
Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Arc Blanc: a real time ocean simulation framework

David Algis

Université de Poitiers

and Studio Nyx

Bérenger Bramas

INRIA Nancy

Emmanuelle Darles

Université de Poitiers

Lilian Aveneau

Université de Poitiers

Figure 1. Example of rendering of the Arc Blanc framework.

Abstract

The oceans cover the vast majority of the Earth. Therefore, their simulation has many scien-

tific, industrial and military interests, including computer graphics domain. By fully exploit-

ing the multi-threading power of GPU and CPU, current state-of-the-art tools can achieve

real-time ocean simulation, even if it is sometimes needed to reduce the physical realism for

large scenes. Although most of the building blocks for implementing an ocean simulator are

described in the literature, a clear explanation of how they interconnect is lacking. Hence,

this paper proposes to bring all these components together, detailing all their interactions, in a

comprehensive and fully described real-time framework that simulates the free ocean surface

and the coupling between solids and fluid. This article also presents several improvements

to enhance the physical realism of our model. The two main ones are: calculating the real-

time velocity of ocean fluids at any depth; computing the input of the fluid to solid coupling

algorithm.

70

http://jcgt.org
https://orcid.org/0009-0004-6033-2389

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

1. Introduction

1.1. Context

Simulating the dynamics of an ocean and its surrounding elements remains an im-

portant objective in computer graphics. As all the oceans encompass a substantial

portion of the Earth’s surface, understanding their behavior is of paramount impor-

tance in scientific, industrial, entertainment and military fields.

The computational power of modern GPUs and CPUs, coupled with the latest

high-speed memory, has greatly simplified the processing of fluid dynamics simula-

tions. They make it possible to perform real-time simulations on large discrete grids

surrounded by solids, albeit with some physical approximations, thanks to their mas-

sively parallel capabilities.

While there are many articles describing different parts of ocean simulation, the

literature lacks papers that bring all the pieces together. This article proposes a fully

described real-time framework designed to simulate the free surface of the ocean and

the interactions between solid objects and the surrounding fluid in real time (see Fig-

ure 2). This new framework incorporates three different methods from the literature:

• The simulation of the free surface of the ocean, initially developed by Tessendorf

(2001) [Tessendorf d] and its improvements along the years [Horvath; Tessendorf

b].

• The estimation of the forces applied by the fluid on a solid mesh, mixing to-

gether different techniques [Yuksel; Kellomäki].

• The simulation of the alteration of a free surface by a solid, inspired by Cords

and Staadt works (2009) [Cords and Staadt].

To bring together these previous works, this new framework proposes two new con-

tributions:

• An algorithm to compute the ocean velocity at any depth from the simulation

of the free surface. This velocity is applied to the fluid to solid forces.

• An algorithm to compute the input of the Cords and Staadt method more real-

istically from the free surface.

This article is organized as follows. Section 2 presents the previous works related

to ocean simulation, including its interaction with solid. Sections 3 to 5 detail the

Arc Blanc framework, including the ocean surface simulation in Section 3, the action

of the fluid to solids in Section 4 and the action of a solid to the fluid in Section 5.

Section 6 discusses some results obtained with the Arc Blanc framework. At last,

Section 7 gives general conclusions.

71

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Free surface simulation

Solid to fluid action Fluid to solid action

Figure 2. Overview of the Arc Blanc framework components: free surface, solid to fluid and

fluid to solid coupling.

2. Related works

This section presents the main works related to the simulation of ocean, including the

free surface, the fluid to solid and solid to fluid coupling.

2.1. Ocean free surface simulation

J. Tessendorf (2001) [Tessendorf d] presented what could be considered a seminal

work in real-time ocean simulation. His work relies on the Fast Fourier Transform

(FFT) and statistical wave spectra to accurately find the analytical solution to an ap-

proximation of the Navier-Stokes equations on a 2D height field. This method is

commonly known as the “Tessendorf method”.

The realism of this method was significantly improved by Horvath (2015) [Hor-

vath], who proposed an empirically based directional spectrum. In addition, he pro-

posed to add a parameter called “swell”, which allows the transition from empirical

directional propagation to parallel waves.

Another notable improvement of Tessendorf’s method is the reduction of artifact

effects through the use of multiple displacement layers. This technique, introduced

by Dupuy and Bruneton (2012) [Dupuy and Bruneton], involves stacking multiple

displacement layers, each one representing different scales of wave motion. By com-

bining these layers, the artifacts and repetitive patterns that can often occur in simu-

lated water surfaces are effectively reduced or eliminated. Finally, Tessendorf (2017)

[Tessendorf b] summarized these works in a prototype framework for large-scale wa-

ter simulation.

72

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

The Arc Blanc framework aggregates all these methods in order to simulate the

ocean free surface.

2.2. Fluid to solid coupling

There are several ways to describe the motion of a solid in a given fluid. Many

particle-based methods have been developed in recent years, as presented by Koshier

et al. (2022) [Koschier et al.]. Akinci et al. (2012) [Akinci et al.] have proposed

to calculate contact forces between fluid particles and boundary ones in combina-

tion with Predictive-Corrective Incompressible Smoothed Particles Hydrodynamics

(PCISPH) [Solenthaler and Pajarola]. Ihmsen et al. (2014) [Ihmsen et al.] have ap-

plied the same principle to Implicit Incompressible SPH (IISPH), and Bender and

Koschier (2017) [Bender and Koschier] to Divergence Free SPH (DFSPH). These

works have been improved and stabilized by Gissler et al. [Gissler et al.]. These

methods look promising because of their physical accuracy. Nevertheless, their per-

formance is linked to the number of particles used for the simulation, which makes

them impossible to apply in real time for large scale environments.

Another approach related to the dynamics of a ship in water is the calculation of

the so-called Response Amplitude Operator (RAO), which is expressed using strip

theory by Salvesen et al. (1970) [Salvesen et al.]. Fonseca and Guedes Soares

(1998) [Fonseca and Soares] improved the method to support more nonlinear ef-

fects and large amplitude motions. Varela and Guedes Soares (2011) [Varela and

Guedes Soares] have used a table of pre-calculated RAO, which are later interpo-

lated to achieve an interactive frame rate. However, to our knowledge, this type of

method is either too expensive for real-time simulation or not general enough because

it requires some physical pre-computation based on computational fluid dynamics or

experimental data.

Finally, another attempt to achieve real-time performance is to approximate the

forces induced by the fluid on the solid on a mesh. Basically this is a less accurate

method, but it’s more efficient and general as it avoids significant pre-calculation.

Yuksel (2010) [Yuksel] in his thesis proposed a set of three forces: buoyancy, drag

and lift. Kellomaki (2014) [Kellomäki] focused only on buoyancy and drag forces.

Casas-Yrurzum et al. [Casas-Yrurzum et al.] simulates the motion of speedboats by

decomposing the solid as a set of small cubes. Kerner (2016) [Kerner] wrote a full

article on boat physics for video games, adding more forces to simulate slamming

and linear damping. The Arc Blanc framework relies on these forces approximation,

aggregating these four last papers.

2.3. Solid to fluid coupling

The simulation of the surface of water in contact with a solid body has been an ac-

tive research topic for the last twenty years. Gomez (2000) [Gomez] solved the wave

73

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

equation using the finite-difference method (FDM) to simulate waves on the free sur-

face. This method was improved by Cords and Staadt (2009) [Cords and Staadt] to

work with moving objects. Tessendorf (2004) [Tessendorf c] proposed a convolu-

tional method. He extended his method by using an exponential solver [Tessendorf

a]. Yuksel (2007) [Yuksel et al.] used a Lagrangian paradigm to model the waves as

particles, which he called wave-particles. Chentanez and Müller (2010) [Chentanez

and Müller] created a hybrid solver combining Eulerian and Lagrangian approaches.

Canabal et al. (2016) [Canabal et al.] improved the physical accuracy of the con-

volutional method by introducing a dispersion kernel. Jeschke and Woktan (2017)

[Jeschke and Wojtan] took the work of C. Yuskel a bit further by introducing the no-

tion of a wave packet, which carries information about an entire wave train. One year

later, Jeschke et al. (2018) [Jeschke et al.] proposed to use a wavelet transformation

that discretizes the wave amplitudes as a function of space, frequency and direction.

Finally, Schreck et al. (2019) [Schreck et al.] based their work on the method of

fundamental solutions to generate ambient waves on a large scale domain interacting

with complex boundaries.

For solid-fluid coupling, the Arc Blanc framework based its calculations on the

FDM described in Gomez (2000) [Gomez] and its improvement by Cords and Staadt

(2009) [Cords and Staadt], because its ability to be real-time while providing quite

realistic behavior.

3. Ocean waves

This section summarizes Tessendorf’s method and the various improvements it has

received. It also presents our first contribution: calculation of the fluid velocity at any

depth.

Let us introduce some notations as follows:

• The scalar H ∈ R+ denotes the depth of the water. The Arc Blanc framework

assumes deep water and therefore supposes that H tends towards +∞1.

• The scalar h(x, t) ∈ R is the height of the water surface at the horizontal

position x = [x z]T and at time t.

• The vector v(x, y, t) = [vx(x, y, t) vy(x, y, t) vz(x, y, t)]
T ∈ R3 represents

the velocity of the fluid at the horizontal position x, depth y and time t.

• The scalar ϕ(x, y, t) ∈ R is the potential velocity of fluid at the horizontal

position x, depth y and time t.

• The scalar g = 9.80665 m.s−2 denotes the gravitational acceleration, while

g ∈ R3 is the gravitational field.

1See Appendix A for more details on this assumption.

74

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Tessendorf method is based on the following approximations of the Navier-Stokes

equations2:

∂ϕ
∂t

= −gh(x, t) for y = 0,

∆ϕ = 0 for −H ≤ y ≤ 0,
∂h
∂t

= ∂ϕ
∂y

for y = 0,
∂ϕ
∂y

= 0 for y = −H.

(1)

3.1. Water height

Tessendorf (2001) [Tessendorf d] proposed to solve Equation 1 using a sum of waves

of different amplitudes and wavelengths as follows:

h(x, t) =
∑

k

h̃(k, t) exp (ik · x) , (2)

where k = [kx kz]
T

is the wave vector with kx = 2πn
Li

and kz = 2πm
Li

, Li is the

length of the i-th cascade as defined in Section 3.3, n and m are integers in
[

−N
2 ,

N
2

]

,

N ∈ N+ being a constant given by user, and h̃ is given by:

h̃(k, t) = h̃0(k) exp(iω(k)t) + h̃∗0(−k) exp(−iω(k)t), (3)

where k is the Euclidean norm of the wave vector k, ω(k) =
√
gk is the dispersion

relation3 and h̃∗0 the conjugate of h̃0. Researchers in oceanography have made sta-

tistical measurements on the ocean to compute h̃0, leading to many different ocean

spectra [Tessendorf b]. In its original paper, Tessendorf (2001) [Tessendorf d] used

the Phillips Spectrum with Gaussian fluctuation, leading to the following expression

of h̃0(k):

h̃0(k) = ξk

√

4π

Lik
S(ω)D(ω, θ)

∣

∣

∣

∣

∂ω(k)

∂k

∣

∣

∣

∣

(4)

where ξk are samples from a Gaussian distribution with mean 0 and standard deviation

1, S(ω) and D(ω, θ) are the frequency and directional spectra described respectively

in paragraphs 3.1.1 and 3.1.2.

3.1.1. JONSWAP frequency spectrum

The Arc Blanc framework uses the frequency spectrum developed by Hasselmann et

al. (1973) [K. Hasselmann] in the Joint North Sea Wave Project (JONSWAP). This

spectrum was developed for deep sea water, and hence is in line with our deep water

hypothesis. It is expressed as follows:

S(ω) =
αg2

ω5
exp

(

−5

4

(ωp

ω

)4
)

γr (5)

where:

2See Appendix B.
3The dispersion relation is defined for deep water, see Appendix A for more details.

75

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

• The constant α = 0.076
(

U2

Fg

)0.22
, U being the wind speed in m.s−1 and F the

fetch4 in m.

• The constant ωp = 22
(

g2

UF

)

.

• The constant γ = 3.3.

• The exponent term r is defined as follows:

r = exp

(

−(ω − ωp)
2

2σ2ω2
p

)

(6)

• The term σ is as follows:

σ =

{

0.07 ω ≤ ωp,

0.09 ω > ωp.

3.1.2. Custom Donelan-Banner spectrum

In the Arc Blanc framework, the directional spectrum relies on the work of Horvath

(2015) [Horvath], that mixes together the Donelan-Banner spectrum to control the

direction of the waves and a “swell parameter”. Let us recall that, if the wind direction

is given by θ0, the wind direction bias θ can be defined as follows:

θ = atan2(kz, kx)− θ0 (7)

Moreover, the Donelan-Banner DDB spectrum is given as follows:

DDB (ω, θ) =
1

2
QDB (ω)βs (sech (βsθ))

2 . (8)

This expression depends on the ratio rω = ω/ωp of ω and ωp, the latter being the

same as in JONSWAP spectrum. Hence, in the Arc Blanc framework βs is defined

as a mix of Donelan et al. (1985) [Donelan et al.] for rω < 1.6, and Banner (1990)

[Banner] for rω ≥ 1.6. Moreover, the case rω < 0.56 is removed, as suggested by C.

Horvath. Altogether, this leads to the following expression of βs:

βs =

2.61 (rω)
1.3

for rω < 0.95

2.28 (rω)
−1.3

for 0.95 ≤ rω < 1.6

10ϵ for rω ≥ 1.6

(9)

where

ϵ = 0.8393 exp
(

−0.567 ln
(

r2ω
))

− 0.4. (10)

4The fetch is the length of the area over which the wind is acting on the water, that is to say the

distance from a lee shore.

76

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Any directional spectrum D(ω, θ) must satisfy the normalization condition:

∫ π

−π

D(ω, θ)dθ = 1 (11)

Hence, QDB(ω) is a normalization factor to make DDB(ω, θ) respect condition 11:

QDB(ω) =
1

∫ π

−π

1

2
βs (sech (βsθ))

2 dθ

=
1

tanh (βsπ) (12)

The Arc Blanc framework simulates swell, corresponding to more elongated waves

that have traveled out of their generating area and that mixes with wind-generated lo-

cal waves. As in Horvath (2015) [Horvath], it relies on the swell parameter ξ related

to the spectrum Dξ, defined as follows:

Dξ(ω, θ) = | cos(θ/2)|2sξ (13)

where the spreading swell function sξ is defined by:

sξ = 16 tanh(1/rω)ξ
2 (14)

Note that, with ξ = 0, the spectrum D0(ω, θ) =
1
2π is constant while for ξ = 1 the

waves become much more elongated.

The product between the Donelan-Banner and Dξ spectra is denoted by DDBξ,

and is expressed as follows:

DDBξ(ω, θ) = QDBξ(ω)DDB(ω, θ)Dξ(ω, θ) (15)

where the normalization factor is:

QDBξ(ω) =
1

∫ π

−π

DDB(ω, θ)Dξ(ω, θ)dθ

. (16)

This normalization factor QDBξ(ω) is computationally expensive.

It can be noticed that it depends only on the ratio rω. Hence, the Arc Blanc

framework uses a simple method to approximate it, through interpolations relying on

multiple Lagrangian polynomials as follows:

Q̃DBξ(rω) =

7.1467551r2ω − 13.4662001rω + 7.75651088 for rω < 0.94,

−0.69906109r2ω + 0.77975933rω + 0.10169164 for 0.94 ≤ rω < 5,

−2.1860997r2ω + 0.0269209rω + 0.00016283 for 5 ≤ rω < 100,

1.2038847rω + 0.0008147 else.

(17)

77

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Computed using 10000 random samples, the normalization integral (Equation 11)

of such an approximation is 1.0699 in average.

Note that a first normalization factor QDB is applied to the Donelan-Banner spec-

trum (Equation 8) before calculating the second normalization factor Q̃DBξ(rω). In

fact, a normalization problem will occur if the full-spectrum normalization factor is

simply approximated before its application, because for small values of rω, QDBξ(ω)

will be very low and therefore numerically challenging to normalize.

Finally, the Arc Blanc framework uses a last parameter δ ∈ [0, 1] that represents

how much the waves orientation is constant (δ = 0) or not (δ = 1) (see Figure 3). Its

meaning is as follows:

• δ = 0 indicates a neutral directional spectrum, that has no consequence on h̃0;

• δ = 1 indicates a spectrum equals to DDBξ(ω, θ).

This gives the final expression of the custom Donelan-Banner spectrum used in the

Arc Blanc framework:

D(ω, θ) = (1− δ)
1

2π
+ δDDBξ(ω, θ). (18)

(a) Using δ = 0. (b) Using δ = 1.

Figure 3. Effect of the parameter δ on sea state 5 on the Beaufort scale.

3.2. Water displacement and derivative

The Arc Blanc framework uses the horizontal displacement D(x, t) = [Dx(x, t) Dz(x, t)]
T

of seawater to simulate more realistic choppy waves. As proposed in Sections 4.5 and

4.6 of Tessendorf (2001) [Tessendorf d], it is calculated as follows:

D(x, t) =
∑

k

D̃(k, t) exp (ik · x) (19)

where

D̃(k, t) =
[

D̃x(k, t) D̃z(k, t)
]T

=
ik

k
h̃(k, t). (20)

78

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Furthermore, to obtain additional details on the sea surface (e.g. foam positions,

normal vectors...) the derivative of the horizontal and vertical displacements must be

computed, respectively of D(x, t) and h(x, t). Taking advantage of the symmetry
∂Dz

∂x
(x, t) = ∂Dx

∂z
(x, t), this relies on five derivatives only:

∂Dx

∂x
(x, t) =

∑

k

−ikxD̃x(k, t) exp (ik · x) ,

∂Dz

∂x
(x, t) =

∑

k

−ikxD̃z(k, t) exp (ik · x) ,

∂Dz

∂z
(x, t) =

∑

k

−ikzD̃z(k, t) exp (ik · x) ,

∂h

∂x
(x, t) =

∑

k

kD̃x(k, t) exp (ik · x) ,

∂h

∂z
(x, t) =

∑

k

kD̃z(k, t) exp (ik · x) .

3.3. Cascades

While the expression of the water height in Equation 2 is convenient, it may result in

an ocean surface that appears overly repetitive. A naive solution to handle this prob-

lem consists in using a huge resolution N , but it has a major impact on performance.

The Arc Blanc framework uses the more efficient solution proposed by Dupuy and

Bruneton (2012) [Dupuy and Bruneton]. It consists in dividing the spectrum into c

layers or cascades of different lengths. Each of these layers represents a different

wavelength in Equation 2. The length of the i-th cascade is denoted by Li. These

lengths Li are parameters in the expression of the wave vector component described

in Equation 2. Moreover, the different cascades are cut off at arbitrary value to avoid

overlap between them, as illustrated in Figure 4.

The Arc Blanc framework uses by default 3 cascades with the following settings:

• L0 = 256 operating for waves length k ∈ [0, 12π16]

• L1 = 16 operating for waves length k ∈ [12π16 , 12π4]

• L2 = 4 operating for waves length k ∈ [12π4 ,+∞].

79

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

Frequency (Hz)

W
av

e
S

p
ec

tr
a

D
en

si
ty

(m
2
/H

z
) Cascade 0

Cascade 1
Cascade 2

Figure 4. Example of a spectrum split into 3 different cascades: each cascade operates on a

different interval of wave vector length.

3.4. Velocity of water

Starting from the system 1, the Arc Blanc framework proposes to compute the velocity

of the water at any depth y, as follows5:

v(x, y, t) =
∑

k

ṽ(k, y, t) exp (ik · x) , (21)

where the vector ṽ(k, y, t) is given as follows:

ṽ (k, y, t) = E (k, y)
(

h̃0 (k) exp (iω(k)t)− h̃∗0 (−k) exp (−iω(k)t)
)

−kxg
ω(k)
iω(k)
−kzg
ω(k)

,

(22)

where the attenuation function E(k, y) ∈ R is defined as follows:

E(k, y) =

{

1 + ky if y > 0,

exp(ky) else.
(23)

The first case (y > 0) comes from an extrapolation above the sea surface of the normal

case (y ≤ 0).

To our knowledge, this expression of the velocity has never been used in a real

time ocean simulator before.

5See Appendix A for more details on the origin of this expression

80

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

3.5. Waves’ height implementation details

This section gives some technical details of the implementation of an ocean with

Tessendorf’s method in the Arc Blanc framework.

First, it should be noticed that the expressions of the ocean surface’s height (Equa-

tion 2), the displacements (Equation 19) and their five derivatives, and the velocity

(Equation 21) have “a form of an inverse discrete Fourier transform”. More precisely,

the frequency space coefficients appearing before the term exp(ik · x) are stored in

a square matrix of size N ×N , for each expression. Then, the full sum is computed

through an inverse fast Fourier transform (IFFT) applied on this coefficients’ ma-

trix. In the Arc Blanc framework, this trick allows computing these eight expressions

without any significant impact on performance, even for huge domains.

Second, as the Arc Blanc framework simulates a tile of water of size N × N

using c cascades, it stores the height, the displacement, and other relevant data in a

1D array of size c, where each entry contains a 2D array of size N × N . The Arc

Blanc framework computes efficiently these values on the GPU, with dedicated kernel

that are launched with a grid of threads structured as N ×N × c. Specifically, N ×N

threads are assigned to the x and y dimensions to cover the spatial resolution of the

water tile, while c threads along the z dimension correspond to the different cascades.

This approach ensures that computations for all cascades are executed in parallel.

Third, many terms are independent on the time t: h̃0(k), h̃
∗
0(−k) and the wave

data (k and ω(k)). The Arc Blanc framework computes them for each cascade wave

vector at each spectrum change only, but not at each iteration. Then it does a com-

bination with time-dependent terms at each iteration, giving an expression for the

coefficients in frequency space for the eight IFFT.

To compute the water height at a specific point, it is not sufficient to directly eval-

uate Equation 2 after performing the IFFT. This is because the water surface is de-

scribed parametrically, with fluid positions depending on both horizontal and vertical

displacements, as detailed in Section 3.2. Accurately determining the water surface

position at a given horizontal location requires an iterative process (see Algorithm

1): the estimated position is adjusted by subtracting the displacement vector, and

the water height is recalculated until convergence. However, in practice, waiting for

full convergence may be computationally expensive. Instead, the loop is limited to

Niter = 4 iterations, a value chosen to balance accuracy and performance (see Ap-

pendix D for details on this choice).

Last but not least, one might think that applying IFFT should be enough to get

the expected result. Nevertheless, using the standard IFFT algorithm (such as the one

of Cooley and Tukey (1965) [Cooley and Tukey]) leads to some incorrect geometry

changes. Unlike usual IFFT, the used range is [−N/2, N/2] and so the wave vec-

tors have negative components (e.g. the height). To fit with the theory of Fourier

transforms, in the Arc Blanc framework each value at index i, j of the 2D matrices is

81

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Algorithm 1 Iterative Retrieval of Water Height

Require: A position x to evaluate the water height and the horizontal and vertical

displacements: D(x, t), h(x, t)

1: Initialize displacement W = (0, 0, 0)

2: for k = 1 to Niter do // Iterative correction to account for displacement

3: Compute shifted position: W = x−W

4: Compute horizontal displacement at W // The sum of bilinear interpolation

of the displacement on each cascades

5: end for

6: return The vertical component of W

multiplied by (−1)i+j .

In the Arc Blanc framework, the number of IFFT applications is divided by two

using Theorem 1 on Hermitian matrices6 (see annex C for its proof).

Theorem 1. Let: X = (xn,m), Y = (yn,m) ∈ Mn(C) be two Hermitian matrices.

Then the following relation is valid:

F−1 (X + iY) = ℜ
(

F−1 (X)
)

+ iℜ
(

F−1 (Y)
)

(24)

Hence, in the Arc Blanc framework the coefficients in frequency space of two

Hermitian matrices X and Y are combined in a single matrix H = X + iY . Using

Theorem 1, one complex IFFT suffices to obtain the real parts of two IFFT F−1 (X)

and F−1 (Y). This treatment allows reducing IFFT computation times by a factor

close to 2.

3.6. Waves’ velocity implementation details

Contrary to the displacement and its derivative which are height maps and 2D func-

tions, the velocity must be known in 3D space. Hence, its calculation is more difficult

and requires more computation time. Computing the velocity for all the points of a

3D grid, or even only the points where it must be evaluated for fluid to solid coupling

(Section 2.2) is not possible in real-time, as it involves a large to huge number of IFFT.

Unfortunately, the dependency of the attenuation (Equation 23) on both the wave vec-

tors and y makes the depth dependency of the velocity fundamentally tied to the wave

vector, preventing any simplifications that could reduce the required calculations.

To reduce the complexity of this problem, the Arc Blanc framework opts for an

interpolation scheme, involving a reasonable number of IFFTs that is proportional to

the size of the discretization.

6A matrix X = (xn,m) is Hermitian if it is equal to its own conjugate transpose: X = X† or

xn,m = x∗
m,n.

82

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

More concretely, the velocity must be computed at any horizontal position in

I = [ymin, ymax]. In the Arc Blanc framework, d growing depths yi are chosen in

this interval I . For each of these depths yi, the i-th velocity vi(x, yi, t) is computed

using one IFFT, leading to d IFFTs for all the sampled depths yi. Then, the velocity

v(x, y, t) at any depth y ∈ I is computed using an ad hoc interpolation from the

different vi.

A first way to do this interpolation mechanism relies on a linear scheme. Never-

theless, it produces a very inaccurate result. Hence, the Arc Blanc framework uses

an exponential scheme made on logarithmic sampling of the interval I . They are

discussed in the next two sections.

3.6.1. Exponential interpolation

The vertical dependency of velocity links to the exponential attenuation function from

Equation 23. Hence, instead of a linear interpolation the Arc Blanc framework uses

an exponential interpolation fe(x) that should resemble the following expression:

fe(x) = α exp(βx). (25)

Knowing fe(a) = f(a) and fe(b) = f(b), it is straightforward to obtain the two

values α and β as follows:

α =
f(a)

exp(βa)

β =
ln(|f(b)|)− ln(|f(a)|)

b− a

(26)

This exponential interpolation function fe(x) is applied to extract the magnitude and

rotation angle of the velocity v(x, y, t).

3.6.2. Logarithmic distribution

As the velocity decays exponentially with depth, the ones close to the ocean sur-

face play a more important role in accuracy than the one at the bottom of the ocean.

Hence, a regular sampling along the depth seems inappropriate, albeit the exponential

interpolation.

The Arc Blanc framework uses the following logarithmic distribution:

ld(yi) =

{

β ln(α|yi|2 + 1) if yi > 0

−β ln(α|yi|2 + 1) if yi ≤ 0
(27)

where α = 0.0001 and β = −ymin/
(

2 ln(α|ymin|2 + 1)
)

.

This distribution is designed based on the following considerations. First, while

the velocity decays exponentially, it relies on a logarithmic function similar to yi 7→
ln(|yi| + 1). Since this function transforms the negative yi into a positive one, the

83

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

result is multiplied by the sign of yi. Also, this function decreases slowly (actually

with ln(250) = 5.5), hence the logarithmic distribution uses the square of |y1|. Lastly,

the parameter α controls the “squeezing” in the center, while the parameter β controls

the deepest value of ld. Notice that β is chosen as the solution of ld(ymin) = ymin

2

but not at ymin: it is the solution giving the best accuracy after multiple tries.

Figure 5 compares the logarithmic discretization to the uniform discretization. As

expected, the behavior with the former leads to fewer points close to ymin and more

points close to ymax. Note also the higher density of points close to y = 0.

Figure 5. This figure shows a comparison between a uniform discretization in blue and a

logarithmic discretization in red. The dotted parts represent the last interpolation toward a null

velocity at ymin.

Moreover, using the logarithmic distribution leads to ld(ymin) =
ymin

2 . Assuming

that the velocity at ymin is null, then for any depth between ymin and ymin

2 the velocity

can be computed between the one at ymin

2 and 0.

Figure 6 compares the accuracy using linear mechanism and the exponential in-

terpolation with the logarithmic discretization. Clearly the latter gives much better

accuracy, as expected.

3.6.3. Choosing the interpolation degree

Knowing the interpolation method, the interpolation degree d (number of points in

the table) must be decided. Note, that using more points results in better accuracy, but

also more computation time. Then, a trade-off between performance and accuracy

must be determined. With this aim, the multi-objective optimization method is used.

Briefly, this method reduces a multi-criteria optimization problem into a one di-

mensional one. It defines a one dimensional function as a linear sum of different

objective functions; here, it concerns the performance and accuracy for a given inter-

polation degree.

Hence, this optimization function J is defined as follows:

J(d) = αP (d) + βA(d) (28)

where d is the interpolation degree, P (d) measures the performance of the velocity

interpolation, A(d) measures the accuracy of the velocity interpolation, and α and β

are the weight arbitrary assigned to the performances and the accuracy functions.

To make P (d) and A(d) having the same order of magnitude, the units are the sec-

onds for performance and the meter per seconds for accuracy (see figure 7). More-

84

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Figure 6. This figure represents the accuracy of different type of interpolation in function

of the size of the discretization N . The accuracy axis used a logarithmic scale to be more

readable. It uses 10000 positions from a continuous uniform distribution in the parallelepiped

[−1000, 1000] × [−125, 4.5] × [−1000, 1000] and with a wind speed of 20 m.s−1. The in-

terpolated velocity ṽ and the analytical velocity v are evaluated. The accuracy is defined by

the mean of all positions of
∣

∣||ṽ|| − ||v||
∣

∣. It can be noticed that considering a uniform dis-

cretization, then exponential interpolation has a better accuracy than linear one. Logarithmic

discretization is much better than uniform discretization, whatever the used interpolation. At

least, for low N , exponential interpolation gives slightly better result than linear interpolation.

over, the performance being the more important for real-time process, the following

arbitrary choice are made for the coefficients of J : α = 10 and β = 2.

Figure 8 shows the function J using these parameters. It appears that its minimum

is obtained with d = 8. It is the value used in the Arc Blanc framework.

3.7. Coupling solid and fluid

The physical simulation based on the Tessendorf’s method is very fast, and the spec-

trum approach leaves a lot of control to the user. However, it doesn’t simulate the

interaction between the fluid and a solid, which is needed for adding some boats in

the simulation. To overcome this flaw, the Arc Blanc framework uses two methods: a

first one for fluid-to-solid action, and a second one for solid-to-fluid action.

These two methods are designed with the following constraints in mind:

1. Rely on simple parameterization for non-physicists, to be easily usable by

artists;

85

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Figure 7. These figures represent the different objective for choosing the interpolation degree.

In blue, the mean accuracy of velocity interpolation in meters per seconds, we denote this

function A(d). In red, the mean performances of velocity interpolation in deciseconds, we

denote this function P (d). We estimate this function with 10000 sample.

Figure 8. Multi-objective function P to optimize, with two objectives: performance and ac-

curacy. Its minimum is reached by the interpolation degree of 8. For more details on each

objective, see Figures 7 which represent them individually.

86

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

2. Not requiring too many pre-calculations, to avoid an overly complex frame-

work;

3. Have excellent performance (a few milliseconds at most), so that the Arc Blanc

framework reaches real time globally, including all simulation and rendering

stages.

4. Fluid-to-solid action

The action of the fluid on a given solid can be approximated by a set of forces acting

continuously on the contact surface between the fluid and the solid. In the Arc Blanc

framework, the contact surface is represented using the triangulation of the solid’s

mesh, leading to a discrete approximation of the set of forces. Moreover, to remain

real-time the Arc Blanc framework uses forces computed from simple geometric and

physical parameters only. To maintain realistic physics after these discrete approx-

imations and those described in subsequent sections, it is important to use a closed

mesh, uniformly triangulated. In addition, for meshes representing vessels, ensuring

symmetry is crucial to maintain stability.

4.1. Geometrical Parameters

In the Arc Blanc framework, the forces are computed for each boat or body, indepen-

dently of the others. The calculation of the forces needs the following geometrical

data from a body and the water surface: the lower hull (part of the hull in the water),

the waterline, and the upper hull (part of the hull above the water).

At first, the Arc Blanc framework checks the vertical position of body’s each

vertex relative to the water surface. Then, it assigns a status to each body’s face:

submerged, partially submerged or not submerged. The triangles that are partially

submerged are divided as done in Kerner (2016) [Kerner], producing the waterline

as the intersection edges between the mesh and the water surface. This waterline is

used later to compute the mask in Section 5.4. Then the body surface is decomposed

into a set {T s
i } of submerged triangles, and {T¬s

i } of not submerged ones. The Arc

Blanc framework computes the area of each submerged or not submerged triangle at

this step too.

The buoyancy calculation presented in Section 4.2.1 requires the full submerged

volume vw of the mesh. The Arc Blanc framework uses the prism approximation

similarly to the approximation proposed by Bajo et al. (2020) [Bajo et al.]. While

Bajo et al. compute the submerged volume at the texel level, the same principle can

be applied using triangles instead of texels using as they did the divergence theorem.

Specifically, vw is approximated as the sum of the prisms with bases corresponding

to the triangle areas Ai and heights defined by the distance di between the triangle

centers pi and the water surface h(pi, t). Each term in the sum is weighted by the

87

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

vertical component of the triangle normal ny
i :

vw =
∑

T s
i

Aidin
y
i . (29)

Note that this formula is correct only under the assumption that the mesh is closed.

The pseudocode for the all geometrical calculations performed in this section can

be read in the Algorithm 2.

Algorithm 2 Computation of Geometrical Parameters

Require: List of triangles Ti with vertex positions vi and normal ni

1: for each triangle Ti = (v0,v1,v2) with normal ni do

2: Retrieve water height d0, d1, and d2 at vertices v0, v1, and v2

3: Compute area: Ai =
1
2∥(v1 − v0)× (v2 − v0)∥

4: Compute centroid: pi =
1
3(v0 + v1 + v2)

5: Compute centroid depth: di =
1
3(d0 + d1 + d2)

6: if d0 ≥ 0 and d1 ≥ 0 and d2 ≥ 0 then // Fully above water

7: Set submerged area As
i = 0

8: Set volume contribution vwi
= 0

9: else if d0 < 0 and d1 < 0 and d2 < 0 then // Fully submerged

10: Set submerged area As
i = Ai

11: Compute submerged volume: vwi
= Aidin

y
i

12: else if one vertex is above the water surface (e.g., d0 ≥ 0) then // Partially

submerged

13: Compute intersection points p1,p2 using linear interpolation:

14: pj = vj + α(vk − vj) where α =
dj

dj−dk

15: Compute submerged area As
i from new submerged sub-triangle(s)

16: Compute submerged volume: vwi
= As

idin
y
i

17: else if two vertices are above the water surface (e.g., d0 ≥ 0, d1 ≥ 0) then //

Mostly submerged

18: Compute intersection points p1,p2 using linear interpolation

19: Compute submerged area As
i from the remaining submerged sub-triangle

20: Compute submerged volume: vwi
= As

idin
y
i

21: end if

22: end for

At last, from all the submerged faces T s
i the Arc Blanc framework computes the

center of immersion ci used for the buoyancy calculation as presented in Section 4.2.

4.2. Forces

The Arc Blanc framework uses three forces as in Kellomaki (2014) [Kellomäki]:

88

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

1. Buoyancy Fb;

2. Water drag Fw;

3. Air drag Fa.

These forces are computed for each triangle of the lower or upper hull, and so after

the different geometric parameters being calculated.

4.2.1. Buoyancy

The buoyancy is computed once for the whole boat from the following analytical

formula:

Fb = −vwρwg, (30)

where vw is the submerged volume in m3 (cf. Section 4.1) and ρw is the water density.

The water density is obtained at any depth by linear interpolation using the measure of

the International Towing Tank Conference (ITTC) [ITTC]. The buoyancy is applied

to the center of immersion ci.

4.2.2. Drag Forces

The Arc Blanc framework calculates drag forces based on the relative velocity be-

tween the fluid medium (water or air) and the submerged or exposed portion of the

body. This approach is inspired by previous works [Yuksel; Kellomäki; Kerner].

The drag force for each triangle Ti of the body is computed as:

Fd = −1

2
CdρA

⊥

i ∥virel∥virel , (31)

where:

• virel = vi − vm
i is the relative velocity in m.s−1 of the triangle Ti, equal to

the difference between its velocity vi and the velocity vm
i of the fluid medium

(water or air) at its center;

• A⊥

i is the projected area in m2 of the triangle Ti with respect to the relative

velocity unit direction (i.e. the vector virel/ ∥virel∥);

• ρ is the density of the fluid medium in kg.m−3 (ρw as defined in Section 4.2.1

for water and 1.204 kg.m−3 for air7);

• Cd is the drag coefficient of the body in the fluid medium, specified by the user.

For the submerged part {T s
i }, the medium is water, while for the exposed part

{T¬s
i }, the medium is air.

7According to the international standard atmosphere, the air density at sea level for 20°C is

1.204 kg.m−3 cf. https://www.digitaldutch.com/atmoscalc/table.htm

89

http://jcgt.org
https://www.digitaldutch.com/atmoscalc/table.htm

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

4.3. Fluid-to-solid algorithm

To ensure a structured and efficient data workflow on the GPU, all computations for

a given mesh are performed separately, avoiding data interleaving between different

meshes. Each kernel invocation processes a single mesh, iterating over its triangles

before moving to the next mesh.

Firstly, for each triangle in the mesh, the geometric parameters are calculated and

then used to compute the drag forces. These include necessary attributes such as

the submerged volume, normal vectors, and the drag forces acting on submerged and

non-submerged parts.

Once per-triangle computations are completed, the forces and geometrical pa-

rameters must be integrated into the physics solver, which operates on the CPU. To

minimize data transfers and reduce latency, a parallel reduction kernel is applied on

the GPU for each mesh individually. This step aggregates all per-triangle forces and

parameters into global values for the entire mesh.

Buoyancy, however, is handled differently. Since it depends solely on the total

submerged volume rather than individual triangles, it is computed separately using

an analytical formula and applied directly at the submerged center without requiring

per-triangle summation.

With all global parameters computed, the final step transfers the data to the CPU,

where the physics solver integrates the buoyancy and the water drag forces are applied

on the submerged center, while air drag forces are applied at the center of the non-

submerged part.

This pipeline is presented in Algorithm 3.

A summary of the forces applied to the solid is shown in Figure 9.

5. Solid-to-fluid action

The Arc Blanc framework relies on the method developed by Cords and Staadt (2009)

[Cords and Staadt] to simulate the action of the solid on the fluid. The simulation of

this action is 3-dimensional by nature. However, it has to be simplified to satisfy the

third requirement of Section 3.7, concerning computation time performance. As for

fluid simulation in Section 3, the Arc Blanc framework assumes that the interaction

from a solid to the fluid can be simulated as a 2D height field. Furthermore, it con-

siders a single frequency for the waves generated by a solid M . These specific waves

are called interactive waves. These approximations may seem too strong, but as men-

tioned above, they are necessary to satisfy the requirements defined in Section 3.7.

Hence, the Arc Blanc framework assumes that the interactive waves are solutions

of the following 2D wave equation:

∆h(x, t)− 1

c2
∂2h(x, t)

∂t2
= 0 (32)

90

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Algorithm 3 Fluid-to-Solid Interaction Algorithm

1: for each mesh do // Iterate over all mesh

2: for all triangles Ti do // Iterate over all triangles

3: Compute geometrical parameters // Algorithm 2

4: end for

5: end for

6: for each mesh do // Iterate over all mesh

7: for all triangles Ti do // Iterate over all triangles

8: Compute drag forces Fd for each triangles // Section 4.2.2

9: end for

10: end for

11: for each mesh do // Iterate over all mesh

12: for all triangles Ti do // Iterate over all triangles

13: Apply parallel reduction to aggregate forces and geometrical parameters.

14: end for

15: end for

16: for each mesh do // Iterate over all mesh

17: Transfer reduced forces and parameters to the CPU

18: Compute buoyancy force Fb from geometrical parameters // Section 4.2.1

19: Integrate total forces and moments in the physics engine

20: end for

Fb

Fg

Fw
Fa

v

va vw

Figure 9. Summary of forces calculation. Using the same notation as Section 4.2 it follows:

the buoyancy force Fb in yellow, applied to the center of immersion; the sum of water drag

force Fw in purple, applied to the center of immersion too; the sum of the air drag forces Fa in

red, applied to the center of the non-submerged part; and finally the gravity force Fg in green,

applied to the center of gravity. Different velocities are displayed above the ship: the wind

velocity va in red; the water velocity vw in blue; and the object velocity v in black.

91

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

where h(x, t) is the height of the water surface at horizontal position x and time t,

∆ = ∂2

∂x2 +
∂2

∂z2
is the Laplacian in 2D and c is the wave velocity expressed in m.s−1.

The Arc Blanc framework uses the following Dirichlet boundary condition:

h(x, t) = 0 on the boundary. (33)

5.1. Finite-difference method

Following Gomez (2000) [Gomez], the Arc Blanc framework uses the FDM with

an explicit scheme to numerically solve the equation (32). It uses a square simulation

zone Z of dimension L×L around a given mesh M . This zone is regularly discretized

with a δ step. Time is also regularly discretized with a time step dt.

In the FDM simulation, the Arc Blanc framework denotes by hni,j the water height

h(i × δ, j × δ, n × dt) for discrete location (i, j) × δ and time n × dt. This leads to

the following explicit scheme:

hn+1
i,j = a

(

hni+1,j + hni−1,j + hni,j+1 + hni,j−1 − 4hni,j
)

+ 2hni,j − hn−1
i,j (34)

where

a =
c2dt2

δ2
. (35)

The Dirichlet boundary condition gives hni,j = 0 for i or j being on the boundary

of Z. Since a new wave is generated at each time step, a damping effect is added to

make them disappear gradually. Hence, the right part of Equation (34) is multiplied

by the damping factor d(t) = dn.

This damping factor is linearly related to the velocity of the mesh vM(t) to ensure

numerical stability and is defined as:

u = clamp

(∥vM(t)∥
vmax

, 0, 1

)

,

d(t) = lerp(d0, dmax, u), (36)

where:

• clamp(x, 0, 1) limits the value of x to the range [0, 1];

• lerp(a, b, t) = (1− t)a+ tb is the linear interpolation function;

• vmax is the velocity threshold, above which the damping factor equals its max-

imum value dmax;

• d0 is the damping value for a null velocity.

92

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

For a plausible appearance, the Arc Blanc framework uses the following values

by default:

d0 = 0.98,

dmax = 0.999,

vmax = 5m.s−1.

(37)

Nevertheless, the user can adjust these values in a way that a body M causes more or

less interaction waves.

5.2. Grid translation

The waves generated by a given body M are defined in its local coordinates system.

Hence, when M moves, the waves have to move accordingly as done by Cords and

Staadt (2009) [Cords and Staadt]. A first solution consists of applying the translation

to the grid at times t and t− dt and then of using the integration scheme of Equation

(34). Nevertheless, these time-consuming shifts can be avoided by using the following

domain translation:

k = i−
⌊

px(t+dt)−px(t)
δ

⌋

l = j −
⌊

pz(t+dt)−pz(t)
δ

⌋

o = i−
⌊

px(t+dt)−px(t−dt)
δ

⌋

p = j −
⌊

pz(t+dt)−pz(t−dt)
δ

⌋

(38)

where p(t) = [px(t) pz(t)]
T

is the position of the mesh M at time t, k and l

(respectively o and p) are the shifted indices (see Figure 10) defined by the translation

of M at times t+dt from times t (respectively from times t−dt). Then, the integration

scheme can be rewritten as follows:

hn+1
i,j = dn

(

a
(

hnk+1,l + hnk−1,l + hnk,l+1 + hnk,l−1 − 4hnk,l
)

+ 2hnk,l − hn−1
o,p

)

(39)

Since M moves, the shift indexes k, l, o, and p can be outside the boundary of

the simulation zone Z. To solve this problem, the size m of the boundary of Z is

increased such that m > 1 (see Figure 11). The Arc Blanc framework takes m = 16

which is large enough for large translations.

To ensure high performance, the FDM update step is executed entirely on the

GPU, with a single kernel processing all vertices of the FDM grid in parallel. Each

thread updates one grid point, significantly reducing computation time. The pseu-

docode associated to this method is shown in Algorithm 4.

93

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

M(t+ dt)

M(t)

M(t− dt)

i
j

l

k

o
p

Figure 10. An example of the relationship between the indices (i, j), (k, l), and (o, p) in

the finite-difference method grid translation, showing how the grid indices are affected by the

motion of the body M at different time steps t, t− dt, and t+ dt

Z(t)

M(t+ dt)

m = 5

M(t)
Dirichlet

Boundary

Condition

Figure 11. An example of zone Z(t) at a time t using boundary size m = 5. In dotted blue

the mesh M at time t. In red the same mesh at time t+ dt.

94

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Algorithm 4 FDM Algorithm

Require: List of zone-specific parameters: a, b, d(t), p(t− dt), p(t) and p(t− dt).

1: for each vertices of the FDM grid i, j and zone Z in the simulation domain do

2: k = i−
⌊

px(t+dt)−px(t)
δ

⌋

3: l = j −
⌊

pz(t+dt)−pz(t)
δ

⌋

4: o = i−
⌊

px(t+dt)−px(t−dt)
δ

⌋

5: p = j −
⌊

pz(t+dt)−pz(t−dt)
δ

⌋

6: hn+1
i,j = d ·

(

a · (hk−1,l + hk+1,l + hk,l−1 + hk,l+1) + b · hk,l − hl−1
o,p

)

7: end for

5.3. Stability

The stability of the scheme defined by Equation (39) is related to the CFL condition

(for Courant–Friedrichs–Lewy), here given as follows:

c2dt2

δ2
≤ 0.5 (40)

The parameter dt is considered fixed throughout the simulation. One contribution of

this article is to adapt the simulation’s parameters c and δ to the CFL, as presented

below.

Preliminary tests have shown that δ must be small for a low velocity vM(t) of M .

Moreover, δ must be large enough for Z to encompass M and the waves generated

by M . The size of M is defined from its bounding box (bx, by, bz) as S(M) =

max(bx, bz). The Arc Blanc framework lets the user define the bounds δmin and

δmax so that Z is at least twice as large as M . Then δ is defined as follows:

δ =

{

0.999 dt if ||vM(t)|| < 1

||vM(t)||0.999 dt if ||vM(t)|| ≥ 1
(41)

Finally δ is clamped between δmin and δmax. The value of c is deduced from δ and

dt to ensure that the inequality in Equation 40 is always satisfied:

c =
√
0.49

δ

dt
. (42)

This choice of c ensures numerical stability.

5.4. Wave generation

While the FDM allows to simulate the propagation of the interactive waves, one more

input is required for the wave generation: an alteration of the free surface of the height

map. The Arc Blanc framework uses a new way to compute this input, which provides

95

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

a satisfying result no matter the form of the body generating the waves. The input of

the FDM is called mask.

The idea behind the mask is to distort the grid of the FDM by reproducing the

intersection surface between M and the free surface. Here, free surface refers to

the ambient waves of Tessendorf’s method (see Section 3) plus the interactive waves

generated by all solids except M . It does not include the free surface generated by

M , or the simulation would face a divergence issue.

This intersection has already been computed as part of the geometric parameters

in Section 4.1. It is given as a list of 3D points forming the intersection polygons of

the hull with the free surface. These points are moved from the world coordinates

system to the one of Z, the surrounding grid of M .

Hence, for a body M the wave generation relies on two different steps: First,

a mask is defined from this list of 3D points, corresponding to the vertices of Z

contained in one intersected polygons. Second, the height h of each point in the

mask is determined using an ad hoc function. These two steps are detailed in the

following two sections.

5.4.1. Calculate the mask

The FDM needs the height of the vertices below the body. This is computed from the

mask, composed of the vertices of Z contained in one of the intersections polygons

at least. This is done using the Point in Polygon strategy described in Haines (1994)

[Haines].

The principle of this algorithm is as follows: for each vertex v of the grid Z,

a ray starting at v and with direction z is generated, and its number of intersection

with all the intersection polygons is computed. v is in the polygon if this number of

intersections is odd; otherwise it is not.

To ensure consistency regardless of the body’s orientation, a rotation alignment is

applied to the intersected polygons before processing.

To reduce the computation times, this strategy is applied to the vertices v included

into the bounding box of the intersections polygons. Since the number of vertices v of

Z is at least twice as the size of M , this simple method reduces efficiently the number

of ray to polygon calculations.

5.4.2. Evaluate the height of vertices in the mask

Knowing all the vertices in the mask, their height must be given as input of the FDM.

The Arc Blanc framework uses a simple model that tries to reproduce parts of the idea

of Cords and Staadt (2009) [Cords and Staadt]. By construction of the grid Z, M has

its bow oriented on the positive side of the z axis, and its starboard (right-hand side

when facing the bow) on the positive side of the x axis. Hence, h is made such that

from the vertex at position x, the front of the mask is above the free surface and the

back below, in a way that is proportional to the speed of M . Moreover, the boat forms

96

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

a V shape laterally, with its center a bit below the extremity of the side. Figure 12

presents the desired shape from three different perspectives.

(a) Three quarter view (b) Back view (c) Side view

Figure 12. Three different theoretical point of view of the mask for a simple rectangle.

To simplify, h(x) is defined as the sum of two orthogonal functions f(x) and

g(z), where f(x) represent the side effect, and g(z) the front/back effect.

The function f models the side effect using a shape in V . It is defined as follows:

f(x) =
|x− cx|

bx
. (43)

The V -shape is obtained from the absolute value of the abscissa x shifted to the center

cx of M . The amplitude of the height is controlled by the inverse of the bounding box

size bx of M on the x axis.

The purpose of g is to shift up the front of the interactive wave and shift down

its back. The idea is that a moving body displaces the water from its submerged hull,

producing a high interactive wave in front of the body. This effect is modeled using

a quite simple affine function g(z) = a · z + b. The slope coefficient a is defined

considering the maximum height hb on the back of the mask and the height hf on its

front.

While hb is defined by the user, the value of hf is estimated as follows:

hf = ||vM||hM × if ×
vw
vM

, (44)

where vM is the velocity of the body M , hM is the full height of M , if is a user pa-

rameter allowing more user control, vw is the submerged volume of M (see Section 4),

and vM is the full volume of M . Hence, for more realism hf is made proportional to

the velocity of M : the faster M moves, the bigger the waves generated by M at its

front are.

The values of a and b are straightforward to obtain by considering the height at

the back and the front, so using the relations g(zmin) = hb and g(zmax) = hf , where

zmin is the z-coordinates of the back and zmax the z-coordinate of the front. From the

first relation, it comes b = hb−a·zmin. From the second, it comes a = (hf − hb) /bz ,

97

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

where bz = zmax−zmin is the bounding box extend in z axis. This allows to simplify

the term b as b = (hbzmax − hfzmin) /bz .

The functions f(x) and g(z) are then used to obtain the height of the mask as

follows, but using the user factor bw to allow more user control:

h(x) = bw (f(x) + g(z)) . (45)

Note that h is only well-defined if the bow of M is oriented on the positive z axis.

Therefore, a 2D rotation is first applied to the vertices x before applying h.

Figure 13 shows some views of the application of this interactive waves process.

(a) The height of the mask of a simple

boat encoded in a single channel texture.

(b) The height of the mask of a simple

boat in a 3D scene with a very low sea

state. Boat rendering and wave propa-

gation has been disabled to only display

the initial step of the height of the mask.

Figure 13. Two different views of the height of the mask defined by Equation 45 for a simple

boat.

The mask calculation is implemented on the GPU to leverage parallel processing

efficiency. A dedicated kernel is launched for each zone only for the vertices of the

FDM grid that fall within the bounding box of the intersection polygon, reducing

computational overhead. Each thread independently performs the point-in-polygon

test using a ray-intersection method and determines whether the corresponding vertex

should be included in the mask. Once identified as inside an intersection polygon,

the height function is applied per vertex, using the predefined wave generation model.

The full process is detailed in Algorithm 5.

6. Results and discussions

Sections 3, 4 and 5 describe three methods to handle the main parts of an ocean

simulation: the free surface, and the coupling between a solid and a fluid. Each

98

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Algorithm 5 Mask Calculation via Point-in-Polygon Test

Require: The bounding box, the intersection polygon

1: for each vertices of the FDM grid i, j within the bounding box in a zone Z do

2: counter ← 0 // Initialize the counter for intersections

3: for each edges (vk, vk+1) of the intersection polygon do

4: p1 = (i, j)

5: p2 = (i+∞, j +∞)

6: p3 = vk
7: p4 = vk+1

8: if Segment-Intersect(p1, p2, p3, p4) do then

9: counter+ = 1

10: end if

11: end for

12: if counter mod 2 = 1 then // Point (i, j) is inside an intersection polygon.

13: hni,j = bw (f(x) + g(z)) // See Equation 45

14: end if

15: end for

method has been chosen to find the best ratio between high performance and physics

accuracy.

Notice that each method interacts naturally with the two others, as shown in Fig-

ure 14. Indeed, Tessendorf’s method generates the free surface. As depicted by arrow

(0), the free surface method impacts the force calculation of the fluid-to-solid method.

The force calculation of the fluid-to-solid method impacts the mask calculation (ar-

row (1)), which is the input of the solid-to-fluid method. The solid-to-fluid method

modifies the free surface around the solid and is an input of the ocean waves simu-

lation (arrow (2)). All these interactions loops through the simulation over time. As

a result, the three components of the Arc Blanc framework have an impact on the

two others (arrows (3), (4) and (5)) at the next time-step. For example, since the

solid-to-fluid method impacts the free surface (arrow (2)), and the free surface im-

pacts the force calculation used in the fluid-to-solid (arrow (0)), then indirectly the

solid-to-fluid method has an indirect impact on the fluid-to-solid action (arrow (3)).

Two experiments with different solids have been conducted to demonstrate the

efficiency of the Arc Blanc framework. These experiments ran on a Intel Core i7-

10700 and a Nvidia GeForce RTX 2070 Super using single-precision floating-point

numbers. The ocean was simulated with three cascades using a resolution of 256 ×
265. Moreover, the resolution of FDM grids is set to 512× 512.

The first experiment called one-solid simulates a single solid corresponding to a

motorboat. This motorboat is running in the scene. Its model is composed of 165

triangles for the simulation. Two captures of one-solid can be seen in the top row of

99

http://jcgt.org
https://www.intel.fr/content/www/fr/fr/products/sku/199316/intel-core-i710700-processor-16m-cache-up-to-4-80-ghz/specifications.html
https://www.intel.fr/content/www/fr/fr/products/sku/199316/intel-core-i710700-processor-16m-cache-up-to-4-80-ghz/specifications.html
https://www.nvidia.com/fr-fr/geforce/graphics-cards/compare/?section=compare-20

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Ocean Waves simulation

Solid to fluid action

Fluid to solid action

(2)

(1)

(0)

(3)

(4)

(5)

Figure 14. Interactions between the ocean waves simulation (Section 3), the fluid-to-solid

method (Section 4) and the solid-to-fluid method (Section 5). The arrow represents an interac-

tion between two methods. The arrow direction indicates that the method from which the arrow

originates impacts the method to which the arrow is pointing to.

Figure 15. The sea-state is 1 on the Beaufort scale on Figure 15a, leading to a very

calm sea. Hence, the interaction waves appear clearly behind the motorboat. On the

contrary, the sea-state is 6 for Figure 15b, leading to big waves and almost completely

hiding interaction waves.

The second experiment called ten-solids simulates ten solids. It extends the first

experiment as follows:

• 1 sailing boat with a mesh made of 270 triangles.

• 2 yachts with a mesh made of 146 triangles.

• 6 zodiacs with a mesh made of 568 triangles.

This makes a total of 4135 triangles. Each of these ten solids uses its own grid for

the solid to fluid coupling FDM. Two captures of the second experiment can be seen

in the bottom row of Figure 15. The sea state is 1 for Figure 15c where again small

interaction waves can be seen for the motorboat (the others are not propelled). On

100

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

(a) One-solid using sea state 1. (b) One-solid using sea state 6.

(c) Ten-solids using sea state 1. (d) Ten-solids using sea state 4.

Figure 15. The two experiments with different sea state: one-solid on top row, and ten-solids

on bottom one.

Figure 15d the sea state is set to 4, leading to relatively big waves. Using 10 boats

and so FDM grids does not impact too much the computation times, as seen below.

Table 16 shows a summary of GPU computation times for each method and with

these two experiments. As detailed in previous sections, all heavy computations in the

Arc Blanc framework are offloaded to the GPU, while the CPU is minimally involved

in physical calculations. This design choice ensures that the CPU remains available

for other standard game or simulation tasks, optimizing overall system performance.

Therefore, CPU computation times are not considered, as they are negligible com-

pared to GPU ones. First, it can be observed that real-time performance is largely

achieved, even with ten-solids. One of the most computationally intensive steps is

geometry computation, which presents an opportunity for further optimization. A

closer inspection suggests that refining memory access patterns and minimizing warp

branch divergence in the GPU kernel could enhance performance and efficiency. Be-

sides, as most of the computations are performed on the GPU, it can be observed that

computation times do not grow linearly with the number of solids. Indeed, the Arc

Blanc framework processes each solid and each FDM grid simulation in parallel.

101

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

XP 1 XP 2

(one-solid) (ten-solids)

Tessendorf’s method Height (§ 3.1) 0.376 0.376

(§ 3) Velocity (§ 3.4) 1.175 1.175

Total 1.551 1.551

Fluid-to-solid coupling Geometry (§ 4.1) 1.125 4.588

(§ 4) Forces (§ 4.2) 0.406 3.677

Total 1.531 8.265

Solid-to-fluid coupling FDM (§ 5.1) 0.100 0.831

(§ 5) Mask (§ 5.4) 0.238 1.656

Total 0.338 2.487

Total 3.414 12.297

Figure 16. GPU computation times in milliseconds for the main parts of the Arc Blanc frame-

work. Only GPU execution times is shown, as CPU ones are negligible.

7. Conclusions

This article presents three methods that together produce a realistic albeit approximate

simulation of the ocean, and the way used to combine them together. These methods

are simple to implement and fully parallelizable on GPU. The Arc Blanc framework

is a demonstration that these methods achieve real-time performance on a desktop PC

(see section 6).

This article gives an original expression for the ocean velocity associated with the

Tessendorf method, as well as the key details of its implementation. This velocity is

an important input for the realistic calculation of fluid-induced forces on solids. This

also improves the stability and physical coherence of the FDM for wave generation.

The two solid/fluid coupling methods are highly efficient, but they present many

physical approximations. Hence, to increase the realism of the Arc Blanc framework,

future works will include the hybridization of a smoothed particle hydrodynamics

(SPH) method for solid/fluid coupling and Tessendorf methods on a larger scale.

Acknowledgements

The first author David Algis has been supported by the Association nationale de

recherche et de technologie (ANRT)8 and by the Pôle Image Magélis. We would

like to thank the colleague of David Algis at Studio Nyx, particularly Jeremy Bois

and David Deckeur. Thanks to Naval Group for initiating this project. Finally, we

would also like to thank Yannick Privat at the Institut de recherche mathématique

avancée (IRMA) which help us on the velocity calculation.

8Contract number 2021/1157

102

http://jcgt.org
https://www.anrt.asso.fr/fr
https://www.anrt.asso.fr/fr
https://www.magelis.org/
https://irma.math.unistra.fr/
https://irma.math.unistra.fr/

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

References

AKINCI, N., IHMSEN, M., AKINCI, G., SOLENTHALER, B., AND TESCHNER, M. Versatile

rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics, 31(4):62:1–

62:8. ISSN 0730-0301. URL: https://dl.acm.org/doi/10.1145/2185520.

2185558. 73

BAJO, J. M., PATOW, G., AND DELRIEUX, C. A. Realistic Buoyancy Model

for Real-Time Applications. 39(6):217–231. ISSN 0167-7055, 1467-8659.

URL: https://diglib.eg.org/server/api/core/bitstreams/

3758e8d3-4161-46c4-abd5-7292009b3523/content. 87

BANNER, M. L. Equilibrium spectra of wind waves. Journal of Physical Oceanography, 20:

966–984. URL: https://journals.ametsoc.org/view/journals/phoc/

20/7/1520-0485_1990_020_0966_esoww_2_0_co_2.xml?tab_body=

pdf. 76

BENDER, J. AND KOSCHIER, D. Divergence-free SPH for incompressible and viscous flu-

ids. IEEE Transactions on Visualization and Computer Graphics, 23(3):1193–1206. ISSN

1941-0506. URL: https://dl.acm.org/doi/10.1145/2786784.2786796.

Conference Name: IEEE Transactions on Visualization and Computer Graphics. 73

CANABAL, J. A., MIRAUT, D., THUEREY, N., KIM, T., PORTILLA, J., AND OTADUY,

M. A. Dispersion kernels for water wave simulation. ACM Transactions on Graphics,

35(6):1–10. URL: https://dl.acm.org/doi/10.1145/2980179.2982415.

Publisher: Association for Computing Machinery (ACM). 74

CASAS-YRURZUM, S., RUEDA, S., RIERA, J., AND FERNÁNDEZ, M. On the

real-time physics simulation of a speed-boat motion. pages 121–128. URL:

https://www.researchgate.net/publication/314208045_On_the_

Real-time_Physics_Simulation_of_a_Speed-boat_Motion. 73

CHENTANEZ, N. AND MÜLLER, M. Real-time simulation of large bodies of water

with small scale details. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, SCA ’10, pages 197–206. Eurographics Associa-

tion. URL: https://www.researchgate.net/publication/220789308_

Real-time_Simulation_of_Large_Bodies_of_Water_with_Small_

Scale_Details. event-place: Madrid, Spain. 74

COOLEY, J. W. AND TUKEY, J. W. An algorithm for the machine calculation

of complex fourier series. Mathematics of Computation, 19(90):297–301. ISSN

0025-5718, 1088-6842. URL: https://www.ams.org/mcom/1965-19-090/

S0025-5718-1965-0178586-1/. 81

CORDS, H. AND STAADT, C. Real-time open water environments with interacting ob-

jects. Proceedings of the Fifth Eurographics Conference on Natural Phenomena, pages

35–42. URL: https://dl.acm.org/doi/10.5555/2381692.2381697. ISBN:

9783905674118 Place: Goslar, DEU Publisher: Eurographics Association. 71, 74, 90, 93,

96

103

http://jcgt.org
https://dl.acm.org/doi/10.1145/2185520.2185558
https://dl.acm.org/doi/10.1145/2185520.2185558
https://diglib.eg.org/server/api/core/bitstreams/3758e8d3-4161-46c4-abd5-7292009b3523/content
https://diglib.eg.org/server/api/core/bitstreams/3758e8d3-4161-46c4-abd5-7292009b3523/content
https://journals.ametsoc.org/view/journals/phoc/20/7/1520-0485_1990_020_0966_esoww_2_0_co_2.xml?tab_body=pdf
https://journals.ametsoc.org/view/journals/phoc/20/7/1520-0485_1990_020_0966_esoww_2_0_co_2.xml?tab_body=pdf
https://journals.ametsoc.org/view/journals/phoc/20/7/1520-0485_1990_020_0966_esoww_2_0_co_2.xml?tab_body=pdf
https://dl.acm.org/doi/10.1145/2786784.2786796
https://dl.acm.org/doi/10.1145/2980179.2982415
https://www.researchgate.net/publication/314208045_On_the_Real-time_Physics_Simulation_of_a_Speed-boat_Motion
https://www.researchgate.net/publication/314208045_On_the_Real-time_Physics_Simulation_of_a_Speed-boat_Motion
https://www.researchgate.net/publication/220789308_Real-time_Simulation_of_Large_Bodies_of_Water_with_Small_Scale_Details
https://www.researchgate.net/publication/220789308_Real-time_Simulation_of_Large_Bodies_of_Water_with_Small_Scale_Details
https://www.researchgate.net/publication/220789308_Real-time_Simulation_of_Large_Bodies_of_Water_with_Small_Scale_Details
https://www.ams.org/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://www.ams.org/mcom/1965-19-090/S0025-5718-1965-0178586-1/
https://dl.acm.org/doi/10.5555/2381692.2381697

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

DONELAN, M. A., HAMILTON, J., HUI, W. H., AND STEWART, R. W. Directional spectra

of wind-generated ocean waves. Philosophical Transactions of the Royal Society of Lon-

don. Series A, Mathematical and Physical Sciences, 315(1534):509–562. URL: https:

//royalsocietypublishing.org/doi/10.1098/rsta.1985.0054. Pub-

lisher: Royal Society. 76

DUPUY, J. AND BRUNETON, E. Real-time animation and rendering of ocean whitecaps.

In SIGGRAPH Asia 2012 Technical Briefs, pages 1–3. ACM. ISBN 978-1-4503-1915-7.

URL: https://dl.acm.org/doi/10.1145/2407746.2407761. 72, 79

FONSECA, N. AND SOARES, C. G. Time-domain analysis of large-amplitude ver-

tical ship motions and wave loads. Journal of Ship Research, 42(2):139–153.

ISSN 0022-4502. URL: https://www.researchgate.net/publication/

279892381_Time-Domain_Analysis_of_Large-Amplitude_Vertical_

Ship_Motions_and_Wave_Loads. 73

GISSLER, C., PEER, A., BAND, S., BENDER, J., AND TESCHNER, M. Interlinked SPH

pressure solvers for strong fluid-rigid coupling. ACM Transactions on Graphics, 38(1):5:1–

5:13. ISSN 0730-0301. URL: https://animation.rwth-aachen.de/media/

papers/63/2019-TOG-StrongCoupling.pdf. 73

GOMEZ, M. Interactive simulation of water surfaces. In DELOURA, M., editor, Game

Programming Gems, pages 187–194. Charles River Media. ISBN 1-58450-049-2. URL:

https://gameenginegems.com/gemsdb/article.php?id=81. 73, 74, 92

HAINES, E. Point in polygon strategies. In Graphics gems IV, pages 24–46. Aca-

demic Press Professional, Inc. ISBN 978-0-12-336155-4. URL: https://erich.

realtimerendering.com/ptinpoly/. 96

HORVATH, C. J. Empirical directional wave spectra for computer graphics. In Proceed-

ings of the 2015 Symposium on Digital Production, DigiPro ’15, pages 29–39. Association

for Computing Machinery. ISBN 978-1-4503-3718-2. URL: https://doi.org/10.

1145/2791261.2791267. 71, 72, 76, 77

HULIN, J.-P., GUYON, E., AND PETIT, L. Hydrodynamique physique. URL: https:

//www.cnrseditions.fr/catalogue/physique-et-astrophysique/

hydrodynamique-physique-jean-pierre-hulin/. 110

IHMSEN, M., CORNELIS, J., SOLENTHALER, B., HORVATH, C., AND TESCHNER, M. Im-

plicit incompressible SPH. IEEE transactions on visualization and computer graphics, 20

(3):426–35. URL: https://ieeexplore.ieee.org/document/6570475. 73

ITTC. Fresh water and seawater properties. ITTC Recommended procedures. URL: https:

//ittc.info/media/4048/75-02-01-03.pdf. 89, 110

JESCHKE, S. AND WOJTAN, C. Water wave packets. ACM Trans. Graph., 36(4). ISSN 0730-

0301. URL: https://dl.acm.org/doi/10.1145/3072959.3073678. Place:

New York, NY, USA Publisher: Association for Computing Machinery. 74

JESCHKE, S., SKŘIVAN, T., MÜLLER-FISCHER, M., CHENTANEZ, N., MACKLIN, M.,

AND WOJTAN, C. Water surface wavelets. ACM Transactions on Graphics, 37(4):1–

13. URL: https://dl.acm.org/doi/10.1145/3197517.3201336. Publisher:

Association for Computing Machinery (ACM). 74

104

http://jcgt.org
https://royalsocietypublishing.org/doi/10.1098/rsta.1985.0054
https://royalsocietypublishing.org/doi/10.1098/rsta.1985.0054
https://dl.acm.org/doi/10.1145/2407746.2407761
https://www.researchgate.net/publication/279892381_Time-Domain_Analysis_of_Large-Amplitude_Vertical_Ship_Motions_and_Wave_Loads
https://www.researchgate.net/publication/279892381_Time-Domain_Analysis_of_Large-Amplitude_Vertical_Ship_Motions_and_Wave_Loads
https://www.researchgate.net/publication/279892381_Time-Domain_Analysis_of_Large-Amplitude_Vertical_Ship_Motions_and_Wave_Loads
https://animation.rwth-aachen.de/media/papers/63/2019-TOG-StrongCoupling.pdf
https://animation.rwth-aachen.de/media/papers/63/2019-TOG-StrongCoupling.pdf
https://gameenginegems.com/gemsdb/article.php?id=81
https://erich.realtimerendering.com/ptinpoly/
https://erich.realtimerendering.com/ptinpoly/
https://doi.org/10.1145/2791261.2791267
https://doi.org/10.1145/2791261.2791267
https://www.cnrseditions.fr/catalogue/physique-et-astrophysique/hydrodynamique-physique-jean-pierre-hulin/
https://www.cnrseditions.fr/catalogue/physique-et-astrophysique/hydrodynamique-physique-jean-pierre-hulin/
https://www.cnrseditions.fr/catalogue/physique-et-astrophysique/hydrodynamique-physique-jean-pierre-hulin/
https://ieeexplore.ieee.org/document/6570475
https://ittc.info/media/4048/75-02-01-03.pdf
https://ittc.info/media/4048/75-02-01-03.pdf
https://dl.acm.org/doi/10.1145/3072959.3073678
https://dl.acm.org/doi/10.1145/3197517.3201336

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

K. HASSELMANN, T. B. Measurements of wind-wave growth and swell decay during

the joint north sea wave project (JONSWAP). Ergnzungsheft zur Deutschen Hydro-

graphischen Zeitschrift Reihe, 12:95. URL: https://www.researchgate.net/

publication/256197895_Measurements_of_wind-wave_growth_and_

swell_decay_during_the_Joint_North_Sea_Wave_Project_JONSWAP.

75

KELLOMÄKI, T. Rigid body interaction for large-scale real-time water simulation. Interna-

tional Journal of Computer Games Technology, 2014:1–12. ISSN 1687-7047, 1687-7055.

URL: http://www.hindawi.com/journals/ijcgt/2014/580154/. 71, 73,

88, 89

KERNER, J. Water interaction model for boats in video games: Part

2. URL: https://www.gamedeveloper.com/programming/

water-interaction-model-for-boats-in-video-games-part-2.

73, 87, 89

KOSCHIER, D., BENDER, J., SOLENTHALER, B., AND TESCHNER, M. A sur-

vey on SPH methods in computer graphics. Computer Graphics Forum, 41:

737–760. URL: https://animation.rwth-aachen.de/media/papers/77/

2022-CGF-STAR_SPH.pdf. 73

MOLIN, B. Hydrodynamique des structures offshore. Édition Technip. ISBN 978-2-7108-

0815-2. URL: https://hal.science/hal-01320917. 109

SALVESEN, N., TUCK, E., AND FALTINSEN, O. Ship motions

and sea loads. URL: https://www.semanticscholar.org/

paper/SHIP-MOTIONS-AND-SEA-LOADS-Salvesen-Tuck/

6949c72084cd87c27fa6f39eddbc889a13f6b6e5. 73

SCHRECK, C., HAFNER, C., AND WOJTAN, C. Fundamental solutions for water wave

animation. ACM Trans. Graph., 38(4). ISSN 0730-0301. URL: https://dl.acm.

org/doi/10.1145/3306346.3323002. Place: New York, NY, USA Publisher:

Association for Computing Machinery. 74

SOLENTHALER, B. AND PAJAROLA, R. Predictive-corrective incompressible SPH. ACM

SIGGRAPH 2009 papers, pages 1–6. URL: https://dl.acm.org/doi/10.1145/

1576246.1531346. Conference Name: SIGGRAPH09: Special Interest Group on

Computer Graphics and Interactive Techniques Conference ISBN: 9781605587264 Place:

New Orleans Louisiana Publisher: ACM. 73

TEMAM, R. Navier–Stokes Equations: Theory and Numerical Analysis, volume 343 of AMS

Chelsea Publishing. American Mathematical Society. ISBN 978-0-8218-2737-6 978-0-

8218-6935-2 978-1-4704-2994-2. URL: https://www.ams.org/chel/343. 109

TESSENDORF, J. eWave: Using an exponential solver on the iWave problem.

a. URL: https://people.computing.clemson.edu/˜jtessen/reports/

papers_files/ewavealgorithm.pdf. 74

TESSENDORF, J. Gilligan: A prototype framework for simulating and rendering maritime en-

vironments. b. URL: https://people.computing.clemson.edu/˜jtessen/

reports/papers_files/simdoc.pdf. 71, 72, 75

105

http://jcgt.org
https://www.researchgate.net/publication/256197895_Measurements_of_wind-wave_growth_and_swell_decay_during_the_Joint_North_Sea_Wave_Project_JONSWAP
https://www.researchgate.net/publication/256197895_Measurements_of_wind-wave_growth_and_swell_decay_during_the_Joint_North_Sea_Wave_Project_JONSWAP
https://www.researchgate.net/publication/256197895_Measurements_of_wind-wave_growth_and_swell_decay_during_the_Joint_North_Sea_Wave_Project_JONSWAP
http://www.hindawi.com/journals/ijcgt/2014/580154/
https://www.gamedeveloper.com/programming/water-interaction-model-for-boats-in-video-games-part-2
https://www.gamedeveloper.com/programming/water-interaction-model-for-boats-in-video-games-part-2
https://animation.rwth-aachen.de/media/papers/77/2022-CGF-STAR_SPH.pdf
https://animation.rwth-aachen.de/media/papers/77/2022-CGF-STAR_SPH.pdf
https://hal.science/hal-01320917
https://www.semanticscholar.org/paper/SHIP-MOTIONS-AND-SEA-LOADS-Salvesen-Tuck/6949c72084cd87c27fa6f39eddbc889a13f6b6e5
https://www.semanticscholar.org/paper/SHIP-MOTIONS-AND-SEA-LOADS-Salvesen-Tuck/6949c72084cd87c27fa6f39eddbc889a13f6b6e5
https://www.semanticscholar.org/paper/SHIP-MOTIONS-AND-SEA-LOADS-Salvesen-Tuck/6949c72084cd87c27fa6f39eddbc889a13f6b6e5
https://dl.acm.org/doi/10.1145/3306346.3323002
https://dl.acm.org/doi/10.1145/3306346.3323002
https://dl.acm.org/doi/10.1145/1576246.1531346
https://dl.acm.org/doi/10.1145/1576246.1531346
https://www.ams.org/chel/343
https://people.computing.clemson.edu/~jtessen/reports/papers_files/ewavealgorithm.pdf
https://people.computing.clemson.edu/~jtessen/reports/papers_files/ewavealgorithm.pdf
https://people.computing.clemson.edu/~jtessen/reports/papers_files/simdoc.pdf
https://people.computing.clemson.edu/~jtessen/reports/papers_files/simdoc.pdf

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

TESSENDORF, J. Interactive water surface. In Game Programming Gems 4, pages 265–274.

Charles River Media, c. URL: https://people.computing.clemson.edu/

˜jtessen/reports/papers_files/Interactive_Water_Surfaces.

pdf. 74

TESSENDORF, J. Simulating ocean water. Simulating Nature: Realistic and Interactive Tech-

niques. SIGGRAPH, 1:1–26, d. URL: https://people.computing.clemson.

edu/˜jtessen/reports/papers_files/coursenotes2004.pdf. 71, 72,

75, 78

VARELA, J. AND GUEDES SOARES, C. Interactive simulation of ship motions in random seas

based on real wave spectra. pages 235–244. URL: https://www.researchgate.

net/publication/220868905_Interactive_Simulation_of_Ship_

Motions_in_Random_Seas_based_on_Real_Wave_Spectra. 73

YUKSEL, C. Real-time water waves with wave particles. URL: http:

//www.cemyuksel.com/research/waveparticles/cem_yuksel_

dissertation.pdf. AAI3436772 ISBN-13: 9781124370330. 71, 73, 89

YUKSEL, C., HOUSE, D. H., AND KEYSER, J. Wave particles. 26(3):99–es. ISSN 0730-

0301. URL: https://doi.org/10.1145/1276377.1276501. 74

Appendices

A. Water velocity

The water height is deduced from system of equations described in Equations (1), and its

solution according to Tessendorf is given by Equation (2) in Section 3. This appendix uses

these equations to obtain an expression of the velocity potential and the water velocity. To

simplify the derivation, only one wave vector k is considered in Equation (2) as Equations (1)

are all linear.

First, the velocity potential for y = 0 is deduced from first equation in 1, and Equations

(2) and 3 as follows:

ϕ(x, 0, t) =

∫

∂ϕ

∂t
(x, 0, t)dt

=

∫

−gh(x, t)dt

= −g exp(ik.x)
∫

(

h̃0(k) exp(iω(k)t) + h̃∗
0
(−k) exp(−iω(k)t)

)

dt

=
ig

ω(k)
exp(ik.x)

(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

(46)

where x =
[

x z
]T

. It is assuming that potential velocity at any depth y can be written as

follows:

ϕ(x, y, t) = ϕ̃(k, y, t) exp(ik · x). (47)

106

http://jcgt.org
https://people.computing.clemson.edu/~jtessen/reports/papers_files/Interactive_Water_Surfaces.pdf
https://people.computing.clemson.edu/~jtessen/reports/papers_files/Interactive_Water_Surfaces.pdf
https://people.computing.clemson.edu/~jtessen/reports/papers_files/Interactive_Water_Surfaces.pdf
https://people.computing.clemson.edu/~jtessen/reports/papers_files/coursenotes2004.pdf
https://people.computing.clemson.edu/~jtessen/reports/papers_files/coursenotes2004.pdf
https://www.researchgate.net/publication/220868905_Interactive_Simulation_of_Ship_Motions_in_Random_Seas_based_on_Real_Wave_Spectra
https://www.researchgate.net/publication/220868905_Interactive_Simulation_of_Ship_Motions_in_Random_Seas_based_on_Real_Wave_Spectra
https://www.researchgate.net/publication/220868905_Interactive_Simulation_of_Ship_Motions_in_Random_Seas_based_on_Real_Wave_Spectra
http://www.cemyuksel.com/research/waveparticles/cem_yuksel_dissertation.pdf
http://www.cemyuksel.com/research/waveparticles/cem_yuksel_dissertation.pdf
http://www.cemyuksel.com/research/waveparticles/cem_yuksel_dissertation.pdf
https://doi.org/10.1145/1276377.1276501

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Notice that this expression is convenient as it can be computed with an inverse Fast Fourier

Transform. The function ϕ̃(k, y, t) is defined as follows:

ϕ̃(k, y, t) =
ig

ω(k)
E(k, y)

(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

(48)

where attenuation function E(k, y) has to be determined from Equations 1. A first condition

comes from Equation 46:

E(k, 0) = 1 (49)

Then, the second equation from system 1 can be imposed on the attenuation function. First,

the left term is developed as follows:

∆ϕ =
(

−k2xE(k, y)− k2zE(k, y) + E′′(k, y)
)

× ig

ω(k)

(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

exp (ik · x)

=
(

E′′(k, y)− k2E(k, y)
)

× ig

ω(k)

(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

exp (ik · x) (50)

Hence, condition ∆ϕ = 0 is equivalent to find a solution of the following second order

ordinary differential linear equation:

E′′(k, y)− k2E(k, y) = 0. (51)

It can be deduced that for −H < y ≤ 0, E(k, y) is as follows:

E(k, y) = C1 cosh(ky + C2) (52)

where C1, C2 ∈ R are constant. The derivative regarding height y of ϕ(x,−H, t) can be

rewritten as follows:

∂ϕ(x, y, t)

∂y
=
∂E(k, y)

∂y

ig

ω(k)

(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

exp (ik · x)

=kC1 sinh(ky + C2)

× ig

ω(k)

(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

exp (ik · x)

Hence, at depth y = −H the fourth equation of system 1 leads to:

sinh(−kH + C2) = 0

C2 = kH. (53)

The constant C1 is obtained using Equation 49 as follows:

E(k, 0) = 1

C1 cosh(C2) = 1

C1 =
1

cosh(kH)
. (54)

107

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

To resume, the full expression of the attenuation function for −H ≤ y ≤ 0 is as follows:

E(k, y) =
cosh (ky + kH)

cosh(kH)
. (55)

However, this expression cannot be used for large values of k and sea height H , where the

hyperbolic cosine becomes bigger than the limit of real numbers even in double precision.

Hence, E quickly reach the indeterminate form ∞
∞

. To fix this problem, the following physical

assumption is made: it is assumed deep water, i.e. that the sea depth H tends towards ∞.

First, E is rewritten as follows:

E(k, y) =
cosh(ky + kH)

cosh(kH)

=
cosh(ky) cosh(kH) + sinh(ky) sinh(kH)

cosh(kH)

= cosh(ky) + sinh(ky) tanh(kH)

Then, considering that lim
H→∞

tanh(kH) = 1, the following approximation is obtained:

E(k, y) ≈ lim
H→∞

E(k, y)

≈ lim
H→∞

cosh(ky) + sinh(ky) tanh(kH)

≈ exp(ky). (56)

The third equation of the system 1 gives the following equality:

∂h

∂t
(k, t) =

∂ϕ

∂y
(k, 0, t) (57)

Once again, we only considered one wave vector k as Equations are all linear, in consequence

Equation 57 becomes:

∂h̃

∂t
(k, t)− ∂̃ϕ

∂y
(k, 0, t) = 0

iω(k)
(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

− igk

ω(k)
E(k, 0)

×
(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

= 0

ω(k)− gk

ω(k)
= 0

ω(k) =
√

gk (58)

This last Equation 58 gives the expression of the dispersion relation used in the Section

3.

Equation 56 and the definition of potential velocity ∇ϕ = v lead to the velocity v. First,

function ϕ̃ is rewritten as follows:

ϕ̃(k, y, t) =
ig

ω(k)
E(k, y)

(

h̃0(k) exp(iω(k)t)− h̃∗
0
(−k) exp(−iω(k)t)

)

. (59)

108

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Then the gradient of ϕ is as follows:

∇ϕ =

vx
vy
vz

 = ṽ(k, y, t) exp (ik · x) (60)

where ṽ(k, y, t) is the vector equal to:

ṽ (k, y, t) = E (k, y)
(

h̃0 (k) exp (iω(k)t)− h̃∗
0
(−k) exp (−iω(k)t)

)

−kxg
ω(k)
iω(k)
−kzg
ω(k)

, (61)

Finally, reintroducing a sum on a set of waves vectors k leads to:

∇ϕ =
∑

k

ṽ(k, y, t) exp (ik · x) . (62)

Note that the expression of E (k, y) (see Equation 56) is valid for height y ≤ 0, but not

usable above for y > 0. Several possibilities exist to overcome this problem:

1. The most naive one assumes E(k, y > 0) = 1.

2. A more realistic solution is based on a linear extrapolation using the derivative at y = 0,

as follows:

E(k, y) =

{

E(k, 0) + y ∂E
∂y

(k, 0) if y > 0,

exp(ky) else.
(63)

More sophisticated solutions are summarized in the Molin’s book (2002) [Molin]. Nev-

ertheless, they are too complex to compute as they make the attenuation function depending

on h(x, t). For this reason, the Arc Blanc framework uses Equation 63, with the following

simplified form:

E(k, y) =

{

1 + ky if y > 0,

exp(ky) else.
(64)

B. Navier-Stokes equations approximation

This appendix proposes a derivation of Tessendorf’s equations 1 from Navier-Stokes equa-

tions. As stated in Teman (2001) [Temam] and assuming conservation of mass, Navier-Stokes

equations are given by:

{

∂
∂t

(ρu) + u · ∇(ρu) = −∇p+ ρg +∇2(ρνu)
∂
∂t

(ρu) +∇ · (ρu) = 0
(65)

where u : R3 7→ R3 is the flow velocity, ρ is the time-dependent density of the fluid, p :

R3 7→ R is the pressure of the fluid, ν is the dynamic viscosity of the fluid. The first equation

is called Cauchy momentum equation and the second continuity equation.

Boundary conditions are necessary for simulations. In the case of solid, the boundary

equation is as follows:

u · n = usolid · n (66)

109

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

where, usolid is the velocity of the solid and n is the normal to its surface.

Some assumptions are made to simplify these equations, and to derive Tessendorf equa-

tions. They are discussed below.

Incompressibility As mention in Section 3.3.2 of Hulin et al. (2001) [Hulin et al.], a fluid

can be considered incompressible if u << csound where csound if the sound speed in ocean

which is approximately equal9. Aside from phenomena such as hurricane, this inequality

seems reasonable for oceans, and leads to consider that ocean is incompressible. More for-

mally:

ρ(t) = ρ. (67)

Consequently, density can be factorized in each term of equations 65.

Inviscid A fluid can be considered inviscid if Re >> 1 (see Section 2.3.1 of Hulin et al.

(2001) [Hulin et al.]) where Re = V L/ν is the Reynolds number of the fluid defined by the

order of magnitude of its velocity V , its characteristic length L and its dynamic viscosity ν.

For Tessendorf derivation, V is the velocity of waves, L its wave length and for seawater at

20°C its is stated that ν = 1.0508.10−6 (see the measure of the ITTC [ITTC]). Therefore, the

inequality is true for product V L >> 10−5. For these values the ocean can be considered as

flat. Hence, the viscosity term ν of Navier-Stokes equations 65 can be neglected.

Irrotational If a fluid is irrotational at time t0, it must remain irrotational unless there are

changes in the boundary conditions. Clearly, flat sea are irrotational fluid, corresponding to

∇ × u = 0. Therefore, it can assume that for calm waves the fluid remains irrotational.

Then, there exists a scalar field called velocity potential defined by ϕ = ∇ϕ from Helmholtz

decomposition10.

These three assumptions lead to the Bernoulli equation (see Section 5.3.2 of Hulin et al.

(2001), which is the following simplified version of the Cauchy momentum equation:

∂ϕ

∂t
+

1

2
∥∇ϕ∥2 + p

ρ
+ gy = 0 (68)

Moreover, the continuity equation is now:

∆ϕ = 0 (69)

Nevertheless, these non-linear equations are still too complex to be solved at large scaled

and in real-time.

Interface condition It is necessary to define a boundary condition at the interface between

the ocean fluid and the air fluid. To simplify, it is assumed that the air can be represented as

a region with constant pressure11. Since air density is a hundred of times lighter than water,

its effects on the free surface are assumed to be negligible. As with an incompressible fluid,

9See https://en.wikipedia.org/wiki/Sound_speed_profile to csound =

1530 m.s−1.
10See https://en.wikipedia.org/wiki/Helmholtz_decomposition.
11As shown by the barometric formula the atmospheric pressure has a very low evolution in function

of altitude.

110

http://jcgt.org
https://en.wikipedia.org/wiki/Sound_speed_profile
https://en.wikipedia.org/wiki/Helmholtz_decomposition
https://en.wikipedia.org/wiki/Barometric_formula

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

only the differences in pressure matter. Therefore, the air pressure is defined as an arbitrary

constant, leading to:

p = 0 at free surface. (70)

Hence, this allows to remove the pressure term in Bernoulli equation 68 at free surface.

Height field At this point, equations are still too complex to be used in real-time, especially

in terms of dimension: it seems inconceivable to solve them at large scale in 3D. Therefore, to

reduce their dimensions it is assumed that the surface geometry is described by a height field,

as follows:

y = h(x, t). (71)

This hypothesis excludes a lot of physical phenomena like breaking waves, but it helps to

reach large scale domain.

Free surface follows the velocity of water Next step assumes that the free surface follows

the velocity of the water. Hence, for all x on the horizontal axes at time t+ dt the height field

is as follows:

h(x′, t+ dt) = h(x, t) + vydt (72)

where:

x′ = x+ dt

[

vx
vz

]

(73)

The Taylor expansion of h(x′, t+ dt) leads to:

h(x′, t+ dt) = h(x, t+ dt) + vxdt
∂h(x, t)

∂x
+ vzdt

∂h(x, t)

∂z
+ . . . (74)

Neglecting the nonlinear terms in the Taylor expansion and reintegrating the development

of h(x′, t+ dt) into Equation 72 and then dividing by dt leads to the following result:

h(x, t+ dt)− h(x, t)

dt
+ vx

∂h(x, t)

∂x
+ vz

∂h(x, t)

∂z
= vy

∂h

∂t
+ vx

∂h

∂x
+ vz

∂h

∂z
= vy

(75)

This leads to the following advection equation:

D

Dt
(h(x)− y) = 0 (76)

Remove quadratic term The quadratic term in the Bernoulli equation 68 makes solving the

equation too complex. Therefore, the velocity is assumed to be sufficiently small to neglect

the quadratic term relative to the others. It leads to the “final” Bernoulli equation expressed

as follows:
∂ϕ

∂t
= −gh(x, t) (77)

Smooth free surface Similarly, the nonlinear terms in the advection equation 76 make the

equation’s resolution too complex. So the free surface height is assumed to be sufficiently

smooth to neglect these terms relative to others. As a result, advection equation 76 becomes:

∂h

∂t
=

∂ϕ

∂y
(78)

111

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Flat ocean bottom Now, it is assumed that the ocean depth is constant, and equal to H .

Then, the ocean floor is stationary and its normal to the ocean floor is (0, 1, 0). Hence, bound-

ary conditions at y = −H are defined as:

u · n = 0

∂ϕ

∂y
= 0

(79)

Infinite ocean To avoid boundary conditions on x, it is assumed that the ocean is horizon-

tally infinite and periodic, allowing a finite simulation area. Therefore, the simulation area

size is defined squared as L× L. It leads to an ocean tile that can be infinitely duplicated.

Small free surface To simplify the location at which all equations are solved, it is assumed

that the height of the free surface is sufficiently low. Hence, the equations can be solved at

x = 0.

Conclusion Finally, putting all together leads to the Tessendorf solution. More precisely,

Tessendorf equations system is made from Equations (77), (69), (78), (79).

C. Two Fourier transforms in one

This section proposes a proof of Theorem 1.

Proof. This demonstration relies on the following formula that links the real part of the IFFT

and the sum of the coefficients:

F−1

(

1

2

(

A+A†
)

)

= ℜ
(

F−1 (A)
)

(80)

where A = (an,m) is any Hermitian complex matrix of Mn(C), and A† the transpose of its

conjugate. Using the definition and linearity of the discrete Fourier transform, it follows for

one term (k, l) of the IFFT:

F−1
(

A+A†
)

k,l
= F−1 (A)k,l + F−1

(

A†
)

k,l

=
∑

n,m

an,m exp

(

−i2π
N

(kn+ lm)

)

+
∑

m,n

a∗m,n exp

(

−i2π
N

(km+ ln)

)

=
∑

n,m

(an,m + a∗n,m) exp

(

−i2π
N

(kn+ lm)

)

= 2ℜ
(

F−1 (A)k,l

)

(81)

Since A is Hermitian by hypothesis, Equation (80) becomes:

F−1 (A) = ℜ
(

F−1 (A)
)

(82)

Applying this last equation to X and iY leads to:

F−1 (X + iY) = F−1 (X) + iF−1 (Y)

= ℜ
(

F−1 (X)
)

+ iℜ
(

F−1 (Y)
) (83)

112

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

D. Evaluation of the Number of Iterations for Convergence

The optimal number of iterations (Niter) required for the iterative retrieval of water height was

determined through two experiments, focusing on accuracy and computational efficiency.

The first experiment aimed to evaluate the number of iterations required for the water

height computation to converge within a given precision. This test has been conducted on

different wind speeds as it makes the height of water significantly. Wind speeds ranged from

0.1 m/s to 35 m/s in 0.5 m/s increments, with convergence tested at 103 random positions

uniformly distributed over a 104 × 104 m domain. The iterative process was repeated until

the difference between consecutive height estimates was smaller than 0.01 m. The results,

shown in Figure 17, indicate that the required number of iterations increases with wind speed

but stabilizes at approximately Niter = 4 for higher wind speeds.

The second experiment aimed to measure the computational cost associated with varying

numbers of iterations. The execution time was assessed using a CUDA-based implementa-

tion, where the iterative retrieval of water height was performed for different values of Niter.

Each test was executed 103 times on a GPU, and execution times were recorded across 105

randomly sampled positions. The measurements included the minimum, maximum, mean,

and variance of execution times for each iteration count. The results, presented in Figure 18,

show that while execution time increases with the number of iterations, the rate of increase

diminishes after four iterations. This confirms that Niter = 4 provides an optimal balance

between computational efficiency and accuracy, ensuring reliable convergence across tested

conditions.

Figure 17. Mean number of steps required for convergence as a function of wind speed. Error

bars represent the variance of iterations across 1000 test points.

Index of Supplemental Materials

Three supplemental videos are included:

113

http://jcgt.org

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Figure 18. Average execution time per iteration count over 1000 tests, measured across 105

sample positions. Error bars indicate variance in execution time.

• https://jcgt.org/published/0014/01/05/timelapse.mp4

Time lapse video.

• https://jcgt.org/published/0014/01/05/lateralMovingBoat.mp4

Video of a boat moving across the field of view.

• https://jcgt.org/published/0014/01/05/fixedOutsideMotorBoatMoving.mp4

Wider view, including sun and boat moving away from the camera.

Author Contact Information

David Algis

Bât. H1 - SP2MI

TSA 41123

86073 Poitiers Cedex 9

FRANCE

david.algis@univ-poitiers.fr

Bérenger Bramas

INRIA Nancy

berenger.bramas@inria.fr

Emmanuelle Darles

Université de Poitiers

emmanuelle.darles@univ-poitiers.fr

Lilian Aveneau

Université de Poitiers

lilian.aveneau@univ-poitiers.fr

David Algis, Bérenger Bramas, Emmanuelle Darles, Lilian Aveneau, Arc Blanc: a real time

ocean simulation framework, Journal of Computer Graphics Techniques (JCGT), vol. 14, no.

1, 70–115, 2025

http://jcgt.org/published/0014/01/05/

114

http://jcgt.org
https://jcgt.org/published/0014/01/05/timelapse.mp4
https://jcgt.org/published/0014/01/05/lateralMovingBoat.mp4
https://jcgt.org/published/0014/01/05/fixedOutsideMotorBoatMoving.mp4
mailto:david.algis@univ-poitiers.fr
mailto:berenger.bramas@inria.fr
emmanuelle.darles@univ-poitiers.fr
mailto:lilian.aveneau@univ-poitiers.fr
http://jcgt.org/published/0014/01/05/

Journal of Computer Graphics Techniques

Arc Blanc: a real time ocean simulation framework

Vol. 14, No. 1, 2025

http://jcgt.org

Received: 2024-01-31

Recommended: 2025-01-09 Corresponding Editor: Angelo Pesce

Published: 2025-03-05 Editor-in-Chief: Eric Haines

© 2025 David Algis, Bérenger Bramas, Emmanuelle Darles, Lilian Aveneau (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-ND

3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors

further grant permission for reuse of images and text from the first page of the Work, provided

that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly

venues and that any reuse is accompanied by a scientific citation to the Work.

115

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

