently limited to 256),

• Independent control of distance levels and resolutions for different framebuffers
within the same file.
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